summaryrefslogtreecommitdiffstats
path: root/src/main/java/org/bukkit/util/noise/SimplexNoiseGenerator.java
blob: e035001432f98f6627c236df046992405da57afb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
package org.bukkit.util.noise;

import java.util.Random;
import org.bukkit.World;

/**
 * Generates simplex-based noise.
 *
 * This is a modified version of the freely published version in the paper by
 * Stefan Gustavson at http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
 */
public class SimplexNoiseGenerator extends PerlinNoiseGenerator {
    protected static final double SQRT_3 = Math.sqrt(3);
    protected static final double SQRT_5 = Math.sqrt(5);
    protected static final double F2 = 0.5 * (SQRT_3 - 1);
    protected static final double G2 = (3 - SQRT_3) / 6;
    protected static final double G22 = G2 * 2.0 - 1;
    protected static final double F3 = 1.0 / 3.0;
    protected static final double G3 = 1.0 / 6.0;
    protected static final double F4 = (SQRT_5 - 1.0) / 4.0;
    protected static final double G4 = (5.0 - SQRT_5) / 20.0;
    protected static final double G42 = G4 * 2.0;
    protected static final double G43 = G4 * 3.0;
    protected static final double G44 = G4 * 4.0 - 1.0;
    protected static final int grad4[][] = {{0, 1, 1, 1}, {0, 1, 1, -1}, {0, 1, -1, 1}, {0, 1, -1, -1},
        {0, -1, 1, 1}, {0, -1, 1, -1}, {0, -1, -1, 1}, {0, -1, -1, -1},
        {1, 0, 1, 1}, {1, 0, 1, -1}, {1, 0, -1, 1}, {1, 0, -1, -1},
        {-1, 0, 1, 1}, {-1, 0, 1, -1}, {-1, 0, -1, 1}, {-1, 0, -1, -1},
        {1, 1, 0, 1}, {1, 1, 0, -1}, {1, -1, 0, 1}, {1, -1, 0, -1},
        {-1, 1, 0, 1}, {-1, 1, 0, -1}, {-1, -1, 0, 1}, {-1, -1, 0, -1},
        {1, 1, 1, 0}, {1, 1, -1, 0}, {1, -1, 1, 0}, {1, -1, -1, 0},
        {-1, 1, 1, 0}, {-1, 1, -1, 0}, {-1, -1, 1, 0}, {-1, -1, -1, 0}};
    protected static final int simplex[][] = {
        {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0},
        {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0},
        {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
        {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0},
        {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0},
        {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
        {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0},
        {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}};
    protected static double offsetW;
    private static final SimplexNoiseGenerator instance = new SimplexNoiseGenerator();

    protected SimplexNoiseGenerator() {
        super();
    }

    /**
     * Creates a seeded simplex noise generator for the given world
     *
     * @param world World to construct this generator for
     */
    public SimplexNoiseGenerator(World world) {
        this(new Random(world.getSeed()));
    }

    /**
     * Creates a seeded simplex noise generator for the given seed
     *
     * @param seed Seed to construct this generator for
     */
    public SimplexNoiseGenerator(long seed) {
        this(new Random(seed));
    }

    /**
     * Creates a seeded simplex noise generator with the given Random
     *
     * @param rand Random to construct with
     */
    public SimplexNoiseGenerator(Random rand) {
        super(rand);
        offsetW = rand.nextDouble() * 256;
    }

    protected static double dot(int g[], double x, double y) {
        return g[0] * x + g[1] * y;
    }

    protected static double dot(int g[], double x, double y, double z) {
        return g[0] * x + g[1] * y + g[2] * z;
    }

    protected static double dot(int g[], double x, double y, double z, double w) {
        return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
    }

    /**
     * Computes and returns the 1D unseeded simplex noise for the given coordinates in 1D space
     *
     * @param xin X coordinate
     * @return Noise at given location, from range -1 to 1
     */
    public static double getNoise(double xin) {
        return instance.noise(xin);
    }

    /**
     * Computes and returns the 2D unseeded simplex noise for the given coordinates in 2D space
     *
     * @param xin X coordinate
     * @param yin Y coordinate
     * @return Noise at given location, from range -1 to 1
     */
    public static double getNoise(double xin, double yin) {
        return instance.noise(xin, yin);
    }

    /**
     * Computes and returns the 3D unseeded simplex noise for the given coordinates in 3D space
     *
     * @param xin X coordinate
     * @param yin Y coordinate
     * @param zin Z coordinate
     * @return Noise at given location, from range -1 to 1
     */
    public static double getNoise(double xin, double yin, double zin) {
        return instance.noise(xin, yin, zin);
    }

    /**
     * Computes and returns the 4D simplex noise for the given coordinates in 4D space
     *
     * @param x X coordinate
     * @param y Y coordinate
     * @param z Z coordinate
     * @param w W coordinate
     * @return Noise at given location, from range -1 to 1
     */
    public static double getNoise(double x, double y, double z, double w) {
        return instance.noise(x, y, z, w);
    }

    @Override
    public double noise(double xin, double yin, double zin) {
        xin += offsetX;
        yin += offsetY;
        zin += offsetZ;

        double n0, n1, n2, n3; // Noise contributions from the four corners

        // Skew the input space to determine which simplex cell we're in
        double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
        int i = floor(xin + s);
        int j = floor(yin + s);
        int k = floor(zin + s);
        double t = (i + j + k) * G3;
        double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
        double Y0 = j - t;
        double Z0 = k - t;
        double x0 = xin - X0; // The x,y,z distances from the cell origin
        double y0 = yin - Y0;
        double z0 = zin - Z0;

        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.

        // Determine which simplex we are in.
        int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
        int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
        if (x0 >= y0) {
            if (y0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            } // X Y Z order
            else if (x0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            } // X Z Y order
            else {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            } // Z X Y order
        } else { // x0<y0
            if (y0 < z0) {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } // Z Y X order
            else if (x0 < z0) {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } // Y Z X order
            else {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            } // Y X Z order
        }

        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.
        double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
        double y1 = y0 - j1 + G3;
        double z1 = z0 - k1 + G3;
        double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
        double y2 = y0 - j2 + 2.0 * G3;
        double z2 = z0 - k2 + 2.0 * G3;
        double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
        double y3 = y0 - 1.0 + 3.0 * G3;
        double z3 = z0 - 1.0 + 3.0 * G3;

        // Work out the hashed gradient indices of the four simplex corners
        int ii = i & 255;
        int jj = j & 255;
        int kk = k & 255;
        int gi0 = perm[ii + perm[jj + perm[kk]]] % 12;
        int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12;
        int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12;
        int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12;

        // Calculate the contribution from the four corners
        double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
        if (t0 < 0) {
            n0 = 0.0;
        } else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
        }

        double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
        if (t1 < 0) {
            n1 = 0.0;
        } else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
        }

        double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
        if (t2 < 0) {
            n2 = 0.0;
        } else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
        }

        double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
        if (t3 < 0) {
            n3 = 0.0;
        } else {
            t3 *= t3;
            n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
        }

        // Add contributions from each corner to get the final noise value.
        // The result is scaled to stay just inside [-1,1]
        return 32.0 * (n0 + n1 + n2 + n3);
    }

    @Override
    public double noise(double xin, double yin) {
        xin += offsetX;
        yin += offsetY;

        double n0, n1, n2; // Noise contributions from the three corners

        // Skew the input space to determine which simplex cell we're in
        double s = (xin + yin) * F2; // Hairy factor for 2D
        int i = floor(xin + s);
        int j = floor(yin + s);
        double t = (i + j) * G2;
        double X0 = i - t; // Unskew the cell origin back to (x,y) space
        double Y0 = j - t;
        double x0 = xin - X0; // The x,y distances from the cell origin
        double y0 = yin - Y0;

        // For the 2D case, the simplex shape is an equilateral triangle.

        // Determine which simplex we are in.
        int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
        if (x0 > y0) {
            i1 = 1;
            j1 = 0;
        } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
        else {
            i1 = 0;
            j1 = 1;
        } // upper triangle, YX order: (0,0)->(0,1)->(1,1)

        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6

        double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
        double y1 = y0 - j1 + G2;
        double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords
        double y2 = y0 + G22;

        // Work out the hashed gradient indices of the three simplex corners
        int ii = i & 255;
        int jj = j & 255;
        int gi0 = perm[ii + perm[jj]] % 12;
        int gi1 = perm[ii + i1 + perm[jj + j1]] % 12;
        int gi2 = perm[ii + 1 + perm[jj + 1]] % 12;

        // Calculate the contribution from the three corners
        double t0 = 0.5 - x0 * x0 - y0 * y0;
        if (t0 < 0) {
            n0 = 0.0;
        } else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
        }

        double t1 = 0.5 - x1 * x1 - y1 * y1;
        if (t1 < 0) {
            n1 = 0.0;
        } else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
        }

        double t2 = 0.5 - x2 * x2 - y2 * y2;
        if (t2 < 0) {
            n2 = 0.0;
        } else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
        }

        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 70.0 * (n0 + n1 + n2);
    }

    /**
     * Computes and returns the 4D simplex noise for the given coordinates in 4D space
     *
     * @param x X coordinate
     * @param y Y coordinate
     * @param z Z coordinate
     * @param w W coordinate
     * @return Noise at given location, from range -1 to 1
     */
    public double noise(double x, double y, double z, double w) {
        x += offsetX;
        y += offsetY;
        z += offsetZ;
        w += offsetW;

        double n0, n1, n2, n3, n4; // Noise contributions from the five corners

        // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
        double s = (x + y + z + w) * F4; // Factor for 4D skewing
        int i = floor(x + s);
        int j = floor(y + s);
        int k = floor(z + s);
        int l = floor(w + s);

        double t = (i + j + k + l) * G4; // Factor for 4D unskewing
        double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
        double Y0 = j - t;
        double Z0 = k - t;
        double W0 = l - t;
        double x0 = x - X0; // The x,y,z,w distances from the cell origin
        double y0 = y - Y0;
        double z0 = z - Z0;
        double w0 = w - W0;

        // For the 4D case, the simplex is a 4D shape I won't even try to describe.
        // To find out which of the 24 possible simplices we're in, we need to
        // determine the magnitude ordering of x0, y0, z0 and w0.
        // The method below is a good way of finding the ordering of x,y,z,w and
        // then find the correct traversal order for the simplex we’re in.
        // First, six pair-wise comparisons are performed between each possible pair
        // of the four coordinates, and the results are used to add up binary bits
        // for an integer index.
        int c1 = (x0 > y0) ? 32 : 0;
        int c2 = (x0 > z0) ? 16 : 0;
        int c3 = (y0 > z0) ? 8 : 0;
        int c4 = (x0 > w0) ? 4 : 0;
        int c5 = (y0 > w0) ? 2 : 0;
        int c6 = (z0 > w0) ? 1 : 0;
        int c = c1 + c2 + c3 + c4 + c5 + c6;
        int i1, j1, k1, l1; // The integer offsets for the second simplex corner
        int i2, j2, k2, l2; // The integer offsets for the third simplex corner
        int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner

        // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
        // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
        // impossible. Only the 24 indices which have non-zero entries make any sense.
        // We use a thresholding to set the coordinates in turn from the largest magnitude.

        // The number 3 in the "simplex" array is at the position of the largest coordinate.
        i1 = simplex[c][0] >= 3 ? 1 : 0;
        j1 = simplex[c][1] >= 3 ? 1 : 0;
        k1 = simplex[c][2] >= 3 ? 1 : 0;
        l1 = simplex[c][3] >= 3 ? 1 : 0;

        // The number 2 in the "simplex" array is at the second largest coordinate.
        i2 = simplex[c][0] >= 2 ? 1 : 0;
        j2 = simplex[c][1] >= 2 ? 1 : 0;
        k2 = simplex[c][2] >= 2 ? 1 : 0;
        l2 = simplex[c][3] >= 2 ? 1 : 0;

        // The number 1 in the "simplex" array is at the second smallest coordinate.
        i3 = simplex[c][0] >= 1 ? 1 : 0;
        j3 = simplex[c][1] >= 1 ? 1 : 0;
        k3 = simplex[c][2] >= 1 ? 1 : 0;
        l3 = simplex[c][3] >= 1 ? 1 : 0;

        // The fifth corner has all coordinate offsets = 1, so no need to look that up.

        double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
        double y1 = y0 - j1 + G4;
        double z1 = z0 - k1 + G4;
        double w1 = w0 - l1 + G4;

        double x2 = x0 - i2 + G42; // Offsets for third corner in (x,y,z,w) coords
        double y2 = y0 - j2 + G42;
        double z2 = z0 - k2 + G42;
        double w2 = w0 - l2 + G42;

        double x3 = x0 - i3 + G43; // Offsets for fourth corner in (x,y,z,w) coords
        double y3 = y0 - j3 + G43;
        double z3 = z0 - k3 + G43;
        double w3 = w0 - l3 + G43;

        double x4 = x0 + G44; // Offsets for last corner in (x,y,z,w) coords
        double y4 = y0 + G44;
        double z4 = z0 + G44;
        double w4 = w0 + G44;

        // Work out the hashed gradient indices of the five simplex corners
        int ii = i & 255;
        int jj = j & 255;
        int kk = k & 255;
        int ll = l & 255;

        int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
        int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
        int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
        int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
        int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;

        // Calculate the contribution from the five corners
        double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
        if (t0 < 0) {
            n0 = 0.0;
        } else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
        }

        double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
        if (t1 < 0) {
            n1 = 0.0;
        } else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
        }

        double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
        if (t2 < 0) {
            n2 = 0.0;
        } else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
        }

        double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
        if (t3 < 0) {
            n3 = 0.0;
        } else {
            t3 *= t3;
            n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
        }

        double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
        if (t4 < 0) {
            n4 = 0.0;
        } else {
            t4 *= t4;
            n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
        }

        // Sum up and scale the result to cover the range [-1,1]
        return 27.0 * (n0 + n1 + n2 + n3 + n4);
    }

    /**
     * Gets the singleton unseeded instance of this generator
     *
     * @return Singleton
     */
    public static SimplexNoiseGenerator getInstance() {
        return instance;
    }
}