1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <stdio.h>
#include <stdlib.h>
#include "nsXPCOM.h"
#include "nsXPCOMCIDInternal.h"
#include "nsIThreadPool.h"
#include "nsComponentManagerUtils.h"
#include "nsCOMPtr.h"
#include "nsIRunnable.h"
#include "nsThreadUtils.h"
#include "mozilla/Atomics.h"
#include "mozilla/Monitor.h"
#include "gtest/gtest.h"
using namespace mozilla;
class Task final : public nsIRunnable
{
public:
NS_DECL_THREADSAFE_ISUPPORTS
explicit Task(int i) : mIndex(i) {}
NS_IMETHOD Run() override
{
printf("###(%d) running from thread: %p\n", mIndex, (void *) PR_GetCurrentThread());
int r = (int) ((float) rand() * 200 / RAND_MAX);
PR_Sleep(PR_MillisecondsToInterval(r));
printf("###(%d) exiting from thread: %p\n", mIndex, (void *) PR_GetCurrentThread());
++sCount;
return NS_OK;
}
static mozilla::Atomic<int> sCount;
private:
~Task() {}
int mIndex;
};
NS_IMPL_ISUPPORTS(Task, nsIRunnable)
mozilla::Atomic<int> Task::sCount;
TEST(ThreadPool, Main)
{
nsCOMPtr<nsIThreadPool> pool = do_CreateInstance(NS_THREADPOOL_CONTRACTID);
EXPECT_TRUE(pool);
for (int i = 0; i < 100; ++i) {
nsCOMPtr<nsIRunnable> task = new Task(i);
EXPECT_TRUE(task);
pool->Dispatch(task, NS_DISPATCH_NORMAL);
}
pool->Shutdown();
EXPECT_EQ(Task::sCount, 100);
}
TEST(ThreadPool, Parallelism)
{
nsCOMPtr<nsIThreadPool> pool = do_CreateInstance(NS_THREADPOOL_CONTRACTID);
EXPECT_TRUE(pool);
// Dispatch and sleep to ensure we have an idle thread
nsCOMPtr<nsIRunnable> r0 = new Runnable();
pool->Dispatch(r0, NS_DISPATCH_SYNC);
PR_Sleep(PR_SecondsToInterval(2));
class Runnable1 : public Runnable {
public:
Runnable1(Monitor& aMonitor, bool& aDone)
: mMonitor(aMonitor), mDone(aDone) {}
NS_IMETHOD Run() override {
MonitorAutoLock mon(mMonitor);
if (!mDone) {
// Wait for a reasonable timeout since we don't want to block gtests
// forever should any regression happen.
mon.Wait(PR_SecondsToInterval(300));
}
EXPECT_TRUE(mDone);
return NS_OK;
}
private:
Monitor& mMonitor;
bool& mDone;
};
class Runnable2 : public Runnable {
public:
Runnable2(Monitor& aMonitor, bool& aDone)
: mMonitor(aMonitor), mDone(aDone) {}
NS_IMETHOD Run() override {
MonitorAutoLock mon(mMonitor);
mDone = true;
mon.NotifyAll();
return NS_OK;
}
private:
Monitor& mMonitor;
bool& mDone;
};
// Dispatch 2 events in a row. Since we are still within the thread limit,
// We should wake up the idle thread and spawn a new thread so these 2 events
// can run in parallel. We will time out if r1 and r2 run in sequence for r1
// won't finish until r2 finishes.
Monitor mon("ThreadPool::Parallelism");
bool done = false;
nsCOMPtr<nsIRunnable> r1 = new Runnable1(mon, done);
nsCOMPtr<nsIRunnable> r2 = new Runnable2(mon, done);
pool->Dispatch(r1, NS_DISPATCH_NORMAL);
pool->Dispatch(r2, NS_DISPATCH_NORMAL);
pool->Shutdown();
}
|