1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PLDHashTable.h"
#include "nsCOMPtr.h"
#include "nsServiceManagerUtils.h"
#include "gtest/gtest.h"
// This test mostly focuses on edge cases. But more coverage of normal
// operations wouldn't be a bad thing.
#ifdef XP_UNIX
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
// This global variable is defined in toolkit/xre/nsSigHandlers.cpp.
extern unsigned int _gdb_sleep_duration;
#endif
// We can test that certain operations cause expected aborts by forking
// and then checking that the child aborted in the expected way (i.e. via
// MOZ_CRASH). We skip this for the following configurations.
// - On Windows, because it doesn't have fork().
// - On non-DEBUG builds, because the crashes cause the crash reporter to pop
// up when running this test locally, which is surprising and annoying.
// - On ASAN builds, because ASAN alters the way a MOZ_CRASHing process
// terminates, which makes it harder to test if the right thing has occurred.
void
TestCrashyOperation(void (*aCrashyOperation)())
{
#if defined(XP_UNIX) && defined(DEBUG) && !defined(MOZ_ASAN)
// We're about to trigger a crash. When it happens don't pause to allow GDB
// to be attached.
unsigned int old_gdb_sleep_duration = _gdb_sleep_duration;
_gdb_sleep_duration = 0;
int pid = fork();
ASSERT_NE(pid, -1);
if (pid == 0) {
// Child: perform the crashy operation.
fprintf(stderr, "TestCrashyOperation: The following crash is expected. Do not panic.\n");
aCrashyOperation();
fprintf(stderr, "TestCrashyOperation: didn't crash?!\n");
ASSERT_TRUE(false); // shouldn't reach here
}
// Parent: check that child crashed as expected.
int status;
ASSERT_NE(waitpid(pid, &status, 0), -1);
// The path taken here depends on the platform and configuration.
ASSERT_TRUE(WIFEXITED(status) || WTERMSIG(status));
if (WIFEXITED(status)) {
// This occurs if the ah_crap_handler() is run, i.e. we caught the crash.
// It returns the number of the caught signal.
int signum = WEXITSTATUS(status);
if (signum != SIGSEGV && signum != SIGBUS) {
fprintf(stderr, "TestCrashyOperation 'exited' failure: %d\n", signum);
ASSERT_TRUE(false);
}
} else if (WIFSIGNALED(status)) {
// This one occurs if we didn't catch the crash. The exit code is the
// number of the terminating signal.
int signum = WTERMSIG(status);
if (signum != SIGSEGV && signum != SIGBUS) {
fprintf(stderr, "TestCrashyOperation 'signaled' failure: %d\n", signum);
ASSERT_TRUE(false);
}
}
_gdb_sleep_duration = old_gdb_sleep_duration;
#endif
}
void
InitCapacityOk_InitialLengthTooBig()
{
PLDHashTable t(PLDHashTable::StubOps(), sizeof(PLDHashEntryStub),
PLDHashTable::kMaxInitialLength + 1);
}
void
InitCapacityOk_InitialEntryStoreTooBig()
{
// Try the smallest disallowed power-of-two entry store size, which is 2^32
// bytes (which overflows to 0). (Note that the 2^23 *length* gets converted
// to a 2^24 *capacity*.)
PLDHashTable t(PLDHashTable::StubOps(), (uint32_t)1 << 23, (uint32_t)1 << 8);
}
TEST(PLDHashTableTest, InitCapacityOk)
{
// Try the largest allowed capacity. With kMaxCapacity==1<<26, this
// would allocate (if we added an element) 0.5GB of entry store on 32-bit
// platforms and 1GB on 64-bit platforms.
PLDHashTable t1(PLDHashTable::StubOps(), sizeof(PLDHashEntryStub),
PLDHashTable::kMaxInitialLength);
// Try the largest allowed power-of-two entry store size, which is 2^31 bytes
// (Note that the 2^23 *length* gets converted to a 2^24 *capacity*.)
PLDHashTable t2(PLDHashTable::StubOps(), (uint32_t)1 << 23, (uint32_t)1 << 7);
// Try a too-large capacity (which aborts).
TestCrashyOperation(InitCapacityOk_InitialLengthTooBig);
// Try a large capacity combined with a large entry size that when multiplied
// overflow (causing abort).
TestCrashyOperation(InitCapacityOk_InitialEntryStoreTooBig);
// Ideally we'd also try a large-but-ok capacity that almost but doesn't
// quite overflow, but that would result in allocating slightly less than 4
// GiB of entry storage. That would be very likely to fail on 32-bit
// platforms, so such a test wouldn't be reliable.
}
TEST(PLDHashTableTest, LazyStorage)
{
PLDHashTable t(PLDHashTable::StubOps(), sizeof(PLDHashEntryStub));
// PLDHashTable allocates entry storage lazily. Check that all the non-add
// operations work appropriately when the table is empty and the storage
// hasn't yet been allocated.
ASSERT_EQ(t.Capacity(), 0u);
ASSERT_EQ(t.EntrySize(), sizeof(PLDHashEntryStub));
ASSERT_EQ(t.EntryCount(), 0u);
ASSERT_EQ(t.Generation(), 0u);
ASSERT_TRUE(!t.Search((const void*)1));
// No result to check here, but call it to make sure it doesn't crash.
t.Remove((const void*)2);
for (auto iter = t.Iter(); !iter.Done(); iter.Next()) {
ASSERT_TRUE(false); // shouldn't hit this on an empty table
}
ASSERT_EQ(t.ShallowSizeOfExcludingThis(moz_malloc_size_of), 0u);
}
// A trivial hash function is good enough here. It's also super-fast for the
// GrowToMaxCapacity test because we insert the integers 0.., which means it's
// collision-free.
static PLDHashNumber
TrivialHash(const void *key)
{
return (PLDHashNumber)(size_t)key;
}
static void
TrivialInitEntry(PLDHashEntryHdr* aEntry, const void* aKey)
{
auto entry = static_cast<PLDHashEntryStub*>(aEntry);
entry->key = aKey;
}
static const PLDHashTableOps trivialOps = {
TrivialHash,
PLDHashTable::MatchEntryStub,
PLDHashTable::MoveEntryStub,
PLDHashTable::ClearEntryStub,
TrivialInitEntry
};
TEST(PLDHashTableTest, MoveSemantics)
{
PLDHashTable t1(&trivialOps, sizeof(PLDHashEntryStub));
t1.Add((const void*)88);
PLDHashTable t2(&trivialOps, sizeof(PLDHashEntryStub));
t2.Add((const void*)99);
t1 = mozilla::Move(t1); // self-move
t1 = mozilla::Move(t2); // empty overwritten with empty
PLDHashTable t3(&trivialOps, sizeof(PLDHashEntryStub));
PLDHashTable t4(&trivialOps, sizeof(PLDHashEntryStub));
t3.Add((const void*)88);
t3 = mozilla::Move(t4); // non-empty overwritten with empty
PLDHashTable t5(&trivialOps, sizeof(PLDHashEntryStub));
PLDHashTable t6(&trivialOps, sizeof(PLDHashEntryStub));
t6.Add((const void*)88);
t5 = mozilla::Move(t6); // empty overwritten with non-empty
PLDHashTable t7(&trivialOps, sizeof(PLDHashEntryStub));
PLDHashTable t8(mozilla::Move(t7)); // new table constructed with uninited
PLDHashTable t9(&trivialOps, sizeof(PLDHashEntryStub));
t9.Add((const void*)88);
PLDHashTable t10(mozilla::Move(t9)); // new table constructed with inited
}
TEST(PLDHashTableTest, Clear)
{
PLDHashTable t1(&trivialOps, sizeof(PLDHashEntryStub));
t1.Clear();
ASSERT_EQ(t1.EntryCount(), 0u);
t1.ClearAndPrepareForLength(100);
ASSERT_EQ(t1.EntryCount(), 0u);
t1.Add((const void*)77);
t1.Add((const void*)88);
t1.Add((const void*)99);
ASSERT_EQ(t1.EntryCount(), 3u);
t1.Clear();
ASSERT_EQ(t1.EntryCount(), 0u);
t1.Add((const void*)55);
t1.Add((const void*)66);
t1.Add((const void*)77);
t1.Add((const void*)88);
t1.Add((const void*)99);
ASSERT_EQ(t1.EntryCount(), 5u);
t1.ClearAndPrepareForLength(8192);
ASSERT_EQ(t1.EntryCount(), 0u);
}
TEST(PLDHashTableTest, Iterator)
{
PLDHashTable t(&trivialOps, sizeof(PLDHashEntryStub));
// Explicitly test the move constructor. We do this because, due to copy
// elision, compilers might optimize away move constructor calls for normal
// iterator use.
{
PLDHashTable::Iterator iter1(&t);
PLDHashTable::Iterator iter2(mozilla::Move(iter1));
}
// Iterate through the empty table.
for (PLDHashTable::Iterator iter(&t); !iter.Done(); iter.Next()) {
(void) iter.Get();
ASSERT_TRUE(false); // shouldn't hit this
}
// Add three entries.
t.Add((const void*)77);
t.Add((const void*)88);
t.Add((const void*)99);
// Check the iterator goes through each entry once.
bool saw77 = false, saw88 = false, saw99 = false;
int n = 0;
for (auto iter(t.Iter()); !iter.Done(); iter.Next()) {
auto entry = static_cast<PLDHashEntryStub*>(iter.Get());
if (entry->key == (const void*)77) {
saw77 = true;
}
if (entry->key == (const void*)88) {
saw88 = true;
}
if (entry->key == (const void*)99) {
saw99 = true;
}
n++;
}
ASSERT_TRUE(saw77 && saw88 && saw99 && n == 3);
t.Clear();
// First, we insert 64 items, which results in a capacity of 128, and a load
// factor of 50%.
for (intptr_t i = 0; i < 64; i++) {
t.Add((const void*)i);
}
ASSERT_EQ(t.EntryCount(), 64u);
ASSERT_EQ(t.Capacity(), 128u);
// The first removing iterator does no removing; capacity and entry count are
// unchanged.
for (PLDHashTable::Iterator iter(&t); !iter.Done(); iter.Next()) {
(void) iter.Get();
}
ASSERT_EQ(t.EntryCount(), 64u);
ASSERT_EQ(t.Capacity(), 128u);
// The second removing iterator removes 16 items. This reduces the load
// factor to 37.5% (48 / 128), which isn't low enough to shrink the table.
for (auto iter = t.Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<PLDHashEntryStub*>(iter.Get());
if ((intptr_t)(entry->key) % 4 == 0) {
iter.Remove();
}
}
ASSERT_EQ(t.EntryCount(), 48u);
ASSERT_EQ(t.Capacity(), 128u);
// The third removing iterator removes another 16 items. This reduces
// the load factor to 25% (32 / 128), so the table is shrunk.
for (auto iter = t.Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<PLDHashEntryStub*>(iter.Get());
if ((intptr_t)(entry->key) % 2 == 0) {
iter.Remove();
}
}
ASSERT_EQ(t.EntryCount(), 32u);
ASSERT_EQ(t.Capacity(), 64u);
// The fourth removing iterator removes all remaining items. This reduces
// the capacity to the minimum.
for (auto iter = t.Iter(); !iter.Done(); iter.Next()) {
iter.Remove();
}
ASSERT_EQ(t.EntryCount(), 0u);
ASSERT_EQ(t.Capacity(), unsigned(PLDHashTable::kMinCapacity));
}
// This test involves resizing a table repeatedly up to 512 MiB in size. On
// 32-bit platforms (Win32, Android) it sometimes OOMs, causing the test to
// fail. (See bug 931062 and bug 1267227.) Therefore, we only run it on 64-bit
// platforms where OOM is much less likely.
//
// Also, it's slow, and so should always be last.
#ifdef HAVE_64BIT_BUILD
TEST(PLDHashTableTest, GrowToMaxCapacity)
{
// This is infallible.
PLDHashTable* t =
new PLDHashTable(&trivialOps, sizeof(PLDHashEntryStub), 128);
// Keep inserting elements until failure occurs because the table is full.
size_t numInserted = 0;
while (true) {
if (!t->Add((const void*)numInserted, mozilla::fallible)) {
break;
}
numInserted++;
}
// We stop when the element count is 96.875% of PLDHashTable::kMaxCapacity
// (see MaxLoadOnGrowthFailure()).
if (numInserted !=
PLDHashTable::kMaxCapacity - (PLDHashTable::kMaxCapacity >> 5)) {
delete t;
ASSERT_TRUE(false);
}
delete t;
}
#endif
|