1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <ctime>
#include <utility>
#include <vector>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "aom_dsp/ansreader.h"
#include "aom_dsp/buf_ans.h"
namespace {
typedef std::vector<std::pair<uint8_t, bool> > PvVec;
const int kPrintStats = 0;
// Use a small buffer size to exercise ANS window spills or buffer growth
const int kBufAnsSize = 1 << 8;
PvVec abs_encode_build_vals(int iters) {
PvVec ret;
libaom_test::ACMRandom gen(0x30317076);
double entropy = 0;
for (int i = 0; i < iters; ++i) {
uint8_t p;
do {
p = gen.Rand8();
} while (p == 0); // zero is not a valid coding probability
bool b = gen.Rand8() < p;
ret.push_back(std::make_pair(static_cast<uint8_t>(p), b));
if (kPrintStats) {
double d = p / 256.;
entropy += -d * log2(d) - (1 - d) * log2(1 - d);
}
}
if (kPrintStats) printf("entropy %f\n", entropy);
return ret;
}
bool check_rabs(const PvVec &pv_vec, uint8_t *buf) {
BufAnsCoder a;
aom_buf_ans_alloc(&a, NULL, kBufAnsSize);
buf_ans_write_init(&a, buf);
std::clock_t start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
buf_rabs_write(&a, it->second, 256 - it->first);
}
aom_buf_ans_flush(&a);
std::clock_t enc_time = std::clock() - start;
int offset = buf_ans_write_end(&a);
aom_buf_ans_free(&a);
bool okay = true;
AnsDecoder d;
#if ANS_MAX_SYMBOLS
d.window_size = kBufAnsSize;
#endif
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
okay = okay && (rabs_read(&d, 256 - it->first) != 0) == it->second;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
if (kPrintStats)
printf("uABS size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d) != 0;
}
const aom_cdf_prob spareto65[] = { 8320, 6018, 4402, 3254, 4259,
3919, 2057, 492, 45, 2 };
const int kRansSymbols =
static_cast<int>(sizeof(spareto65) / sizeof(spareto65[0]));
struct rans_sym {
aom_cdf_prob prob;
aom_cdf_prob cum_prob; // not-inclusive
};
std::vector<int> ans_encode_build_vals(rans_sym *const tab, int iters) {
aom_cdf_prob sum = 0;
for (int i = 0; i < kRansSymbols; ++i) {
tab[i].cum_prob = sum;
tab[i].prob = spareto65[i];
sum += spareto65[i];
}
std::vector<int> p_to_sym;
for (int i = 0; i < kRansSymbols; ++i) {
p_to_sym.insert(p_to_sym.end(), tab[i].prob, i);
}
assert(p_to_sym.size() == RANS_PRECISION);
std::vector<int> ret;
libaom_test::ACMRandom gen(18543637);
for (int i = 0; i < iters; ++i) {
int sym =
p_to_sym[((gen.Rand8() << 8) + gen.Rand8()) & (RANS_PRECISION - 1)];
ret.push_back(sym);
}
return ret;
}
void rans_build_dec_tab(const struct rans_sym sym_tab[],
aom_cdf_prob *dec_tab) {
unsigned int sum = 0;
for (int i = 0; sum < RANS_PRECISION; ++i) {
dec_tab[i] = sum += sym_tab[i].prob;
}
}
bool check_rans(const std::vector<int> &sym_vec, const rans_sym *const tab,
uint8_t *buf) {
BufAnsCoder a;
aom_buf_ans_alloc(&a, NULL, kBufAnsSize);
buf_ans_write_init(&a, buf);
aom_cdf_prob dec_tab[kRansSymbols];
rans_build_dec_tab(tab, dec_tab);
std::clock_t start = std::clock();
for (std::vector<int>::const_iterator it = sym_vec.begin();
it != sym_vec.end(); ++it) {
buf_rans_write(&a, tab[*it].cum_prob, tab[*it].prob);
}
aom_buf_ans_flush(&a);
std::clock_t enc_time = std::clock() - start;
int offset = buf_ans_write_end(&a);
aom_buf_ans_free(&a);
bool okay = true;
AnsDecoder d;
#if ANS_MAX_SYMBOLS
d.window_size = kBufAnsSize;
#endif
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (std::vector<int>::const_iterator it = sym_vec.begin();
it != sym_vec.end(); ++it) {
okay &= rans_read(&d, dec_tab) == *it;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
if (kPrintStats)
printf("rANS size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d) != 0;
}
class AbsTestFix : public ::testing::Test {
protected:
static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); }
virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; }
virtual void TearDown() { delete[] buf_; }
static const int kNumBools = 100000000;
static PvVec pv_vec_;
uint8_t *buf_;
};
PvVec AbsTestFix::pv_vec_;
class AnsTestFix : public ::testing::Test {
protected:
static void SetUpTestCase() {
sym_vec_ = ans_encode_build_vals(rans_sym_tab_, kNumSyms);
}
virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; }
virtual void TearDown() { delete[] buf_; }
static const int kNumSyms = 25000000;
static std::vector<int> sym_vec_;
static rans_sym rans_sym_tab_[kRansSymbols];
uint8_t *buf_;
};
std::vector<int> AnsTestFix::sym_vec_;
rans_sym AnsTestFix::rans_sym_tab_[kRansSymbols];
TEST_F(AbsTestFix, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); }
TEST_F(AnsTestFix, Rans) {
EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab_, buf_));
}
TEST(AnsTest, FinalStateSerialization) {
for (unsigned i = L_BASE; i < L_BASE * IO_BASE; ++i) {
uint8_t buf[8];
AnsCoder c;
ans_write_init(&c, buf);
c.state = i;
const int written_size = ans_write_end(&c);
ASSERT_LT(static_cast<size_t>(written_size), sizeof(buf));
AnsDecoder d;
#if ANS_MAX_SYMBOLS
// There is no real data window here because no symbols are sent through
// ans (only synthetic states), so use a dummy value
d.window_size = 1024;
#endif
const int read_init_status = ans_read_init(&d, buf, written_size);
EXPECT_EQ(read_init_status, 0);
EXPECT_EQ(d.state, i);
}
}
} // namespace
|