summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/cfl_avx2.c
blob: a8bfdcce6b998f53302452c2515f83f4fe8abb53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <immintrin.h>

#include "config/av1_rtcd.h"

#include "av1/common/cfl.h"

#include "av1/common/x86/cfl_simd.h"

#define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd)                           \
  CFL_SUBSAMPLE(avx2, sub, bd, 32, 32)                                     \
  CFL_SUBSAMPLE(avx2, sub, bd, 32, 16)                                     \
  CFL_SUBSAMPLE(avx2, sub, bd, 32, 8)                                      \
  cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2(    \
      TX_SIZE tx_size) {                                                   \
    static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = {     \
      subsample_##bd##_##sub##_4x4_ssse3,   /* 4x4 */                      \
      subsample_##bd##_##sub##_8x8_ssse3,   /* 8x8 */                      \
      subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */                    \
      subsample_##bd##_##sub##_32x32_avx2,  /* 32x32 */                    \
      cfl_subsample_##bd##_null,            /* 64x64 (invalid CFL size) */ \
      subsample_##bd##_##sub##_4x8_ssse3,   /* 4x8 */                      \
      subsample_##bd##_##sub##_8x4_ssse3,   /* 8x4 */                      \
      subsample_##bd##_##sub##_8x16_ssse3,  /* 8x16 */                     \
      subsample_##bd##_##sub##_16x8_ssse3,  /* 16x8 */                     \
      subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */                    \
      subsample_##bd##_##sub##_32x16_avx2,  /* 32x16 */                    \
      cfl_subsample_##bd##_null,            /* 32x64 (invalid CFL size) */ \
      cfl_subsample_##bd##_null,            /* 64x32 (invalid CFL size) */ \
      subsample_##bd##_##sub##_4x16_ssse3,  /* 4x16  */                    \
      subsample_##bd##_##sub##_16x4_ssse3,  /* 16x4  */                    \
      subsample_##bd##_##sub##_8x32_ssse3,  /* 8x32  */                    \
      subsample_##bd##_##sub##_32x8_avx2,   /* 32x8  */                    \
      cfl_subsample_##bd##_null,            /* 16x64 (invalid CFL size) */ \
      cfl_subsample_##bd##_null,            /* 64x16 (invalid CFL size) */ \
    };                                                                     \
    return subfn_##sub[tx_size];                                           \
  }

/**
 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 *
 * Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
 */
static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;                               // Forever 32
  const __m256i twos = _mm256_set1_epi8(2);  // Thirty two twos
  const int luma_stride = input_stride << 1;
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));

    __m256i top_16x16 = _mm256_maddubs_epi16(top, twos);
    __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos);
    __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16);

    _mm256_storeu_si256(row, sum_16x16);

    input += luma_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd)

/**
 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;                                // Forever 32
  const __m256i fours = _mm256_set1_epi8(4);  // Thirty two fours
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    __m256i top_16x16 = _mm256_maddubs_epi16(top, fours);
    _mm256_storeu_si256(row, top_16x16);
    input += input_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd)

/**
 * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only
 * performed on block of width 32.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 */
static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;  // Forever 32
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
  const __m256i zeros = _mm256_setzero_si256();
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0));

    __m256i row_lo = _mm256_unpacklo_epi8(top, zeros);
    row_lo = _mm256_slli_epi16(row_lo, 3);
    __m256i row_hi = _mm256_unpackhi_epi8(top, zeros);
    row_hi = _mm256_slli_epi16(row_hi, 3);

    _mm256_storeu_si256(row, row_lo);
    _mm256_storeu_si256(row + 1, row_hi);

    input += input_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd)

/**
 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 *
 * Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
 */
static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;  // Forever 32
  const int luma_stride = input_stride << 1;
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
    __m256i sum = _mm256_add_epi16(top, bot);

    __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
    __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride));
    __m256i sum_1 = _mm256_add_epi16(top_1, bot_1);

    __m256i hsum = _mm256_hadd_epi16(sum, sum_1);
    hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
    hsum = _mm256_add_epi16(hsum, hsum);

    _mm256_storeu_si256(row, hsum);

    input += luma_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd)

/**
 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
 *
 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
 * active area is specified using width and height.
 *
 * Note: We don't need to worry about going over the active area, as long as we
 * stay inside the CfL prediction buffer.
 *
 */
static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;  // Forever 32
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
    __m256i hsum = _mm256_hadd_epi16(top, top_1);
    hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
    hsum = _mm256_slli_epi16(hsum, 2);

    _mm256_storeu_si256(row, hsum);

    input += input_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd)

static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input,
                                              int input_stride,
                                              uint16_t *pred_buf_q3, int width,
                                              int height) {
  (void)width;  // Forever 32
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
  do {
    __m256i top = _mm256_loadu_si256((__m256i *)input);
    __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
    _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3));
    _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3));
    input += input_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd)

static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12,
                                        __m256i alpha_sign, __m256i dc_q0) {
  __m256i ac_q3 = _mm256_loadu_si256(input);
  __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3);
  __m256i scaled_luma_q0 =
      _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12);
  scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign);
  return _mm256_add_epi16(scaled_luma_q0, dc_q0);
}

static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3,
                                        uint8_t *dst, int dst_stride,
                                        int alpha_q3, int width, int height) {
  (void)width;
  const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
  const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
  const __m256i dc_q0 = _mm256_set1_epi16(*dst);
  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;

  do {
    __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
    __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
    res = _mm256_packus_epi16(res, next);
    res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0));
    _mm256_storeu_si256((__m256i *)dst, res);
    dst += dst_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_PREDICT_X(avx2, 32, 8, lbd);
CFL_PREDICT_X(avx2, 32, 16, lbd);
CFL_PREDICT_X(avx2, 32, 32, lbd);

cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) {
  static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = {
    predict_lbd_4x4_ssse3,   /* 4x4 */
    predict_lbd_8x8_ssse3,   /* 8x8 */
    predict_lbd_16x16_ssse3, /* 16x16 */
    predict_lbd_32x32_avx2,  /* 32x32 */
    cfl_predict_lbd_null,    /* 64x64 (invalid CFL size) */
    predict_lbd_4x8_ssse3,   /* 4x8 */
    predict_lbd_8x4_ssse3,   /* 8x4 */
    predict_lbd_8x16_ssse3,  /* 8x16 */
    predict_lbd_16x8_ssse3,  /* 16x8 */
    predict_lbd_16x32_ssse3, /* 16x32 */
    predict_lbd_32x16_avx2,  /* 32x16 */
    cfl_predict_lbd_null,    /* 32x64 (invalid CFL size) */
    cfl_predict_lbd_null,    /* 64x32 (invalid CFL size) */
    predict_lbd_4x16_ssse3,  /* 4x16  */
    predict_lbd_16x4_ssse3,  /* 16x4  */
    predict_lbd_8x32_ssse3,  /* 8x32  */
    predict_lbd_32x8_avx2,   /* 32x8  */
    cfl_predict_lbd_null,    /* 16x64 (invalid CFL size) */
    cfl_predict_lbd_null,    /* 64x16 (invalid CFL size) */
  };
  // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
  // function pointer array out of bounds.
  return pred[tx_size % TX_SIZES_ALL];
}

static __m256i highbd_max_epi16(int bd) {
  const __m256i neg_one = _mm256_set1_epi16(-1);
  // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
  return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one);
}

static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) {
  return _mm256_max_epi16(_mm256_min_epi16(u, max), zero);
}

static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3,
                                        uint16_t *dst, int dst_stride,
                                        int alpha_q3, int bd, int width,
                                        int height) {
  // Use SSSE3 version for smaller widths
  assert(width == 16 || width == 32);
  const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
  const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
  const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst);
  const __m256i max = highbd_max_epi16(bd);

  __m256i *row = (__m256i *)pred_buf_q3;
  const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
  do {
    const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
    _mm256_storeu_si256((__m256i *)dst,
                        highbd_clamp_epi16(res, _mm256_setzero_si256(), max));
    if (width == 32) {
      const __m256i res_1 =
          predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
      _mm256_storeu_si256(
          (__m256i *)(dst + 16),
          highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max));
    }
    dst += dst_stride;
  } while ((row += CFL_BUF_LINE_I256) < row_end);
}

CFL_PREDICT_X(avx2, 16, 4, hbd)
CFL_PREDICT_X(avx2, 16, 8, hbd)
CFL_PREDICT_X(avx2, 16, 16, hbd)
CFL_PREDICT_X(avx2, 16, 32, hbd)
CFL_PREDICT_X(avx2, 32, 8, hbd)
CFL_PREDICT_X(avx2, 32, 16, hbd)
CFL_PREDICT_X(avx2, 32, 32, hbd)

cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) {
  static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = {
    predict_hbd_4x4_ssse3,  /* 4x4 */
    predict_hbd_8x8_ssse3,  /* 8x8 */
    predict_hbd_16x16_avx2, /* 16x16 */
    predict_hbd_32x32_avx2, /* 32x32 */
    cfl_predict_hbd_null,   /* 64x64 (invalid CFL size) */
    predict_hbd_4x8_ssse3,  /* 4x8 */
    predict_hbd_8x4_ssse3,  /* 8x4 */
    predict_hbd_8x16_ssse3, /* 8x16 */
    predict_hbd_16x8_avx2,  /* 16x8 */
    predict_hbd_16x32_avx2, /* 16x32 */
    predict_hbd_32x16_avx2, /* 32x16 */
    cfl_predict_hbd_null,   /* 32x64 (invalid CFL size) */
    cfl_predict_hbd_null,   /* 64x32 (invalid CFL size) */
    predict_hbd_4x16_ssse3, /* 4x16  */
    predict_hbd_16x4_avx2,  /* 16x4  */
    predict_hbd_8x32_ssse3, /* 8x32  */
    predict_hbd_32x8_avx2,  /* 32x8  */
    cfl_predict_hbd_null,   /* 16x64 (invalid CFL size) */
    cfl_predict_hbd_null,   /* 64x16 (invalid CFL size) */
  };
  // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
  // function pointer array out of bounds.
  return pred[tx_size % TX_SIZES_ALL];
}

// Returns a vector where all the (32-bits) elements are the sum of all the
// lanes in a.
static INLINE __m256i fill_sum_epi32(__m256i a) {
  // Given that a == [A, B, C, D, E, F, G, H]
  a = _mm256_hadd_epi32(a, a);
  // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H
  // a == [A', C', A', C', E', G', E', G']
  a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0));
  // a == [A', C', E', G', A', C', E', G']
  a = _mm256_hadd_epi32(a, a);
  // Given that A'' == A' + C' and E'' == E' + G'
  // a == [A'', E'', A'', E'', A'', E'', A'', E'']
  return _mm256_hadd_epi32(a, a);
  // Given that A''' == A'' + E''
  // a == [A''', A''', A''', A''', A''', A''', A''', A''']
}

static INLINE __m256i _mm256_addl_epi16(__m256i a) {
  return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()),
                          _mm256_unpackhi_epi16(a, _mm256_setzero_si256()));
}

static INLINE void subtract_average_avx2(const uint16_t *src_ptr,
                                         int16_t *dst_ptr, int width,
                                         int height, int round_offset,
                                         int num_pel_log2) {
  // Use SSE2 version for smaller widths
  assert(width == 16 || width == 32);

  const __m256i *src = (__m256i *)src_ptr;
  const __m256i *const end = src + height * CFL_BUF_LINE_I256;
  // To maximize usage of the AVX2 registers, we sum two rows per loop
  // iteration
  const int step = 2 * CFL_BUF_LINE_I256;

  __m256i sum = _mm256_setzero_si256();
  // For width 32, we use a second sum accumulator to reduce accumulator
  // dependencies in the loop.
  __m256i sum2;
  if (width == 32) sum2 = _mm256_setzero_si256();

  do {
    // Add top row to the bottom row
    __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src),
                                  _mm256_loadu_si256(src + CFL_BUF_LINE_I256));
    sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0));
    if (width == 32) { /* Don't worry, this if it gets optimized out. */
      // Add the second part of the top row to the second part of the bottom row
      __m256i l1 =
          _mm256_add_epi16(_mm256_loadu_si256(src + 1),
                           _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256));
      sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1));
    }
    src += step;
  } while (src < end);
  // Combine both sum accumulators
  if (width == 32) sum = _mm256_add_epi32(sum, sum2);

  __m256i fill = fill_sum_epi32(sum);

  __m256i avg_epi16 = _mm256_srli_epi32(
      _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2);
  avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16);

  // Store and subtract loop
  src = (__m256i *)src_ptr;
  __m256i *dst = (__m256i *)dst_ptr;
  do {
    _mm256_storeu_si256(dst,
                        _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16));
    if (width == 32) {
      _mm256_storeu_si256(
          dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16));
    }
    src += CFL_BUF_LINE_I256;
    dst += CFL_BUF_LINE_I256;
  } while (src < end);
}

// Declare wrappers for AVX2 sizes
CFL_SUB_AVG_X(avx2, 16, 4, 32, 6)
CFL_SUB_AVG_X(avx2, 16, 8, 64, 7)
CFL_SUB_AVG_X(avx2, 16, 16, 128, 8)
CFL_SUB_AVG_X(avx2, 16, 32, 256, 9)
CFL_SUB_AVG_X(avx2, 32, 8, 128, 8)
CFL_SUB_AVG_X(avx2, 32, 16, 256, 9)
CFL_SUB_AVG_X(avx2, 32, 32, 512, 10)

// Based on the observation that for small blocks AVX2 does not outperform
// SSE2, we call the SSE2 code for block widths 4 and 8.
cfl_subtract_average_fn get_subtract_average_fn_avx2(TX_SIZE tx_size) {
  static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = {
    subtract_average_4x4_sse2,   /* 4x4 */
    subtract_average_8x8_sse2,   /* 8x8 */
    subtract_average_16x16_avx2, /* 16x16 */
    subtract_average_32x32_avx2, /* 32x32 */
    cfl_subtract_average_null,   /* 64x64 (invalid CFL size) */
    subtract_average_4x8_sse2,   /* 4x8 */
    subtract_average_8x4_sse2,   /* 8x4 */
    subtract_average_8x16_sse2,  /* 8x16 */
    subtract_average_16x8_avx2,  /* 16x8 */
    subtract_average_16x32_avx2, /* 16x32 */
    subtract_average_32x16_avx2, /* 32x16 */
    cfl_subtract_average_null,   /* 32x64 (invalid CFL size) */
    cfl_subtract_average_null,   /* 64x32 (invalid CFL size) */
    subtract_average_4x16_sse2,  /* 4x16 */
    subtract_average_16x4_avx2,  /* 16x4 */
    subtract_average_8x32_sse2,  /* 8x32 */
    subtract_average_32x8_avx2,  /* 32x8 */
    cfl_subtract_average_null,   /* 16x64 (invalid CFL size) */
    cfl_subtract_average_null,   /* 64x16 (invalid CFL size) */
  };
  // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to
  // index the function pointer array out of bounds.
  return sub_avg[tx_size % TX_SIZES_ALL];
}