1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_
#define AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_
#include <emmintrin.h>
#include "aom/aom_integer.h"
#include "aom_dsp/x86/synonyms.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef void (*transform_1d_avx2)(const __m256i *input, __m256i *output,
int8_t cos_bit);
static INLINE __m256i pair_set_w16_epi16(int16_t a, int16_t b) {
return _mm256_set1_epi32(
(int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
}
static INLINE void btf_16_w16_avx2(const __m256i w0, const __m256i w1,
__m256i *in0, __m256i *in1, const __m256i _r,
const int32_t cos_bit) {
__m256i t0 = _mm256_unpacklo_epi16(*in0, *in1);
__m256i t1 = _mm256_unpackhi_epi16(*in0, *in1);
__m256i u0 = _mm256_madd_epi16(t0, w0);
__m256i u1 = _mm256_madd_epi16(t1, w0);
__m256i v0 = _mm256_madd_epi16(t0, w1);
__m256i v1 = _mm256_madd_epi16(t1, w1);
__m256i a0 = _mm256_add_epi32(u0, _r);
__m256i a1 = _mm256_add_epi32(u1, _r);
__m256i b0 = _mm256_add_epi32(v0, _r);
__m256i b1 = _mm256_add_epi32(v1, _r);
__m256i c0 = _mm256_srai_epi32(a0, cos_bit);
__m256i c1 = _mm256_srai_epi32(a1, cos_bit);
__m256i d0 = _mm256_srai_epi32(b0, cos_bit);
__m256i d1 = _mm256_srai_epi32(b1, cos_bit);
*in0 = _mm256_packs_epi32(c0, c1);
*in1 = _mm256_packs_epi32(d0, d1);
}
static INLINE void btf_16_adds_subs_avx2(__m256i *in0, __m256i *in1) {
const __m256i _in0 = *in0;
const __m256i _in1 = *in1;
*in0 = _mm256_adds_epi16(_in0, _in1);
*in1 = _mm256_subs_epi16(_in0, _in1);
}
static INLINE void btf_32_add_sub_avx2(__m256i *in0, __m256i *in1) {
const __m256i _in0 = *in0;
const __m256i _in1 = *in1;
*in0 = _mm256_add_epi32(_in0, _in1);
*in1 = _mm256_sub_epi32(_in0, _in1);
}
static INLINE void btf_16_adds_subs_out_avx2(__m256i *out0, __m256i *out1,
__m256i in0, __m256i in1) {
const __m256i _in0 = in0;
const __m256i _in1 = in1;
*out0 = _mm256_adds_epi16(_in0, _in1);
*out1 = _mm256_subs_epi16(_in0, _in1);
}
static INLINE void btf_32_add_sub_out_avx2(__m256i *out0, __m256i *out1,
__m256i in0, __m256i in1) {
const __m256i _in0 = in0;
const __m256i _in1 = in1;
*out0 = _mm256_add_epi32(_in0, _in1);
*out1 = _mm256_sub_epi32(_in0, _in1);
}
static INLINE __m256i load_16bit_to_16bit_avx2(const int16_t *a) {
return _mm256_load_si256((const __m256i *)a);
}
static INLINE void load_buffer_16bit_to_16bit_avx2(const int16_t *in,
int stride, __m256i *out,
int out_size) {
for (int i = 0; i < out_size; ++i) {
out[i] = load_16bit_to_16bit_avx2(in + i * stride);
}
}
static INLINE void load_buffer_16bit_to_16bit_flip_avx2(const int16_t *in,
int stride,
__m256i *out,
int out_size) {
for (int i = 0; i < out_size; ++i) {
out[out_size - i - 1] = load_16bit_to_16bit_avx2(in + i * stride);
}
}
static INLINE __m256i load_32bit_to_16bit_w16_avx2(const int32_t *a) {
const __m256i a_low = _mm256_lddqu_si256((const __m256i *)a);
const __m256i b = _mm256_packs_epi32(a_low, *(const __m256i *)(a + 8));
return _mm256_permute4x64_epi64(b, 0xD8);
}
static INLINE void load_buffer_32bit_to_16bit_w16_avx2(const int32_t *in,
int stride, __m256i *out,
int out_size) {
for (int i = 0; i < out_size; ++i) {
out[i] = load_32bit_to_16bit_w16_avx2(in + i * stride);
}
}
static INLINE void transpose_16bit_16x16_avx2(const __m256i *const in,
__m256i *const out) {
// Unpack 16 bit elements. Goes from:
// in[0]: 00 01 02 03 08 09 0a 0b 04 05 06 07 0c 0d 0e 0f
// in[1]: 10 11 12 13 18 19 1a 1b 14 15 16 17 1c 1d 1e 1f
// in[2]: 20 21 22 23 28 29 2a 2b 24 25 26 27 2c 2d 2e 2f
// in[3]: 30 31 32 33 38 39 3a 3b 34 35 36 37 3c 3d 3e 3f
// in[4]: 40 41 42 43 48 49 4a 4b 44 45 46 47 4c 4d 4e 4f
// in[5]: 50 51 52 53 58 59 5a 5b 54 55 56 57 5c 5d 5e 5f
// in[6]: 60 61 62 63 68 69 6a 6b 64 65 66 67 6c 6d 6e 6f
// in[7]: 70 71 72 73 78 79 7a 7b 74 75 76 77 7c 7d 7e 7f
// in[8]: 80 81 82 83 88 89 8a 8b 84 85 86 87 8c 8d 8e 8f
// to:
// a0: 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
// a1: 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37
// a2: 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57
// a3: 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77
// ...
__m256i a[16];
for (int i = 0; i < 16; i += 2) {
a[i / 2 + 0] = _mm256_unpacklo_epi16(in[i], in[i + 1]);
a[i / 2 + 8] = _mm256_unpackhi_epi16(in[i], in[i + 1]);
}
__m256i b[16];
for (int i = 0; i < 16; i += 2) {
b[i / 2 + 0] = _mm256_unpacklo_epi32(a[i], a[i + 1]);
b[i / 2 + 8] = _mm256_unpackhi_epi32(a[i], a[i + 1]);
}
__m256i c[16];
for (int i = 0; i < 16; i += 2) {
c[i / 2 + 0] = _mm256_unpacklo_epi64(b[i], b[i + 1]);
c[i / 2 + 8] = _mm256_unpackhi_epi64(b[i], b[i + 1]);
}
out[0 + 0] = _mm256_permute2x128_si256(c[0], c[1], 0x20);
out[1 + 0] = _mm256_permute2x128_si256(c[8], c[9], 0x20);
out[2 + 0] = _mm256_permute2x128_si256(c[4], c[5], 0x20);
out[3 + 0] = _mm256_permute2x128_si256(c[12], c[13], 0x20);
out[0 + 8] = _mm256_permute2x128_si256(c[0], c[1], 0x31);
out[1 + 8] = _mm256_permute2x128_si256(c[8], c[9], 0x31);
out[2 + 8] = _mm256_permute2x128_si256(c[4], c[5], 0x31);
out[3 + 8] = _mm256_permute2x128_si256(c[12], c[13], 0x31);
out[4 + 0] = _mm256_permute2x128_si256(c[0 + 2], c[1 + 2], 0x20);
out[5 + 0] = _mm256_permute2x128_si256(c[8 + 2], c[9 + 2], 0x20);
out[6 + 0] = _mm256_permute2x128_si256(c[4 + 2], c[5 + 2], 0x20);
out[7 + 0] = _mm256_permute2x128_si256(c[12 + 2], c[13 + 2], 0x20);
out[4 + 8] = _mm256_permute2x128_si256(c[0 + 2], c[1 + 2], 0x31);
out[5 + 8] = _mm256_permute2x128_si256(c[8 + 2], c[9 + 2], 0x31);
out[6 + 8] = _mm256_permute2x128_si256(c[4 + 2], c[5 + 2], 0x31);
out[7 + 8] = _mm256_permute2x128_si256(c[12 + 2], c[13 + 2], 0x31);
}
static INLINE void flip_buf_avx2(__m256i *in, __m256i *out, int size) {
for (int i = 0; i < size; ++i) {
out[size - i - 1] = in[i];
}
}
static INLINE void round_shift_16bit_w16_avx2(__m256i *in, int size, int bit) {
if (bit < 0) {
bit = -bit;
__m256i round = _mm256_set1_epi16(1 << (bit - 1));
for (int i = 0; i < size; ++i) {
in[i] = _mm256_adds_epi16(in[i], round);
in[i] = _mm256_srai_epi16(in[i], bit);
}
} else if (bit > 0) {
for (int i = 0; i < size; ++i) {
in[i] = _mm256_slli_epi16(in[i], bit);
}
}
}
#ifdef __cplusplus
}
#endif
#endif // AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_
|