summaryrefslogtreecommitdiffstats
path: root/taskcluster/taskgraph/generator.py
blob: 809ed1f5c0f64ef521eea8449e90a74a458f2f54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

from __future__ import absolute_import, print_function, unicode_literals
import logging
import os
import yaml

from .graph import Graph
from .taskgraph import TaskGraph
from .optimize import optimize_task_graph
from .util.python_path import find_object

logger = logging.getLogger(__name__)


class Kind(object):

    def __init__(self, name, path, config):
        self.name = name
        self.path = path
        self.config = config

    def _get_impl_class(self):
        # load the class defined by implementation
        try:
            impl = self.config['implementation']
        except KeyError:
            raise KeyError("{!r} does not define implementation".format(self.path))
        return find_object(impl)

    def load_tasks(self, parameters, loaded_tasks):
        impl_class = self._get_impl_class()
        return impl_class.load_tasks(self.name, self.path, self.config,
                                     parameters, loaded_tasks)


class TaskGraphGenerator(object):
    """
    The central controller for taskgraph.  This handles all phases of graph
    generation.  The task is generated from all of the kinds defined in
    subdirectories of the generator's root directory.

    Access to the results of this generation, as well as intermediate values at
    various phases of generation, is available via properties.  This encourages
    the provision of all generation inputs at instance construction time.
    """

    # Task-graph generation is implemented as a Python generator that yields
    # each "phase" of generation.  This allows some mach subcommands to short-
    # circuit generation of the entire graph by never completing the generator.

    def __init__(self, root_dir, parameters,
                 target_tasks_method):
        """
        @param root_dir: root directory, with subdirectories for each kind
        @param parameters: parameters for this task-graph generation
        @type parameters: dict
        @param target_tasks_method: function to determine the target_task_set;
                see `./target_tasks.py`.
        @type target_tasks_method: function
        """

        self.root_dir = root_dir
        self.parameters = parameters
        self.target_tasks_method = target_tasks_method

        # this can be set up until the time the target task set is generated;
        # it defaults to parameters['target_tasks']
        self._target_tasks = parameters.get('target_tasks')

        # start the generator
        self._run = self._run()
        self._run_results = {}

    @property
    def full_task_set(self):
        """
        The full task set: all tasks defined by any kind (a graph without edges)

        @type: TaskGraph
        """
        return self._run_until('full_task_set')

    @property
    def full_task_graph(self):
        """
        The full task graph: the full task set, with edges representing
        dependencies.

        @type: TaskGraph
        """
        return self._run_until('full_task_graph')

    @property
    def target_task_set(self):
        """
        The set of targetted tasks (a graph without edges)

        @type: TaskGraph
        """
        return self._run_until('target_task_set')

    @property
    def target_task_graph(self):
        """
        The set of targetted tasks and all of their dependencies

        @type: TaskGraph
        """
        return self._run_until('target_task_graph')

    @property
    def optimized_task_graph(self):
        """
        The set of targetted tasks and all of their dependencies; tasks that
        have been optimized out are either omitted or replaced with a Task
        instance containing only a task_id.

        @type: TaskGraph
        """
        return self._run_until('optimized_task_graph')

    @property
    def label_to_taskid(self):
        """
        A dictionary mapping task label to assigned taskId.  This property helps
        in interpreting `optimized_task_graph`.

        @type: dictionary
        """
        return self._run_until('label_to_taskid')

    def _load_kinds(self):
        for path in os.listdir(self.root_dir):
            path = os.path.join(self.root_dir, path)
            if not os.path.isdir(path):
                continue
            kind_name = os.path.basename(path)

            kind_yml = os.path.join(path, 'kind.yml')
            if not os.path.exists(kind_yml):
                continue

            logger.debug("loading kind `{}` from `{}`".format(kind_name, path))
            with open(kind_yml) as f:
                config = yaml.load(f)

            yield Kind(kind_name, path, config)

    def _run(self):
        logger.info("Loading kinds")
        # put the kinds into a graph and sort topologically so that kinds are loaded
        # in post-order
        kinds = {kind.name: kind for kind in self._load_kinds()}
        edges = set()
        for kind in kinds.itervalues():
            for dep in kind.config.get('kind-dependencies', []):
                edges.add((kind.name, dep, 'kind-dependency'))
        kind_graph = Graph(set(kinds), edges)

        logger.info("Generating full task set")
        all_tasks = {}
        for kind_name in kind_graph.visit_postorder():
            logger.debug("Loading tasks for kind {}".format(kind_name))
            kind = kinds[kind_name]
            new_tasks = kind.load_tasks(self.parameters, list(all_tasks.values()))
            for task in new_tasks:
                if task.label in all_tasks:
                    raise Exception("duplicate tasks with label " + task.label)
                all_tasks[task.label] = task
            logger.info("Generated {} tasks for kind {}".format(len(new_tasks), kind_name))
        full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set()))
        yield 'full_task_set', full_task_set

        logger.info("Generating full task graph")
        edges = set()
        for t in full_task_set:
            for dep, depname in t.get_dependencies(full_task_set):
                edges.add((t.label, dep, depname))

        full_task_graph = TaskGraph(all_tasks,
                                    Graph(full_task_set.graph.nodes, edges))
        yield 'full_task_graph', full_task_graph

        logger.info("Generating target task set")
        target_tasks = set(self.target_tasks_method(full_task_graph, self.parameters))
        target_task_set = TaskGraph(
            {l: all_tasks[l] for l in target_tasks},
            Graph(target_tasks, set()))
        yield 'target_task_set', target_task_set

        logger.info("Generating target task graph")
        target_graph = full_task_graph.graph.transitive_closure(target_tasks)
        target_task_graph = TaskGraph(
            {l: all_tasks[l] for l in target_graph.nodes},
            target_graph)
        yield 'target_task_graph', target_task_graph

        logger.info("Generating optimized task graph")
        do_not_optimize = set()
        if not self.parameters.get('optimize_target_tasks', True):
            do_not_optimize = target_task_set.graph.nodes
        optimized_task_graph, label_to_taskid = optimize_task_graph(target_task_graph,
                                                                    self.parameters,
                                                                    do_not_optimize)
        yield 'label_to_taskid', label_to_taskid
        yield 'optimized_task_graph', optimized_task_graph

    def _run_until(self, name):
        while name not in self._run_results:
            try:
                k, v = self._run.next()
            except StopIteration:
                raise AttributeError("No such run result {}".format(name))
            self._run_results[k] = v
        return self._run_results[name]