summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/smime/cmscipher.c
blob: 9c8330b235eed4cd1cf32ce068a737313eeb982a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Encryption/decryption routines for CMS implementation, none of which are exported.
 */

#include "cmslocal.h"

#include "secoid.h"
#include "secitem.h"
#include "pk11func.h"
#include "secerr.h"
#include "secpkcs5.h"

/*
 * -------------------------------------------------------------------
 * Cipher stuff.
 */

typedef SECStatus (*nss_cms_cipher_function)(void *, unsigned char *, unsigned int *,
                                             unsigned int, const unsigned char *, unsigned int);
typedef SECStatus (*nss_cms_cipher_destroy)(void *, PRBool);

#define BLOCK_SIZE 4096

struct NSSCMSCipherContextStr {
    void *cx; /* PK11 cipher context */
    nss_cms_cipher_function doit;
    nss_cms_cipher_destroy destroy;
    PRBool encrypt; /* encrypt / decrypt switch */
    int block_size; /* block & pad sizes for cipher */
    int pad_size;
    int pending_count;                     /* pending data (not yet en/decrypted */
    unsigned char pending_buf[BLOCK_SIZE]; /* because of blocking */
};

/*
 * NSS_CMSCipherContext_StartDecrypt - create a cipher context to do decryption
 * based on the given bulk encryption key and algorithm identifier (which
 * may include an iv).
 *
 * XXX Once both are working, it might be nice to combine this and the
 * function below (for starting up encryption) into one routine, and just
 * have two simple cover functions which call it.
 */
NSSCMSCipherContext *
NSS_CMSCipherContext_StartDecrypt(PK11SymKey *key, SECAlgorithmID *algid)
{
    NSSCMSCipherContext *cc;
    void *ciphercx;
    CK_MECHANISM_TYPE cryptoMechType;
    PK11SlotInfo *slot;
    SECOidTag algtag;
    SECItem *param = NULL;

    algtag = SECOID_GetAlgorithmTag(algid);

    /* set param and mechanism */
    if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
        SECItem *pwitem;

        pwitem = PK11_GetSymKeyUserData(key);
        if (!pwitem)
            return NULL;

        cryptoMechType = PK11_GetPBECryptoMechanism(algid, &param, pwitem);
        if (cryptoMechType == CKM_INVALID_MECHANISM) {
            SECITEM_FreeItem(param, PR_TRUE);
            return NULL;
        }

    } else {
        cryptoMechType = PK11_AlgtagToMechanism(algtag);
        if ((param = PK11_ParamFromAlgid(algid)) == NULL)
            return NULL;
    }

    cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext));
    if (cc == NULL) {
        SECITEM_FreeItem(param, PR_TRUE);
        return NULL;
    }

    /* figure out pad and block sizes */
    cc->pad_size = PK11_GetBlockSize(cryptoMechType, param);
    slot = PK11_GetSlotFromKey(key);
    cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
    PK11_FreeSlot(slot);

    /* create PK11 cipher context */
    ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT,
                                          key, param);
    SECITEM_FreeItem(param, PR_TRUE);
    if (ciphercx == NULL) {
        PORT_Free(cc);
        return NULL;
    }

    cc->cx = ciphercx;
    cc->doit = (nss_cms_cipher_function)PK11_CipherOp;
    cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext;
    cc->encrypt = PR_FALSE;
    cc->pending_count = 0;

    return cc;
}

/*
 * NSS_CMSCipherContext_StartEncrypt - create a cipher object to do encryption,
 * based on the given bulk encryption key and algorithm tag.  Fill in the
 * algorithm identifier (which may include an iv) appropriately.
 *
 * XXX Once both are working, it might be nice to combine this and the
 * function above (for starting up decryption) into one routine, and just
 * have two simple cover functions which call it.
 */
NSSCMSCipherContext *
NSS_CMSCipherContext_StartEncrypt(PLArenaPool *poolp, PK11SymKey *key, SECAlgorithmID *algid)
{
    NSSCMSCipherContext *cc;
    void *ciphercx = NULL;
    SECStatus rv;
    CK_MECHANISM_TYPE cryptoMechType;
    PK11SlotInfo *slot;
    SECItem *param = NULL;
    PRBool needToEncodeAlgid = PR_FALSE;
    SECOidTag algtag = SECOID_GetAlgorithmTag(algid);

    /* set param and mechanism */
    if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
        SECItem *pwitem;

        pwitem = PK11_GetSymKeyUserData(key);
        if (!pwitem)
            return NULL;

        cryptoMechType = PK11_GetPBECryptoMechanism(algid, &param, pwitem);
        if (cryptoMechType == CKM_INVALID_MECHANISM) {
            SECITEM_FreeItem(param, PR_TRUE);
            return NULL;
        }
    } else {
        cryptoMechType = PK11_AlgtagToMechanism(algtag);
        if ((param = PK11_GenerateNewParam(cryptoMechType, key)) == NULL)
            return NULL;
        needToEncodeAlgid = PR_TRUE;
    }

    cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext));
    if (cc == NULL) {
        goto loser;
    }

    /* now find pad and block sizes for our mechanism */
    cc->pad_size = PK11_GetBlockSize(cryptoMechType, param);
    slot = PK11_GetSlotFromKey(key);
    cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
    PK11_FreeSlot(slot);

    /* and here we go, creating a PK11 cipher context */
    ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT,
                                          key, param);
    if (ciphercx == NULL) {
        PORT_Free(cc);
        cc = NULL;
        goto loser;
    }

    /*
     * These are placed after the CreateContextBySymKey() because some
     * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
     * Don't move it from here.
     * XXX is that right? the purpose of this is to get the correct algid
     *     containing the IVs etc. for encoding. this means we need to set this up
     *     BEFORE encoding the algid in the contentInfo, right?
     */
    if (needToEncodeAlgid) {
        rv = PK11_ParamToAlgid(algtag, param, poolp, algid);
        if (rv != SECSuccess) {
            PORT_Free(cc);
            cc = NULL;
            goto loser;
        }
    }

    cc->cx = ciphercx;
    ciphercx = NULL;
    cc->doit = (nss_cms_cipher_function)PK11_CipherOp;
    cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext;
    cc->encrypt = PR_TRUE;
    cc->pending_count = 0;

loser:
    SECITEM_FreeItem(param, PR_TRUE);
    if (ciphercx) {
        PK11_DestroyContext(ciphercx, PR_TRUE);
    }

    return cc;
}

void
NSS_CMSCipherContext_Destroy(NSSCMSCipherContext *cc)
{
    PORT_Assert(cc != NULL);
    if (cc == NULL)
        return;
    (*cc->destroy)(cc->cx, PR_TRUE);
    PORT_Free(cc);
}

/*
 * NSS_CMSCipherContext_DecryptLength - find the output length of the next call to decrypt.
 *
 * cc - the cipher context
 * input_len - number of bytes used as input
 * final - true if this is the final chunk of data
 *
 * Result can be used to perform memory allocations.  Note that the amount
 * is exactly accurate only when not doing a block cipher or when final
 * is false, otherwise it is an upper bound on the amount because until
 * we see the data we do not know how many padding bytes there are
 * (always between 1 and bsize).
 *
 * Note that this can return zero, which does not mean that the decrypt
 * operation can be skipped!  (It simply means that there are not enough
 * bytes to make up an entire block; the bytes will be reserved until
 * there are enough to encrypt/decrypt at least one block.)  However,
 * if zero is returned it *does* mean that no output buffer need be
 * passed in to the subsequent decrypt operation, as no output bytes
 * will be stored.
 */
unsigned int
NSS_CMSCipherContext_DecryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final)
{
    int blocks, block_size;

    PORT_Assert(!cc->encrypt);

    block_size = cc->block_size;

    /*
     * If this is not a block cipher, then we always have the same
     * number of output bytes as we had input bytes.
     */
    if (block_size == 0)
        return input_len;

    /*
     * On the final call, we will always use up all of the pending
     * bytes plus all of the input bytes, *but*, there will be padding
     * at the end and we cannot predict how many bytes of padding we
     * will end up removing.  The amount given here is actually known
     * to be at least 1 byte too long (because we know we will have
     * at least 1 byte of padding), but seemed clearer/better to me.
     */
    if (final)
        return cc->pending_count + input_len;

    /*
     * Okay, this amount is exactly what we will output on the
     * next cipher operation.  We will always hang onto the last
     * 1 - block_size bytes for non-final operations.  That is,
     * we will do as many complete blocks as we can *except* the
     * last block (complete or partial).  (This is because until
     * we know we are at the end, we cannot know when to interpret
     * and removing the padding byte(s), which are guaranteed to
     * be there.)
     */
    blocks = (cc->pending_count + input_len - 1) / block_size;
    return blocks * block_size;
}

/*
 * NSS_CMSCipherContext_EncryptLength - find the output length of the next call to encrypt.
 *
 * cc - the cipher context
 * input_len - number of bytes used as input
 * final - true if this is the final chunk of data
 *
 * Result can be used to perform memory allocations.
 *
 * Note that this can return zero, which does not mean that the encrypt
 * operation can be skipped!  (It simply means that there are not enough
 * bytes to make up an entire block; the bytes will be reserved until
 * there are enough to encrypt/decrypt at least one block.)  However,
 * if zero is returned it *does* mean that no output buffer need be
 * passed in to the subsequent encrypt operation, as no output bytes
 * will be stored.
 */
unsigned int
NSS_CMSCipherContext_EncryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final)
{
    int blocks, block_size;
    int pad_size;

    PORT_Assert(cc->encrypt);

    block_size = cc->block_size;
    pad_size = cc->pad_size;

    /*
     * If this is not a block cipher, then we always have the same
     * number of output bytes as we had input bytes.
     */
    if (block_size == 0)
        return input_len;

    /*
     * On the final call, we only send out what we need for
     * remaining bytes plus the padding.  (There is always padding,
     * so even if we have an exact number of blocks as input, we
     * will add another full block that is just padding.)
     */
    if (final) {
        if (pad_size == 0) {
            return cc->pending_count + input_len;
        } else {
            blocks = (cc->pending_count + input_len) / pad_size;
            blocks++;
            return blocks * pad_size;
        }
    }

    /*
     * Now, count the number of complete blocks of data we have.
     */
    blocks = (cc->pending_count + input_len) / block_size;

    return blocks * block_size;
}

/*
 * NSS_CMSCipherContext_Decrypt - do the decryption
 *
 * cc - the cipher context
 * output - buffer for decrypted result bytes
 * output_len_p - number of bytes in output
 * max_output_len - upper bound on bytes to put into output
 * input - pointer to input bytes
 * input_len - number of input bytes
 * final - true if this is the final chunk of data
 *
 * Decrypts a given length of input buffer (starting at "input" and
 * containing "input_len" bytes), placing the decrypted bytes in
 * "output" and storing the output length in "*output_len_p".
 * "cc" is the return value from NSS_CMSCipher_StartDecrypt.
 * When "final" is true, this is the last of the data to be decrypted.
 *
 * This is much more complicated than it sounds when the cipher is
 * a block-type, meaning that the decryption function will only
 * operate on whole blocks.  But our caller is operating stream-wise,
 * and can pass in any number of bytes.  So we need to keep track
 * of block boundaries.  We save excess bytes between calls in "cc".
 * We also need to determine which bytes are padding, and remove
 * them from the output.  We can only do this step when we know we
 * have the final block of data.  PKCS #7 specifies that the padding
 * used for a block cipher is a string of bytes, each of whose value is
 * the same as the length of the padding, and that all data is padded.
 * (Even data that starts out with an exact multiple of blocks gets
 * added to it another block, all of which is padding.)
 */
SECStatus
NSS_CMSCipherContext_Decrypt(NSSCMSCipherContext *cc, unsigned char *output,
                             unsigned int *output_len_p, unsigned int max_output_len,
                             const unsigned char *input, unsigned int input_len,
                             PRBool final)
{
    unsigned int blocks, bsize, pcount, padsize;
    unsigned int max_needed, ifraglen, ofraglen, output_len;
    unsigned char *pbuf;
    SECStatus rv;

    PORT_Assert(!cc->encrypt);

    /*
     * Check that we have enough room for the output.  Our caller should
     * already handle this; failure is really an internal error (i.e. bug).
     */
    max_needed = NSS_CMSCipherContext_DecryptLength(cc, input_len, final);
    PORT_Assert(max_output_len >= max_needed);
    if (max_output_len < max_needed) {
        /* PORT_SetError (XXX); */
        return SECFailure;
    }

    /*
     * hardware encryption does not like small decryption sizes here, so we
     * allow both blocking and padding.
     */
    bsize = cc->block_size;
    padsize = cc->pad_size;

    /*
     * When no blocking or padding work to do, we can simply call the
     * cipher function and we are done.
     */
    if (bsize == 0) {
        return (*cc->doit)(cc->cx, output, output_len_p, max_output_len,
                           input, input_len);
    }

    pcount = cc->pending_count;
    pbuf = cc->pending_buf;

    output_len = 0;

    if (pcount) {
        /*
         * Try to fill in an entire block, starting with the bytes
         * we already have saved away.
         */
        while (input_len && pcount < bsize) {
            pbuf[pcount++] = *input++;
            input_len--;
        }
        /*
         * If we have at most a whole block and this is not our last call,
         * then we are done for now.  (We do not try to decrypt a lone
         * single block because we cannot interpret the padding bytes
         * until we know we are handling the very last block of all input.)
         */
        if (input_len == 0 && !final) {
            cc->pending_count = pcount;
            if (output_len_p)
                *output_len_p = 0;
            return SECSuccess;
        }
        /*
         * Given the logic above, we expect to have a full block by now.
         * If we do not, there is something wrong, either with our own
         * logic or with (length of) the data given to us.
         */
        if ((padsize != 0) && (pcount % padsize) != 0) {
            PORT_Assert(final);
            PORT_SetError(SEC_ERROR_BAD_DATA);
            return SECFailure;
        }
        /*
         * Decrypt the block.
         */
        rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
                         pbuf, pcount);
        if (rv != SECSuccess)
            return rv;

        /*
         * For now anyway, all of our ciphers have the same number of
         * bytes of output as they do input.  If this ever becomes untrue,
         * then NSS_CMSCipherContext_DecryptLength needs to be made smarter!
         */
        PORT_Assert(ofraglen == pcount);

        /*
         * Account for the bytes now in output.
         */
        max_output_len -= ofraglen;
        output_len += ofraglen;
        output += ofraglen;
    }

    /*
     * If this is our last call, we expect to have an exact number of
     * blocks left to be decrypted; we will decrypt them all.
     *
     * If not our last call, we always save between 1 and bsize bytes
     * until next time.  (We must do this because we cannot be sure
     * that none of the decrypted bytes are padding bytes until we
     * have at least another whole block of data.  You cannot tell by
     * looking -- the data could be anything -- you can only tell by
     * context, knowing you are looking at the last block.)  We could
     * decrypt a whole block now but it is easier if we just treat it
     * the same way we treat partial block bytes.
     */
    if (final) {
        if (padsize) {
            blocks = input_len / padsize;
            ifraglen = blocks * padsize;
        } else
            ifraglen = input_len;
        PORT_Assert(ifraglen == input_len);

        if (ifraglen != input_len) {
            PORT_SetError(SEC_ERROR_BAD_DATA);
            return SECFailure;
        }
    } else {
        blocks = (input_len - 1) / bsize;
        ifraglen = blocks * bsize;
        PORT_Assert(ifraglen < input_len);

        pcount = input_len - ifraglen;
        PORT_Memcpy(pbuf, input + ifraglen, pcount);
        cc->pending_count = pcount;
    }

    if (ifraglen) {
        rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
                         input, ifraglen);
        if (rv != SECSuccess)
            return rv;

        /*
         * For now anyway, all of our ciphers have the same number of
         * bytes of output as they do input.  If this ever becomes untrue,
         * then sec_PKCS7DecryptLength needs to be made smarter!
         */
        PORT_Assert(ifraglen == ofraglen);
        if (ifraglen != ofraglen) {
            PORT_SetError(SEC_ERROR_BAD_DATA);
            return SECFailure;
        }

        output_len += ofraglen;
    } else {
        ofraglen = 0;
    }

    /*
     * If we just did our very last block, "remove" the padding by
     * adjusting the output length.
     */
    if (final && (padsize != 0)) {
        unsigned int padlen = *(output + ofraglen - 1);

        if (padlen == 0 || padlen > padsize) {
            PORT_SetError(SEC_ERROR_BAD_DATA);
            return SECFailure;
        }
        output_len -= padlen;
    }

    PORT_Assert(output_len_p != NULL || output_len == 0);
    if (output_len_p != NULL)
        *output_len_p = output_len;

    return SECSuccess;
}

/*
 * NSS_CMSCipherContext_Encrypt - do the encryption
 *
 * cc - the cipher context
 * output - buffer for decrypted result bytes
 * output_len_p - number of bytes in output
 * max_output_len - upper bound on bytes to put into output
 * input - pointer to input bytes
 * input_len - number of input bytes
 * final - true if this is the final chunk of data
 *
 * Encrypts a given length of input buffer (starting at "input" and
 * containing "input_len" bytes), placing the encrypted bytes in
 * "output" and storing the output length in "*output_len_p".
 * "cc" is the return value from NSS_CMSCipher_StartEncrypt.
 * When "final" is true, this is the last of the data to be encrypted.
 *
 * This is much more complicated than it sounds when the cipher is
 * a block-type, meaning that the encryption function will only
 * operate on whole blocks.  But our caller is operating stream-wise,
 * and can pass in any number of bytes.  So we need to keep track
 * of block boundaries.  We save excess bytes between calls in "cc".
 * We also need to add padding bytes at the end.  PKCS #7 specifies
 * that the padding used for a block cipher is a string of bytes,
 * each of whose value is the same as the length of the padding,
 * and that all data is padded.  (Even data that starts out with
 * an exact multiple of blocks gets added to it another block,
 * all of which is padding.)
 *
 * XXX I would kind of like to combine this with the function above
 * which does decryption, since they have a lot in common.  But the
 * tricky parts about padding and filling blocks would be much
 * harder to read that way, so I left them separate.  At least for
 * now until it is clear that they are right.
 */
SECStatus
NSS_CMSCipherContext_Encrypt(NSSCMSCipherContext *cc, unsigned char *output,
                             unsigned int *output_len_p, unsigned int max_output_len,
                             const unsigned char *input, unsigned int input_len,
                             PRBool final)
{
    int blocks, bsize, padlen, pcount, padsize;
    unsigned int max_needed, ifraglen, ofraglen, output_len;
    unsigned char *pbuf;
    SECStatus rv;

    PORT_Assert(cc->encrypt);

    /*
     * Check that we have enough room for the output.  Our caller should
     * already handle this; failure is really an internal error (i.e. bug).
     */
    max_needed = NSS_CMSCipherContext_EncryptLength(cc, input_len, final);
    PORT_Assert(max_output_len >= max_needed);
    if (max_output_len < max_needed) {
        /* PORT_SetError (XXX); */
        return SECFailure;
    }

    bsize = cc->block_size;
    padsize = cc->pad_size;

    /*
     * When no blocking and padding work to do, we can simply call the
     * cipher function and we are done.
     */
    if (bsize == 0) {
        return (*cc->doit)(cc->cx, output, output_len_p, max_output_len,
                           input, input_len);
    }

    pcount = cc->pending_count;
    pbuf = cc->pending_buf;

    output_len = 0;

    if (pcount) {
        /*
         * Try to fill in an entire block, starting with the bytes
         * we already have saved away.
         */
        while (input_len && pcount < bsize) {
            pbuf[pcount++] = *input++;
            input_len--;
        }
        /*
         * If we do not have a full block and we know we will be
         * called again, then we are done for now.
         */
        if (pcount < bsize && !final) {
            cc->pending_count = pcount;
            if (output_len_p != NULL)
                *output_len_p = 0;
            return SECSuccess;
        }
        /*
         * If we have a whole block available, encrypt it.
         */
        if ((padsize == 0) || (pcount % padsize) == 0) {
            rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
                             pbuf, pcount);
            if (rv != SECSuccess)
                return rv;

            /*
             * For now anyway, all of our ciphers have the same number of
             * bytes of output as they do input.  If this ever becomes untrue,
             * then sec_PKCS7EncryptLength needs to be made smarter!
             */
            PORT_Assert(ofraglen == pcount);

            /*
             * Account for the bytes now in output.
             */
            max_output_len -= ofraglen;
            output_len += ofraglen;
            output += ofraglen;

            pcount = 0;
        }
    }

    if (input_len) {
        PORT_Assert(pcount == 0);

        blocks = input_len / bsize;
        ifraglen = blocks * bsize;

        if (ifraglen) {
            rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
                             input, ifraglen);
            if (rv != SECSuccess)
                return rv;

            /*
             * For now anyway, all of our ciphers have the same number of
             * bytes of output as they do input.  If this ever becomes untrue,
             * then sec_PKCS7EncryptLength needs to be made smarter!
             */
            PORT_Assert(ifraglen == ofraglen);

            max_output_len -= ofraglen;
            output_len += ofraglen;
            output += ofraglen;
        }

        pcount = input_len - ifraglen;
        PORT_Assert(pcount < bsize);
        if (pcount)
            PORT_Memcpy(pbuf, input + ifraglen, pcount);
    }

    if (final) {
        if (padsize <= 0) {
            padlen = 0;
        } else {
            padlen = padsize - (pcount % padsize);
            PORT_Memset(pbuf + pcount, padlen, padlen);
        }
        rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
                         pbuf, pcount + padlen);
        if (rv != SECSuccess)
            return rv;

        /*
         * For now anyway, all of our ciphers have the same number of
         * bytes of output as they do input.  If this ever becomes untrue,
         * then sec_PKCS7EncryptLength needs to be made smarter!
         */
        PORT_Assert(ofraglen == (pcount + padlen));
        output_len += ofraglen;
    } else {
        cc->pending_count = pcount;
    }

    PORT_Assert(output_len_p != NULL || output_len == 0);
    if (output_len_p != NULL)
        *output_len_p = output_len;

    return SECSuccess;
}