1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
/*
* mpprime.c
*
* Utilities for finding and working with prime and pseudo-prime
* integers
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mpi-priv.h"
#include "mpprime.h"
#include "mplogic.h"
#include <stdlib.h>
#include <string.h>
#define SMALL_TABLE 0 /* determines size of hard-wired prime table */
#define RANDOM() rand()
#include "primes.c" /* pull in the prime digit table */
/*
Test if any of a given vector of digits divides a. If not, MP_NO
is returned; otherwise, MP_YES is returned and 'which' is set to
the index of the integer in the vector which divided a.
*/
mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which);
/* {{{ mpp_divis(a, b) */
/*
mpp_divis(a, b)
Returns MP_YES if a is divisible by b, or MP_NO if it is not.
*/
mp_err
mpp_divis(mp_int *a, mp_int *b)
{
mp_err res;
mp_int rem;
if ((res = mp_init(&rem)) != MP_OKAY)
return res;
if ((res = mp_mod(a, b, &rem)) != MP_OKAY)
goto CLEANUP;
if (mp_cmp_z(&rem) == 0)
res = MP_YES;
else
res = MP_NO;
CLEANUP:
mp_clear(&rem);
return res;
} /* end mpp_divis() */
/* }}} */
/* {{{ mpp_divis_d(a, d) */
/*
mpp_divis_d(a, d)
Return MP_YES if a is divisible by d, or MP_NO if it is not.
*/
mp_err
mpp_divis_d(mp_int *a, mp_digit d)
{
mp_err res;
mp_digit rem;
ARGCHK(a != NULL, MP_BADARG);
if (d == 0)
return MP_NO;
if ((res = mp_mod_d(a, d, &rem)) != MP_OKAY)
return res;
if (rem == 0)
return MP_YES;
else
return MP_NO;
} /* end mpp_divis_d() */
/* }}} */
/* {{{ mpp_random(a) */
/*
mpp_random(a)
Assigns a random value to a. This value is generated using the
standard C library's rand() function, so it should not be used for
cryptographic purposes, but it should be fine for primality testing,
since all we really care about there is good statistical properties.
As many digits as a currently has are filled with random digits.
*/
mp_err
mpp_random(mp_int *a)
{
mp_digit next = 0;
unsigned int ix, jx;
ARGCHK(a != NULL, MP_BADARG);
for (ix = 0; ix < USED(a); ix++) {
for (jx = 0; jx < sizeof(mp_digit); jx++) {
next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX);
}
DIGIT(a, ix) = next;
}
return MP_OKAY;
} /* end mpp_random() */
/* }}} */
/* {{{ mpp_random_size(a, prec) */
mp_err
mpp_random_size(mp_int *a, mp_size prec)
{
mp_err res;
ARGCHK(a != NULL && prec > 0, MP_BADARG);
if ((res = s_mp_pad(a, prec)) != MP_OKAY)
return res;
return mpp_random(a);
} /* end mpp_random_size() */
/* }}} */
/* {{{ mpp_divis_vector(a, vec, size, which) */
/*
mpp_divis_vector(a, vec, size, which)
Determines if a is divisible by any of the 'size' digits in vec.
Returns MP_YES and sets 'which' to the index of the offending digit,
if it is; returns MP_NO if it is not.
*/
mp_err
mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which)
{
ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG);
return s_mpp_divp(a, vec, size, which);
} /* end mpp_divis_vector() */
/* }}} */
/* {{{ mpp_divis_primes(a, np) */
/*
mpp_divis_primes(a, np)
Test whether a is divisible by any of the first 'np' primes. If it
is, returns MP_YES and sets *np to the value of the digit that did
it. If not, returns MP_NO.
*/
mp_err
mpp_divis_primes(mp_int *a, mp_digit *np)
{
int size, which;
mp_err res;
ARGCHK(a != NULL && np != NULL, MP_BADARG);
size = (int)*np;
if (size > prime_tab_size)
size = prime_tab_size;
res = mpp_divis_vector(a, prime_tab, size, &which);
if (res == MP_YES)
*np = prime_tab[which];
return res;
} /* end mpp_divis_primes() */
/* }}} */
/* {{{ mpp_fermat(a, w) */
/*
Using w as a witness, try pseudo-primality testing based on Fermat's
little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod
a). So, we compute z = w^a (mod a) and compare z to w; if they are
equal, the test passes and we return MP_YES. Otherwise, we return
MP_NO.
*/
mp_err
mpp_fermat(mp_int *a, mp_digit w)
{
mp_int base, test;
mp_err res;
if ((res = mp_init(&base)) != MP_OKAY)
return res;
mp_set(&base, w);
if ((res = mp_init(&test)) != MP_OKAY)
goto TEST;
/* Compute test = base^a (mod a) */
if ((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY)
goto CLEANUP;
if (mp_cmp(&base, &test) == 0)
res = MP_YES;
else
res = MP_NO;
CLEANUP:
mp_clear(&test);
TEST:
mp_clear(&base);
return res;
} /* end mpp_fermat() */
/* }}} */
/*
Perform the fermat test on each of the primes in a list until
a) one of them shows a is not prime, or
b) the list is exhausted.
Returns: MP_YES if it passes tests.
MP_NO if fermat test reveals it is composite
Some MP error code if some other error occurs.
*/
mp_err
mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes)
{
mp_err rv = MP_YES;
while (nPrimes-- > 0 && rv == MP_YES) {
rv = mpp_fermat(a, *primes++);
}
return rv;
}
/* {{{ mpp_pprime(a, nt) */
/*
mpp_pprime(a, nt)
Performs nt iteration of the Miller-Rabin probabilistic primality
test on a. Returns MP_YES if the tests pass, MP_NO if one fails.
If MP_NO is returned, the number is definitely composite. If MP_YES
is returned, it is probably prime (but that is not guaranteed).
*/
mp_err
mpp_pprime(mp_int *a, int nt)
{
mp_err res;
mp_int x, amo, m, z; /* "amo" = "a minus one" */
int iter;
unsigned int jx;
mp_size b;
ARGCHK(a != NULL, MP_BADARG);
MP_DIGITS(&x) = 0;
MP_DIGITS(&amo) = 0;
MP_DIGITS(&m) = 0;
MP_DIGITS(&z) = 0;
/* Initialize temporaries... */
MP_CHECKOK(mp_init(&amo));
/* Compute amo = a - 1 for what follows... */
MP_CHECKOK(mp_sub_d(a, 1, &amo));
b = mp_trailing_zeros(&amo);
if (!b) { /* a was even ? */
res = MP_NO;
goto CLEANUP;
}
MP_CHECKOK(mp_init_size(&x, MP_USED(a)));
MP_CHECKOK(mp_init(&z));
MP_CHECKOK(mp_init(&m));
MP_CHECKOK(mp_div_2d(&amo, b, &m, 0));
/* Do the test nt times... */
for (iter = 0; iter < nt; iter++) {
/* Choose a random value for 1 < x < a */
MP_CHECKOK(s_mp_pad(&x, USED(a)));
mpp_random(&x);
MP_CHECKOK(mp_mod(&x, a, &x));
if (mp_cmp_d(&x, 1) <= 0) {
iter--; /* don't count this iteration */
continue; /* choose a new x */
}
/* Compute z = (x ** m) mod a */
MP_CHECKOK(mp_exptmod(&x, &m, a, &z));
if (mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) {
res = MP_YES;
continue;
}
res = MP_NO; /* just in case the following for loop never executes. */
for (jx = 1; jx < b; jx++) {
/* z = z^2 (mod a) */
MP_CHECKOK(mp_sqrmod(&z, a, &z));
res = MP_NO; /* previous line set res to MP_YES */
if (mp_cmp_d(&z, 1) == 0) {
break;
}
if (mp_cmp(&z, &amo) == 0) {
res = MP_YES;
break;
}
} /* end testing loop */
/* If the test passes, we will continue iterating, but a failed
test means the candidate is definitely NOT prime, so we will
immediately break out of this loop
*/
if (res == MP_NO)
break;
} /* end iterations loop */
CLEANUP:
mp_clear(&m);
mp_clear(&z);
mp_clear(&x);
mp_clear(&amo);
return res;
} /* end mpp_pprime() */
/* }}} */
/* Produce table of composites from list of primes and trial value.
** trial must be odd. List of primes must not include 2.
** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest
** prime in list of primes. After this function is finished,
** if sieve[i] is non-zero, then (trial + 2*i) is composite.
** Each prime used in the sieve costs one division of trial, and eliminates
** one or more values from the search space. (3 eliminates 1/3 of the values
** alone!) Each value left in the search space costs 1 or more modular
** exponentations. So, these divisions are a bargain!
*/
mp_err
mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes,
unsigned char *sieve, mp_size nSieve)
{
mp_err res;
mp_digit rem;
mp_size ix;
unsigned long offset;
memset(sieve, 0, nSieve);
for (ix = 0; ix < nPrimes; ix++) {
mp_digit prime = primes[ix];
mp_size i;
if ((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY)
return res;
if (rem == 0) {
offset = 0;
} else {
offset = prime - rem;
}
for (i = offset; i < nSieve * 2; i += prime) {
if (i % 2 == 0) {
sieve[i / 2] = 1;
}
}
}
return MP_OKAY;
}
#define SIEVE_SIZE 32 * 1024
mp_err
mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
unsigned long *nTries)
{
mp_digit np;
mp_err res;
unsigned int i = 0;
mp_int trial;
mp_int q;
mp_size num_tests;
unsigned char *sieve;
ARGCHK(start != 0, MP_BADARG);
ARGCHK(nBits > 16, MP_RANGE);
sieve = malloc(SIEVE_SIZE);
ARGCHK(sieve != NULL, MP_MEM);
MP_DIGITS(&trial) = 0;
MP_DIGITS(&q) = 0;
MP_CHECKOK(mp_init(&trial));
MP_CHECKOK(mp_init(&q));
/* values originally taken from table 4.4,
* HandBook of Applied Cryptography, augmented by FIPS-186
* requirements, Table C.2 and C.3 */
if (nBits >= 2000) {
num_tests = 3;
} else if (nBits >= 1536) {
num_tests = 4;
} else if (nBits >= 1024) {
num_tests = 5;
} else if (nBits >= 550) {
num_tests = 6;
} else if (nBits >= 450) {
num_tests = 7;
} else if (nBits >= 400) {
num_tests = 8;
} else if (nBits >= 350) {
num_tests = 9;
} else if (nBits >= 300) {
num_tests = 10;
} else if (nBits >= 250) {
num_tests = 20;
} else if (nBits >= 200) {
num_tests = 41;
} else if (nBits >= 100) {
num_tests = 38; /* funny anomaly in the FIPS tables, for aux primes, the
* required more iterations for larger aux primes */
} else
num_tests = 50;
if (strong)
--nBits;
MP_CHECKOK(mpl_set_bit(start, nBits - 1, 1));
MP_CHECKOK(mpl_set_bit(start, 0, 1));
for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) {
MP_CHECKOK(mpl_set_bit(start, i, 0));
}
/* start sieveing with prime value of 3. */
MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1,
sieve, SIEVE_SIZE));
#ifdef DEBUG_SIEVE
res = 0;
for (i = 0; i < SIEVE_SIZE; ++i) {
if (!sieve[i])
++res;
}
fprintf(stderr, "sieve found %d potential primes.\n", res);
#define FPUTC(x, y) fputc(x, y)
#else
#define FPUTC(x, y)
#endif
res = MP_NO;
for (i = 0; i < SIEVE_SIZE; ++i) {
if (sieve[i]) /* this number is composite */
continue;
MP_CHECKOK(mp_add_d(start, 2 * i, &trial));
FPUTC('.', stderr);
/* run a Fermat test */
res = mpp_fermat(&trial, 2);
if (res != MP_OKAY) {
if (res == MP_NO)
continue; /* was composite */
goto CLEANUP;
}
FPUTC('+', stderr);
/* If that passed, run some Miller-Rabin tests */
res = mpp_pprime(&trial, num_tests);
if (res != MP_OKAY) {
if (res == MP_NO)
continue; /* was composite */
goto CLEANUP;
}
FPUTC('!', stderr);
if (!strong)
break; /* success !! */
/* At this point, we have strong evidence that our candidate
is itself prime. If we want a strong prime, we need now
to test q = 2p + 1 for primality...
*/
MP_CHECKOK(mp_mul_2(&trial, &q));
MP_CHECKOK(mp_add_d(&q, 1, &q));
/* Test q for small prime divisors ... */
np = prime_tab_size;
res = mpp_divis_primes(&q, &np);
if (res == MP_YES) { /* is composite */
mp_clear(&q);
continue;
}
if (res != MP_NO)
goto CLEANUP;
/* And test with Fermat, as with its parent ... */
res = mpp_fermat(&q, 2);
if (res != MP_YES) {
mp_clear(&q);
if (res == MP_NO)
continue; /* was composite */
goto CLEANUP;
}
/* And test with Miller-Rabin, as with its parent ... */
res = mpp_pprime(&q, num_tests);
if (res != MP_YES) {
mp_clear(&q);
if (res == MP_NO)
continue; /* was composite */
goto CLEANUP;
}
/* If it passed, we've got a winner */
mp_exch(&q, &trial);
mp_clear(&q);
break;
} /* end of loop through sieved values */
if (res == MP_YES)
mp_exch(&trial, start);
CLEANUP:
mp_clear(&trial);
mp_clear(&q);
if (nTries)
*nTries += i;
if (sieve != NULL) {
memset(sieve, 0, SIEVE_SIZE);
free(sieve);
}
return res;
}
/*========================================================================*/
/*------------------------------------------------------------------------*/
/* Static functions visible only to the library internally */
/* {{{ s_mpp_divp(a, vec, size, which) */
/*
Test for divisibility by members of a vector of digits. Returns
MP_NO if a is not divisible by any of them; returns MP_YES and sets
'which' to the index of the offender, if it is. Will stop on the
first digit against which a is divisible.
*/
mp_err
s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which)
{
mp_err res;
mp_digit rem;
int ix;
for (ix = 0; ix < size; ix++) {
if ((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY)
return res;
if (rem == 0) {
if (which)
*which = ix;
return MP_YES;
}
}
return MP_NO;
} /* end s_mpp_divp() */
/* }}} */
/*------------------------------------------------------------------------*/
/* HERE THERE BE DRAGONS */
|