1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/*
** ChaCha20 specification
** Author: Austin Seipp <aseipp@pobox.com>. Released in the Public Domain.
**
** Based on RFC 7539 - "ChaCha20 and Poly1305 for IETF Protocols"
** https://tools.ietf.org/html/rfc7539
*/
module chacha20 where
/* -------------------------------------------------------------------------- */
/* -- Implementation -------------------------------------------------------- */
type Round = [16][32] // An input to the ChaCha20 core function
type Block = [64][8] // An output block from the ChaCha20 core function.
type Key = [32][8] // A 32-byte input key
type Nonce = [12][8] // A 12-byte nonce
type Counter = [32] // Starting block counter. Usually 1 or 0.
/* ---------------------------------- */
/* -- Quarter Round ----------------- */
// The quarter round. This takes 4 32-bit integers and diffuses them
// appropriately, and is the core of the column and diagonal round.
qround : [4][32] -> [4][32]
qround [ a0, b0, c0, d0 ] = [ a2, b4, c2, d4 ]
where
a1 = a0 + b0 /* a += b; d ^= a; d <<<= 16 */
d1 = d0 ^ a1
d2 = d1 <<< 16
c1 = c0 + d2 /* c += d; b ^= c; b <<<= 12 */
b1 = b0 ^ c1
b2 = b1 <<< 12
a2 = a1 + b2 /* a += b; d ^= a; d <<<= 8 */
d3 = d2 ^ a2
d4 = d3 <<< 8
c2 = c1 + d4 /* c += d; b ^= c; b <<<= 7 */
b3 = b2 ^ c2
b4 = b3 <<< 7
/* ---------------------------------- */
/* -- Column and diagonal rounds ---- */
// Perform the column round, followed by the diagonal round on the
// input state, which are both defined in terms of the quarter
// round. ChaCha20 requires 20 total rounds of interleaving
// column/diagonal passes on the state, and therefore `cdround` actually
// does two passes at once (mostly for simplicity).
cdround : Round -> Round
cdround [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ]
= [ z0, z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15 ]
where
// Column round
[ y0, y4, y8, y12 ] = qround [ x0, x4, x8, x12 ]
[ y1, y5, y9, y13 ] = qround [ x1, x5, x9, x13 ]
[ y2, y6, y10, y14 ] = qround [ x2, x6, x10, x14 ]
[ y3, y7, y11, y15 ] = qround [ x3, x7, x11, x15 ]
// Diagonal round
[ z0, z5, z10, z15 ] = qround [ y0, y5, y10, y15 ]
[ z1, z6, z11, z12 ] = qround [ y1, y6, y11, y12 ]
[ z2, z7, z8, z13 ] = qround [ y2, y7, y8, y13 ]
[ z3, z4, z9, z14 ] = qround [ y3, y4, y9, y14 ]
/* ---------------------------------- */
/* -- Block encryption -------------- */
// Given an input round, calculate the core ChaCha20 algorithm over
// the round and return an output block. These output blocks form the
// stream which you XOR your plaintext with, and successive iterations of
// the core algorithm result in an infinite stream you can use as a
// cipher.
core : Round -> Block
core x = block
where
rounds = iterate cdround x // Do a bunch of column/diagonal passes...
result = rounds @ 10 // And grab the 10th result (20 total passes)
block = blocked (x + result) // Add to input, convert to output block
/* ---------------------------------- */
/* -- Key Expansion ----------------- */
// Key expansion. Given a nonce and a key, compute a round (which is
// fed to the core algorithm above) by taking the initial round state and
// mixing in the key and nonce appropriately.
kexp : Key -> Counter -> Nonce -> Round
kexp k c n = [ c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ]
where
// The following describes the layout of the output round, which
// is fed into the core algorithm successively.
// Bytes 0-3: Constants
[ c0, c1, c2, c3 ] = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 ]
// Bytes 4-11: Key
[ c4, c5, c6, c7 ] = map rjoin (groupBy`{4} kslice1 : [4][4][8]) : [4][32]
[ c8, c9, c10, c11 ] = map rjoin (groupBy`{4} kslice2 : [4][4][8]) : [4][32]
kslice1 = k @@ ([ 0 .. 15 ] : [16][32]) // Top half
kslice2 = k @@ ([ 16 .. 31 ] : [16][32]) // Bottom half
// Bytes 12: Counter, starts off with whatever the user specified
// (usually 0 or 1)
[ c12 ] = [ c ]
// Bytes 14-15: Nonce
[ c13, c14, c15 ] = map rjoin (groupBy`{4} n)
/* ---------------------------------- */
/* -- Round increments -------------- */
// Take a given number of iterations and the input round (after key
// expansion!), and calculate the input round for the core algorithm
// function. This allows you to index into a particular Round which
// can be passed to the 'core' function.
iround : [64] -> Round -> Round
iround n r = (iterate once r) @ n where
// Given a round, increment the counter inside (index no 12)
once [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ]
= [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12+1, x13, x14, x15 ]
/* ---------------------------------- */
/* -- ChaCha20 encryption ----------- */
// Produce a psuedo-random stream given a nonce and a key, which can
// be XOR'd with your data to encrypt it.
stream : {n} (fin n) => Key -> Counter -> Nonce -> [n][8]
stream k c n = take`{n} (join rounds) // Take n bytes from the final result
where
// Expand key
key = kexp k c n
// Produce the stream by successively incrementing the input round
// by `i`, and running the core algorithm to get the resulting
// stream for the `i`th input. Once these are concatenated, you have
// an infinite list representing the ChaCha20 stream.
rounds = [ core (iround i key) | i <- [ 0, 1 ... ] ]
// Given an message, a nonce, and a key, produce an encrypted
// message. This is simply defined as the XOR of the message and the
// corresponding encryption stream.
encrypt : {n} (fin n) => Key -> Counter -> Nonce -> [n][8] -> [n][8]
encrypt k c n m = m ^ (stream k c n)
/* -------------------------------------------------------------------------- */
/* -- Theorems, tests ------------------------------------------------------- */
// Tests are private
private
qround01 = qround in == out
where
in = [ 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 ]
out = [ 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb ]
core01 = kexp k 1 n == out
where
n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a,
0x00, 0x00, 0x00, 0x00 ]
k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ]
out = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
0x00000001, 0x09000000, 0x4a000000, 0x00000000 ]
core02 = core (kexp k 1 n) == out
where
n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a,
0x00, 0x00, 0x00, 0x00 ]
k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ]
out = [ 0x10, 0xf1, 0xe7, 0xe4, 0xd1, 0x3b, 0x59, 0x15,
0x50, 0x0f, 0xdd, 0x1f, 0xa3, 0x20, 0x71, 0xc4,
0xc7, 0xd1, 0xf4, 0xc7, 0x33, 0xc0, 0x68, 0x03,
0x04, 0x22, 0xaa, 0x9a, 0xc3, 0xd4, 0x6c, 0x4e,
0xd2, 0x82, 0x64, 0x46, 0x07, 0x9f, 0xaa, 0x09,
0x14, 0xc2, 0xd7, 0x05, 0xd9, 0x8b, 0x02, 0xa2,
0xb5, 0x12, 0x9c, 0xd1, 0xde, 0x16, 0x4e, 0xb9,
0xcb, 0xd0, 0x83, 0xe8, 0xa2, 0x50, 0x3c, 0x4e ]
rfctest01 = encrypt zero zero zero zero
== [ 0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, 0x40, 0x5d,
0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, 0xbd, 0xd2, 0x19, 0xb8,
0xa0, 0x8d, 0xed, 0x1a, 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77,
0x0d, 0xc7, 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d,
0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, 0x6a, 0x43,
0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, 0xc3, 0x87, 0xb6, 0x69,
0xb2, 0xee, 0x65, 0x86 ]
rfctest02 = encrypt (zero # [1]) 1 (zero # [2]) msg == out
where
out = [ 0xa3, 0xfb, 0xf0, 0x7d, 0xf3, 0xfa, 0x2f, 0xde, 0x4f, 0x37,
0x6c, 0xa2, 0x3e, 0x82, 0x73, 0x70, 0x41, 0x60, 0x5d, 0x9f,
0x4f, 0x4f, 0x57, 0xbd, 0x8c, 0xff, 0x2c, 0x1d, 0x4b, 0x79,
0x55, 0xec, 0x2a, 0x97, 0x94, 0x8b, 0xd3, 0x72, 0x29, 0x15,
0xc8, 0xf3, 0xd3, 0x37, 0xf7, 0xd3, 0x70, 0x05, 0x0e, 0x9e,
0x96, 0xd6, 0x47, 0xb7, 0xc3, 0x9f, 0x56, 0xe0, 0x31, 0xca,
0x5e, 0xb6, 0x25, 0x0d, 0x40, 0x42, 0xe0, 0x27, 0x85, 0xec,
0xec, 0xfa, 0x4b, 0x4b, 0xb5, 0xe8, 0xea, 0xd0, 0x44, 0x0e,
0x20, 0xb6, 0xe8, 0xdb, 0x09, 0xd8, 0x81, 0xa7, 0xc6, 0x13,
0x2f, 0x42, 0x0e, 0x52, 0x79, 0x50, 0x42, 0xbd, 0xfa, 0x77,
0x73, 0xd8, 0xa9, 0x05, 0x14, 0x47, 0xb3, 0x29, 0x1c, 0xe1,
0x41, 0x1c, 0x68, 0x04, 0x65, 0x55, 0x2a, 0xa6, 0xc4, 0x05,
0xb7, 0x76, 0x4d, 0x5e, 0x87, 0xbe, 0xa8, 0x5a, 0xd0, 0x0f,
0x84, 0x49, 0xed, 0x8f, 0x72, 0xd0, 0xd6, 0x62, 0xab, 0x05,
0x26, 0x91, 0xca, 0x66, 0x42, 0x4b, 0xc8, 0x6d, 0x2d, 0xf8,
0x0e, 0xa4, 0x1f, 0x43, 0xab, 0xf9, 0x37, 0xd3, 0x25, 0x9d,
0xc4, 0xb2, 0xd0, 0xdf, 0xb4, 0x8a, 0x6c, 0x91, 0x39, 0xdd,
0xd7, 0xf7, 0x69, 0x66, 0xe9, 0x28, 0xe6, 0x35, 0x55, 0x3b,
0xa7, 0x6c, 0x5c, 0x87, 0x9d, 0x7b, 0x35, 0xd4, 0x9e, 0xb2,
0xe6, 0x2b, 0x08, 0x71, 0xcd, 0xac, 0x63, 0x89, 0x39, 0xe2,
0x5e, 0x8a, 0x1e, 0x0e, 0xf9, 0xd5, 0x28, 0x0f, 0xa8, 0xca,
0x32, 0x8b, 0x35, 0x1c, 0x3c, 0x76, 0x59, 0x89, 0xcb, 0xcf,
0x3d, 0xaa, 0x8b, 0x6c, 0xcc, 0x3a, 0xaf, 0x9f, 0x39, 0x79,
0xc9, 0x2b, 0x37, 0x20, 0xfc, 0x88, 0xdc, 0x95, 0xed, 0x84,
0xa1, 0xbe, 0x05, 0x9c, 0x64, 0x99, 0xb9, 0xfd, 0xa2, 0x36,
0xe7, 0xe8, 0x18, 0xb0, 0x4b, 0x0b, 0xc3, 0x9c, 0x1e, 0x87,
0x6b, 0x19, 0x3b, 0xfe, 0x55, 0x69, 0x75, 0x3f, 0x88, 0x12,
0x8c, 0xc0, 0x8a, 0xaa, 0x9b, 0x63, 0xd1, 0xa1, 0x6f, 0x80,
0xef, 0x25, 0x54, 0xd7, 0x18, 0x9c, 0x41, 0x1f, 0x58, 0x69,
0xca, 0x52, 0xc5, 0xb8, 0x3f, 0xa3, 0x6f, 0xf2, 0x16, 0xb9,
0xc1, 0xd3, 0x00, 0x62, 0xbe, 0xbc, 0xfd, 0x2d, 0xc5, 0xbc,
0xe0, 0x91, 0x19, 0x34, 0xfd, 0xa7, 0x9a, 0x86, 0xf6, 0xe6,
0x98, 0xce, 0xd7, 0x59, 0xc3, 0xff, 0x9b, 0x64, 0x77, 0x33,
0x8f, 0x3d, 0xa4, 0xf9, 0xcd, 0x85, 0x14, 0xea, 0x99, 0x82,
0xcc, 0xaf, 0xb3, 0x41, 0xb2, 0x38, 0x4d, 0xd9, 0x02, 0xf3,
0xd1, 0xab, 0x7a, 0xc6, 0x1d, 0xd2, 0x9c, 0x6f, 0x21, 0xba,
0x5b, 0x86, 0x2f, 0x37, 0x30, 0xe3, 0x7c, 0xfd, 0xc4, 0xfd,
0x80, 0x6c, 0x22, 0xf2, 0x21 ]
msg = [ 0x41, 0x6e, 0x79, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x73,
0x73, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68,
0x65, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x69, 0x6e, 0x74,
0x65, 0x6e, 0x64, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x74,
0x68, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69, 0x62,
0x75, 0x74, 0x6f, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70,
0x75, 0x62, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x20, 0x61, 0x73, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x6f, 0x72,
0x20, 0x70, 0x61, 0x72, 0x74, 0x20, 0x6f, 0x66, 0x20, 0x61,
0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x49, 0x6e, 0x74,
0x65, 0x72, 0x6e, 0x65, 0x74, 0x2d, 0x44, 0x72, 0x61, 0x66,
0x74, 0x20, 0x6f, 0x72, 0x20, 0x52, 0x46, 0x43, 0x20, 0x61,
0x6e, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x73, 0x74, 0x61,
0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x20, 0x6d, 0x61, 0x64,
0x65, 0x20, 0x77, 0x69, 0x74, 0x68, 0x69, 0x6e, 0x20, 0x74,
0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
0x20, 0x6f, 0x66, 0x20, 0x61, 0x6e, 0x20, 0x49, 0x45, 0x54,
0x46, 0x20, 0x61, 0x63, 0x74, 0x69, 0x76, 0x69, 0x74, 0x79,
0x20, 0x69, 0x73, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x69, 0x64,
0x65, 0x72, 0x65, 0x64, 0x20, 0x61, 0x6e, 0x20, 0x22, 0x49,
0x45, 0x54, 0x46, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69,
0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2e, 0x20, 0x53,
0x75, 0x63, 0x68, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x6d,
0x65, 0x6e, 0x74, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6c, 0x75,
0x64, 0x65, 0x20, 0x6f, 0x72, 0x61, 0x6c, 0x20, 0x73, 0x74,
0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x69,
0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x73, 0x65, 0x73,
0x73, 0x69, 0x6f, 0x6e, 0x73, 0x2c, 0x20, 0x61, 0x73, 0x20,
0x77, 0x65, 0x6c, 0x6c, 0x20, 0x61, 0x73, 0x20, 0x77, 0x72,
0x69, 0x74, 0x74, 0x65, 0x6e, 0x20, 0x61, 0x6e, 0x64, 0x20,
0x65, 0x6c, 0x65, 0x63, 0x74, 0x72, 0x6f, 0x6e, 0x69, 0x63,
0x20, 0x63, 0x6f, 0x6d, 0x6d, 0x75, 0x6e, 0x69, 0x63, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x64, 0x65,
0x20, 0x61, 0x74, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x74, 0x69,
0x6d, 0x65, 0x20, 0x6f, 0x72, 0x20, 0x70, 0x6c, 0x61, 0x63,
0x65, 0x2c, 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x61,
0x72, 0x65, 0x20, 0x61, 0x64, 0x64, 0x72, 0x65, 0x73, 0x73,
0x65, 0x64, 0x20, 0x74, 0x6f ]
rfctest03 = encrypt key 42 (zero # [2]) msg == out
where
key = [ 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a, 0xf3, 0x33,
0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0, 0x47, 0x39, 0x17, 0xc1,
0x40, 0x2b, 0x80, 0x09, 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70,
0x75, 0xc0 ]
out = [ 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72, 0x69, 0x6c,
0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x74,
0x68, 0x65, 0x20, 0x73, 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20,
0x74, 0x6f, 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x67,
0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x74,
0x68, 0x65, 0x20, 0x77, 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41,
0x6c, 0x6c, 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x62, 0x6f,
0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65, 0x73, 0x2c, 0x0a, 0x41,
0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d,
0x65, 0x20, 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e ]
msg = [ 0x62, 0xe6, 0x34, 0x7f, 0x95, 0xed, 0x87, 0xa4, 0x5f, 0xfa,
0xe7, 0x42, 0x6f, 0x27, 0xa1, 0xdf, 0x5f, 0xb6, 0x91, 0x10,
0x04, 0x4c, 0x0d, 0x73, 0x11, 0x8e, 0xff, 0xa9, 0x5b, 0x01,
0xe5, 0xcf, 0x16, 0x6d, 0x3d, 0xf2, 0xd7, 0x21, 0xca, 0xf9,
0xb2, 0x1e, 0x5f, 0xb1, 0x4c, 0x61, 0x68, 0x71, 0xfd, 0x84,
0xc5, 0x4f, 0x9d, 0x65, 0xb2, 0x83, 0x19, 0x6c, 0x7f, 0xe4,
0xf6, 0x05, 0x53, 0xeb, 0xf3, 0x9c, 0x64, 0x02, 0xc4, 0x22,
0x34, 0xe3, 0x2a, 0x35, 0x6b, 0x3e, 0x76, 0x43, 0x12, 0xa6,
0x1a, 0x55, 0x32, 0x05, 0x57, 0x16, 0xea, 0xd6, 0x96, 0x25,
0x68, 0xf8, 0x7d, 0x3f, 0x3f, 0x77, 0x04, 0xc6, 0xa8, 0xd1,
0xbc, 0xd1, 0xbf, 0x4d, 0x50, 0xd6, 0x15, 0x4b, 0x6d, 0xa7,
0x31, 0xb1, 0x87, 0xb5, 0x8d, 0xfd, 0x72, 0x8a, 0xfa, 0x36,
0x75, 0x7a, 0x79, 0x7a, 0xc1, 0x88, 0xd1 ]
property allTestsPass =
([ // Basic tests
qround01, core01, core02
// Full RFC test vectors
, rfctest01, rfctest02, rfctest03
] : [_]Bit) == ~zero // All test bits should equal one
/* -------------------------------------------------------------------------- */
/* -- Private utilities ----------------------------------------------------- */
private
// Convert a round into a block, by splitting every 32-bit round entry
// into 4 bytes, and then serialize those values into a full block.
blocked : Round -> Block
blocked x = join (map toBytes x)
where
// This essentially splits a 32-bit number into 4-byte
// little-endian form, where 'rjoin' is the inverse and would merge
// 4 bytes as a 32-bit little endian number.
toBytes : [32] -> [4][8]
toBytes v = reverse (groupBy`{8} v)
// Map a function over a finite list.
map : { a, b, c }
(a -> b) -> [c]a -> [c]b
map f xs = [ f x | x <- xs ]
// Map a function iteratively over a seed value, producing an infinite
// list of successive function applications:
//
// iterate f 0 == [ 0, f 0, f (f 0), f (f (f 0)), ... ]
iterate : { a } (a -> a) -> a -> [inf]a
iterate f x = [x] # [ f v | v <- iterate f x ]
where
// NB: Needs a binded name in order to tie the recursive knot.
xs = [x] # [ f v | v <- xs ]
// rjoin = join . reverse
// This encodes a sequence of values as a little endian number
// e.g. [ 0xaa, 0xbb, 0xcc, 0xdd ] is serialized as \xdd\xcc\xbb\xaa
rjoin : {a, b, c}
( fin a, fin c
) => [c][a]b -> [a * c]b
rjoin x = join (reverse x)
|