summaryrefslogtreecommitdiffstats
path: root/mozglue/linker/XZStream.cpp
blob: bd71655f52c7d0a7edd25a842bc042091635eca9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "XZStream.h"

#include <algorithm>
#include "mozilla/Assertions.h"
#include "Logging.h"

// LZMA dictionary size, should have a minimum size for the given compression
// rate, see XZ Utils docs for details.
static const uint32_t kDictSize = 1 << 24;

static const size_t kFooterSize = 12;

// Parses a variable-length integer (VLI),
// see http://tukaani.org/xz/xz-file-format.txt for details.
static size_t
ParseVarLenInt(const uint8_t* aBuf, size_t aBufSize, uint64_t* aValue)
{
  if (!aBufSize) {
    return 0;
  }
  aBufSize = std::min(9u, aBufSize);

  *aValue = aBuf[0] & 0x7F;
  size_t i = 0;

  while (aBuf[i++] & 0x80) {
    if (i >= aBufSize || aBuf[i] == 0x0) {
      return 0;
    }
    *aValue |= static_cast<uint64_t>(aBuf[i] & 0x7F) << (i * 7);
  }
  return i;
}

/* static */ bool
XZStream::IsXZ(const void* aBuf, size_t aBufSize)
{
  static const uint8_t kXzMagic[] = {0xfd, '7', 'z', 'X', 'Z', 0x0};
  MOZ_ASSERT(aBuf);
  return aBufSize > sizeof(kXzMagic) &&
         !memcmp(reinterpret_cast<const void*>(kXzMagic), aBuf, sizeof(kXzMagic));
}

XZStream::XZStream(const void* aInBuf, size_t aInSize)
  : mInBuf(static_cast<const uint8_t*>(aInBuf))
  , mUncompSize(0)
  , mDec(nullptr)
{
  mBuffers.in = mInBuf;
  mBuffers.in_pos = 0;
  mBuffers.in_size = aInSize;
}

XZStream::~XZStream()
{
  xz_dec_end(mDec);
}

bool
XZStream::Init()
{
#ifdef XZ_USE_CRC64
  xz_crc64_init();
#endif
  xz_crc32_init();

  mDec = xz_dec_init(XZ_DYNALLOC, kDictSize);

  if (!mDec) {
    return false;
  }

  mUncompSize = ParseUncompressedSize();

  return true;
}

size_t
XZStream::Decode(void* aOutBuf, size_t aOutSize)
{
  if (!mDec) {
    return 0;
  }

  mBuffers.out = static_cast<uint8_t*>(aOutBuf);
  mBuffers.out_pos = 0;
  mBuffers.out_size = aOutSize;

  while (mBuffers.in_pos < mBuffers.in_size &&
         mBuffers.out_pos < mBuffers.out_size) {
    const xz_ret ret = xz_dec_run(mDec, &mBuffers);

    switch (ret) {
      case XZ_STREAM_END:
        // Stream ended, the next loop iteration should terminate.
        MOZ_ASSERT(mBuffers.in_pos == mBuffers.in_size);
        MOZ_FALLTHROUGH;
#ifdef XZ_DEC_ANY_CHECK
      case XZ_UNSUPPORTED_CHECK:
        // Ignore unsupported check.
        MOZ_FALLTHROUGH;
#endif
      case XZ_OK:
        // Chunk decoded, proceed.
        break;

      case XZ_MEM_ERROR:
        ERROR("XZ decoding: memory allocation failed");
        return 0;

      case XZ_MEMLIMIT_ERROR:
        ERROR("XZ decoding: memory usage limit reached");
        return 0;

      case XZ_FORMAT_ERROR:
        ERROR("XZ decoding: invalid stream format");
        return 0;

      case XZ_OPTIONS_ERROR:
        ERROR("XZ decoding: unsupported header options");
        return 0;

      case XZ_DATA_ERROR:
        MOZ_FALLTHROUGH;
      case XZ_BUF_ERROR:
        ERROR("XZ decoding: corrupt input stream");
        return 0;

      default:
        MOZ_ASSERT_UNREACHABLE("XZ decoding: unknown error condition");
        return 0;
    }
  }
  return mBuffers.out_pos;
}

size_t
XZStream::RemainingInput() const
{
  return mBuffers.in_size - mBuffers.in_pos;
}

size_t
XZStream::Size() const
{
  return mBuffers.in_size;
}

size_t
XZStream::UncompressedSize() const
{
  return mUncompSize;
}

size_t
XZStream::ParseIndexSize() const
{
  static const uint8_t kFooterMagic[] = {'Y', 'Z'};

  const uint8_t* footer = mInBuf + mBuffers.in_size - kFooterSize;
  // The magic bytes are at the end of the footer.
  if (memcmp(reinterpret_cast<const void*>(kFooterMagic),
             footer + kFooterSize - sizeof(kFooterMagic),
             sizeof(kFooterMagic))) {
    // Not a valid footer at stream end.
    return 0;
  }
  // Backward size is a 32 bit LE integer field positioned after the 32 bit CRC32
  // code. It encodes the index size as a multiple of 4 bytes with a minimum
  // size of 4 bytes.
  const uint32_t backwardSize = *(footer + 4);
  return (backwardSize + 1) * 4;
}

size_t
XZStream::ParseUncompressedSize() const
{
  static const uint8_t kIndexIndicator[] = {0x0};

  const size_t indexSize = ParseIndexSize();
  if (!indexSize) {
    return 0;
  }
  // The footer follows directly the index, so we can use it as a reference.
  const uint8_t* end = mInBuf + mBuffers.in_size;
  const uint8_t* index = end - kFooterSize - indexSize;

  // The index consists of a one byte indicator followed by a VLI field for the
  // number of records (1 expected) followed by a list of records. One record
  // contains a VLI field for unpadded size followed by a VLI field for
  // uncompressed size.
  if (memcmp(reinterpret_cast<const void*>(kIndexIndicator),
             index, sizeof(kIndexIndicator))) {
    // Not a valid index.
    return 0;
  }

  index += sizeof(kIndexIndicator);
  uint64_t numRecords = 0;
  index += ParseVarLenInt(index, end - index, &numRecords);
  if (!numRecords) {
    return 0;
  }
  uint64_t unpaddedSize = 0;
  index += ParseVarLenInt(index, end - index, &unpaddedSize);
  if (!unpaddedSize) {
    return 0;
  }
  uint64_t uncompressedSize = 0;
  index += ParseVarLenInt(index, end - index, &uncompressedSize);

  return uncompressedSize;
}