1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
|
/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 1999-2007 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/*
* \file ngram_model.c N-Gram language models.
*
* Author: David Huggins-Daines, much code taken from sphinx3/src/libs3decoder/liblm
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string.h>
#include <assert.h>
#include "sphinxbase/ngram_model.h"
#include "sphinxbase/ckd_alloc.h"
#include "sphinxbase/filename.h"
#include "sphinxbase/pio.h"
#include "sphinxbase/err.h"
#include "sphinxbase/logmath.h"
#include "sphinxbase/strfuncs.h"
#include "sphinxbase/case.h"
#include "ngram_model_internal.h"
ngram_file_type_t
ngram_file_name_to_type(const char *file_name)
{
const char *ext;
ext = strrchr(file_name, '.');
if (ext == NULL) {
return NGRAM_INVALID;
}
if (0 == strcmp_nocase(ext, ".gz")) {
while (--ext >= file_name) {
if (*ext == '.') break;
}
if (ext < file_name) {
return NGRAM_INVALID;
}
}
else if (0 == strcmp_nocase(ext, ".bz2")) {
while (--ext >= file_name) {
if (*ext == '.') break;
}
if (ext < file_name) {
return NGRAM_INVALID;
}
}
/* We use strncmp because there might be a .gz on the end. */
if (0 == strncmp_nocase(ext, ".ARPA", 5))
return NGRAM_ARPA;
if (0 == strncmp_nocase(ext, ".DMP", 4))
return NGRAM_DMP;
return NGRAM_INVALID;
}
ngram_file_type_t
ngram_str_to_type(const char *str_name)
{
if (0 == strcmp_nocase(str_name, "arpa"))
return NGRAM_ARPA;
if (0 == strcmp_nocase(str_name, "dmp"))
return NGRAM_DMP;
return NGRAM_INVALID;
}
char const *
ngram_type_to_str(int type)
{
switch (type) {
case NGRAM_ARPA:
return "arpa";
case NGRAM_DMP:
return "dmp";
default:
return NULL;
}
}
ngram_model_t *
ngram_model_read(cmd_ln_t *config,
const char *file_name,
ngram_file_type_t file_type,
logmath_t *lmath)
{
ngram_model_t *model = NULL;
switch (file_type) {
case NGRAM_AUTO: {
if ((model = ngram_model_arpa_read(config, file_name, lmath)) != NULL)
break;
if ((model = ngram_model_dmp_read(config, file_name, lmath)) != NULL)
break;
return NULL;
}
case NGRAM_ARPA:
model = ngram_model_arpa_read(config, file_name, lmath);
break;
case NGRAM_DMP:
model = ngram_model_dmp_read(config, file_name, lmath);
break;
default:
E_ERROR("language model file type not supported\n");
return NULL;
}
/* Now set weights based on config if present. */
if (config) {
float32 lw = 1.0;
float32 wip = 1.0;
float32 uw = 1.0;
if (cmd_ln_exists_r(config, "-lw"))
lw = cmd_ln_float32_r(config, "-lw");
if (cmd_ln_exists_r(config, "-wip"))
wip = cmd_ln_float32_r(config, "-wip");
if (cmd_ln_exists_r(config, "-uw"))
uw = cmd_ln_float32_r(config, "-uw");
ngram_model_apply_weights(model, lw, wip, uw);
}
return model;
}
int
ngram_model_write(ngram_model_t *model, const char *file_name,
ngram_file_type_t file_type)
{
switch (file_type) {
case NGRAM_AUTO: {
file_type = ngram_file_name_to_type(file_name);
/* Default to ARPA (catches .lm and other things) */
if (file_type == NGRAM_INVALID)
file_type = NGRAM_ARPA;
return ngram_model_write(model, file_name, file_type);
}
case NGRAM_ARPA:
return ngram_model_arpa_write(model, file_name);
case NGRAM_DMP:
return ngram_model_dmp_write(model, file_name);
default:
E_ERROR("language model file type not supported\n");
return -1;
}
E_ERROR("language model file type not supported\n");
return -1;
}
int32
ngram_model_init(ngram_model_t *base,
ngram_funcs_t *funcs,
logmath_t *lmath,
int32 n, int32 n_unigram)
{
base->refcount = 1;
base->funcs = funcs;
base->n = n;
/* If this was previously initialized... */
if (base->n_counts == NULL)
base->n_counts = ckd_calloc(3, sizeof(*base->n_counts));
/* Don't reset weights if logmath object hasn't changed. */
if (base->lmath != lmath) {
/* Set default values for weights. */
base->lw = 1.0;
base->log_wip = 0; /* i.e. 1.0 */
base->log_uw = 0; /* i.e. 1.0 */
base->log_uniform = logmath_log(lmath, 1.0 / n_unigram);
base->log_uniform_weight = logmath_get_zero(lmath);
base->log_zero = logmath_get_zero(lmath);
base->lmath = lmath;
}
/* Allocate or reallocate space for word strings. */
if (base->word_str) {
/* Free all previous word strings if they were allocated. */
if (base->writable) {
int32 i;
for (i = 0; i < base->n_words; ++i) {
ckd_free(base->word_str[i]);
base->word_str[i] = NULL;
}
}
base->word_str = ckd_realloc(base->word_str, n_unigram * sizeof(char *));
}
else
base->word_str = ckd_calloc(n_unigram, sizeof(char *));
/* NOTE: They are no longer case-insensitive since we are allowing
* other encodings for word strings. Beware. */
if (base->wid)
hash_table_empty(base->wid);
else
base->wid = hash_table_new(n_unigram, FALSE);
base->n_counts[0] = base->n_1g_alloc = base->n_words = n_unigram;
return 0;
}
ngram_model_t *
ngram_model_retain(ngram_model_t *model)
{
++model->refcount;
return model;
}
void
ngram_model_flush(ngram_model_t *model)
{
if (model->funcs && model->funcs->flush)
(*model->funcs->flush)(model);
}
int
ngram_model_free(ngram_model_t *model)
{
int i;
if (model == NULL)
return 0;
if (--model->refcount > 0)
return model->refcount;
if (model->funcs && model->funcs->free)
(*model->funcs->free)(model);
if (model->writable) {
/* Free all words. */
for (i = 0; i < model->n_words; ++i) {
ckd_free(model->word_str[i]);
}
}
else {
/* Free all class words. */
for (i = 0; i < model->n_classes; ++i) {
ngram_class_t *lmclass;
int32 j;
lmclass = model->classes[i];
for (j = 0; j < lmclass->n_words; ++j) {
ckd_free(model->word_str[lmclass->start_wid + j]);
}
for (j = 0; j < lmclass->n_hash; ++j) {
if (lmclass->nword_hash[j].wid != -1) {
ckd_free(model->word_str[lmclass->nword_hash[j].wid]);
}
}
}
}
for (i = 0; i < model->n_classes; ++i) {
ngram_class_free(model->classes[i]);
}
ckd_free(model->classes);
hash_table_free(model->wid);
ckd_free(model->word_str);
ckd_free(model->n_counts);
ckd_free(model);
return 0;
}
int
ngram_model_casefold(ngram_model_t *model, int kase)
{
int writable, i;
hash_table_t *new_wid;
/* Were word strings already allocated? */
writable = model->writable;
/* Either way, we are going to allocate some word strings. */
model->writable = TRUE;
/* And, don't forget, we need to rebuild the word to unigram ID
* mapping. */
new_wid = hash_table_new(model->n_words, FALSE);
for (i = 0; i < model->n_words; ++i) {
char *outstr;
if (writable) {
outstr = model->word_str[i];
}
else {
outstr = ckd_salloc(model->word_str[i]);
}
/* Don't case-fold <tags> or [classes] */
if (outstr[0] == '<' || outstr[0] == '[') {
}
else {
switch (kase) {
case NGRAM_UPPER:
ucase(outstr);
break;
case NGRAM_LOWER:
lcase(outstr);
break;
default:
;
}
}
model->word_str[i] = outstr;
/* Now update the hash table. We might have terrible
* collisions here, so warn about them. */
if (hash_table_enter_int32(new_wid, model->word_str[i], i) != i) {
E_WARN("Duplicate word in dictionary after conversion: %s\n",
model->word_str[i]);
}
}
/* Swap out the hash table. */
hash_table_free(model->wid);
model->wid = new_wid;
return 0;
}
int
ngram_model_apply_weights(ngram_model_t *model,
float32 lw, float32 wip, float32 uw)
{
return (*model->funcs->apply_weights)(model, lw, wip, uw);
}
float32
ngram_model_get_weights(ngram_model_t *model, int32 *out_log_wip,
int32 *out_log_uw)
{
if (out_log_wip) *out_log_wip = model->log_wip;
if (out_log_uw) *out_log_uw = model->log_uw;
return model->lw;
}
int32
ngram_ng_score(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used)
{
int32 score, class_weight = 0;
int i;
/* Closed vocabulary, OOV word probability is zero */
if (wid == NGRAM_INVALID_WID)
return model->log_zero;
/* "Declassify" wid and history */
if (NGRAM_IS_CLASSWID(wid)) {
ngram_class_t *lmclass = model->classes[NGRAM_CLASSID(wid)];
class_weight = ngram_class_prob(lmclass, wid);
if (class_weight == 1) /* Meaning, not found in class. */
return model->log_zero;
wid = lmclass->tag_wid;
}
for (i = 0; i < n_hist; ++i) {
if (history[i] != NGRAM_INVALID_WID && NGRAM_IS_CLASSWID(history[i]))
history[i] = model->classes[NGRAM_CLASSID(history[i])]->tag_wid;
}
score = (*model->funcs->score)(model, wid, history, n_hist, n_used);
/* Multiply by unigram in-class weight. */
return score + class_weight;
}
int32
ngram_score(ngram_model_t *model, const char *word, ...)
{
va_list history;
const char *hword;
int32 *histid;
int32 n_hist;
int32 n_used;
int32 prob;
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL)
++n_hist;
va_end(history);
histid = ckd_calloc(n_hist, sizeof(*histid));
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL) {
histid[n_hist] = ngram_wid(model, hword);
++n_hist;
}
va_end(history);
prob = ngram_ng_score(model, ngram_wid(model, word),
histid, n_hist, &n_used);
ckd_free(histid);
return prob;
}
int32
ngram_tg_score(ngram_model_t *model, int32 w3, int32 w2, int32 w1, int32 *n_used)
{
int32 hist[2];
hist[0] = w2;
hist[1] = w1;
return ngram_ng_score(model, w3, hist, 2, n_used);
}
int32
ngram_bg_score(ngram_model_t *model, int32 w2, int32 w1, int32 *n_used)
{
return ngram_ng_score(model, w2, &w1, 1, n_used);
}
int32
ngram_ng_prob(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used)
{
int32 prob, class_weight = 0;
int i;
/* Closed vocabulary, OOV word probability is zero */
if (wid == NGRAM_INVALID_WID)
return model->log_zero;
/* "Declassify" wid and history */
if (NGRAM_IS_CLASSWID(wid)) {
ngram_class_t *lmclass = model->classes[NGRAM_CLASSID(wid)];
class_weight = ngram_class_prob(lmclass, wid);
if (class_weight == 1) /* Meaning, not found in class. */
return class_weight;
wid = lmclass->tag_wid;
}
for (i = 0; i < n_hist; ++i) {
if (history[i] != NGRAM_INVALID_WID && NGRAM_IS_CLASSWID(history[i]))
history[i] = model->classes[NGRAM_CLASSID(history[i])]->tag_wid;
}
prob = (*model->funcs->raw_score)(model, wid, history,
n_hist, n_used);
/* Multiply by unigram in-class weight. */
return prob + class_weight;
}
int32
ngram_probv(ngram_model_t *model, const char *word, ...)
{
va_list history;
const char *hword;
int32 *histid;
int32 n_hist;
int32 n_used;
int32 prob;
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL)
++n_hist;
va_end(history);
histid = ckd_calloc(n_hist, sizeof(*histid));
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL) {
histid[n_hist] = ngram_wid(model, hword);
++n_hist;
}
va_end(history);
prob = ngram_ng_prob(model, ngram_wid(model, word),
histid, n_hist, &n_used);
ckd_free(histid);
return prob;
}
int32
ngram_prob(ngram_model_t *model, const char *const *words, int32 n)
{
int32 *ctx_id;
int32 nused;
int32 prob;
int32 wid;
uint32 i;
ctx_id = (int32 *)ckd_calloc(n - 1, sizeof(*ctx_id));
for (i = 1; i < n; ++i)
ctx_id[i - 1] = ngram_wid(model, words[i]);
wid = ngram_wid(model, *words);
prob = ngram_ng_prob(model, wid, ctx_id, n - 1, &nused);
ckd_free(ctx_id);
return prob;
}
int32
ngram_score_to_prob(ngram_model_t *base, int32 score)
{
int32 prob;
/* Undo insertion penalty. */
prob = score - base->log_wip;
/* Undo language weight. */
prob = (int32)(prob / base->lw);
return prob;
}
int32
ngram_unknown_wid(ngram_model_t *model)
{
int32 val;
/* FIXME: This could be memoized for speed if necessary. */
/* Look up <UNK>, if not found return NGRAM_INVALID_WID. */
if (hash_table_lookup_int32(model->wid, "<UNK>", &val) == -1)
return NGRAM_INVALID_WID;
else
return val;
}
int32
ngram_zero(ngram_model_t *model)
{
return model->log_zero;
}
int32
ngram_model_get_size(ngram_model_t *model)
{
if (model != NULL)
return model->n;
return 0;
}
int32 const *
ngram_model_get_counts(ngram_model_t *model)
{
if (model != NULL)
return model->n_counts;
return NULL;
}
void
ngram_iter_init(ngram_iter_t *itor, ngram_model_t *model,
int m, int successor)
{
itor->model = model;
itor->wids = ckd_calloc(model->n, sizeof(*itor->wids));
itor->m = m;
itor->successor = successor;
}
ngram_iter_t *
ngram_model_mgrams(ngram_model_t *model, int m)
{
ngram_iter_t *itor;
/* The fact that m=n-1 is not exactly obvious. Prevent accidents. */
if (m >= model->n)
return NULL;
if (model->funcs->mgrams == NULL)
return NULL;
itor = (*model->funcs->mgrams)(model, m);
return itor;
}
ngram_iter_t *
ngram_iter(ngram_model_t *model, const char *word, ...)
{
va_list history;
const char *hword;
int32 *histid;
int32 n_hist;
ngram_iter_t *itor;
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL)
++n_hist;
va_end(history);
histid = ckd_calloc(n_hist, sizeof(*histid));
va_start(history, word);
n_hist = 0;
while ((hword = va_arg(history, const char *)) != NULL) {
histid[n_hist] = ngram_wid(model, hword);
++n_hist;
}
va_end(history);
itor = ngram_ng_iter(model, ngram_wid(model, word), histid, n_hist);
ckd_free(histid);
return itor;
}
ngram_iter_t *
ngram_ng_iter(ngram_model_t *model, int32 wid, int32 *history, int32 n_hist)
{
if (n_hist >= model->n)
return NULL;
if (model->funcs->iter == NULL)
return NULL;
return (*model->funcs->iter)(model, wid, history, n_hist);
}
ngram_iter_t *
ngram_iter_successors(ngram_iter_t *itor)
{
/* Stop when we are at the highest order N-Gram. */
if (itor->m == itor->model->n - 1)
return NULL;
return (*itor->model->funcs->successors)(itor);
}
int32 const *
ngram_iter_get(ngram_iter_t *itor,
int32 *out_score,
int32 *out_bowt)
{
return (*itor->model->funcs->iter_get)(itor, out_score, out_bowt);
}
ngram_iter_t *
ngram_iter_next(ngram_iter_t *itor)
{
return (*itor->model->funcs->iter_next)(itor);
}
void
ngram_iter_free(ngram_iter_t *itor)
{
ckd_free(itor->wids);
(*itor->model->funcs->iter_free)(itor);
}
int32
ngram_wid(ngram_model_t *model, const char *word)
{
int32 val;
if (hash_table_lookup_int32(model->wid, word, &val) == -1)
return ngram_unknown_wid(model);
else
return val;
}
const char *
ngram_word(ngram_model_t *model, int32 wid)
{
/* Remove any class tag */
wid = NGRAM_BASEWID(wid);
if (wid >= model->n_words)
return NULL;
return model->word_str[wid];
}
/**
* Add a word to the word string and ID mapping.
*/
int32
ngram_add_word_internal(ngram_model_t *model,
const char *word,
int32 classid)
{
/* Check for hash collisions. */
int32 wid;
if (hash_table_lookup_int32(model->wid, word, &wid) == 0) {
E_WARN("Omit duplicate word '%s'\n", word);
return wid;
}
/* Take the next available word ID */
wid = model->n_words;
if (classid >= 0) {
wid = NGRAM_CLASSWID(wid, classid);
}
/* Reallocate word_str if necessary. */
if (model->n_words >= model->n_1g_alloc) {
model->n_1g_alloc += UG_ALLOC_STEP;
model->word_str = ckd_realloc(model->word_str,
sizeof(*model->word_str) * model->n_1g_alloc);
}
/* Add the word string in the appropriate manner. */
/* Class words are always dynamically allocated. */
model->word_str[model->n_words] = ckd_salloc(word);
/* Now enter it into the hash table. */
if (hash_table_enter_int32(model->wid, model->word_str[model->n_words], wid) != wid) {
E_ERROR("Hash insertion failed for word %s => %p (should not happen)\n",
model->word_str[model->n_words], (void *)(long)(wid));
}
/* Increment number of words. */
++model->n_words;
return wid;
}
int32
ngram_model_add_word(ngram_model_t *model,
const char *word, float32 weight)
{
int32 wid, prob = model->log_zero;
/* If we add word to unwritable model, we need to make it writable */
if (!model->writable) {
E_WARN("Can't add word '%s' to read-only language model. "
"Disable mmap with '-mmap no' to make it writable\n", word);
return -1;
}
wid = ngram_add_word_internal(model, word, -1);
if (wid == NGRAM_INVALID_WID)
return wid;
/* Do what needs to be done to add the word to the unigram. */
if (model->funcs && model->funcs->add_ug)
prob = (*model->funcs->add_ug)(model, wid, logmath_log(model->lmath, weight));
if (prob == 0)
return -1;
return wid;
}
ngram_class_t *
ngram_class_new(ngram_model_t *model, int32 tag_wid, int32 start_wid, glist_t classwords)
{
ngram_class_t *lmclass;
gnode_t *gn;
float32 tprob;
int i;
lmclass = ckd_calloc(1, sizeof(*lmclass));
lmclass->tag_wid = tag_wid;
/* wid_base is the wid (minus class tag) of the first word in the list. */
lmclass->start_wid = start_wid;
lmclass->n_words = glist_count(classwords);
lmclass->prob1 = ckd_calloc(lmclass->n_words, sizeof(*lmclass->prob1));
lmclass->nword_hash = NULL;
lmclass->n_hash = 0;
tprob = 0.0;
for (gn = classwords; gn; gn = gnode_next(gn)) {
tprob += gnode_float32(gn);
}
if (tprob > 1.1 || tprob < 0.9) {
E_INFO("Total class probability is %f, will normalize\n", tprob);
for (gn = classwords; gn; gn = gnode_next(gn)) {
gn->data.fl /= tprob;
}
}
for (i = 0, gn = classwords; gn; ++i, gn = gnode_next(gn)) {
lmclass->prob1[i] = logmath_log(model->lmath, gnode_float32(gn));
}
return lmclass;
}
int32
ngram_class_add_word(ngram_class_t *lmclass, int32 wid, int32 lweight)
{
int32 hash;
if (lmclass->nword_hash == NULL) {
/* Initialize everything in it to -1 */
lmclass->nword_hash = ckd_malloc(NGRAM_HASH_SIZE * sizeof(*lmclass->nword_hash));
memset(lmclass->nword_hash, 0xff, NGRAM_HASH_SIZE * sizeof(*lmclass->nword_hash));
lmclass->n_hash = NGRAM_HASH_SIZE;
lmclass->n_hash_inuse = 0;
}
/* Stupidest possible hash function. This will work pretty well
* when this function is called repeatedly with contiguous word
* IDs, though... */
hash = wid & (lmclass->n_hash - 1);
if (lmclass->nword_hash[hash].wid == -1) {
/* Good, no collision. */
lmclass->nword_hash[hash].wid = wid;
lmclass->nword_hash[hash].prob1 = lweight;
++lmclass->n_hash_inuse;
return hash;
}
else {
int32 next; /**< Next available bucket. */
/* Collision... Find the end of the hash chain. */
while (lmclass->nword_hash[hash].next != -1)
hash = lmclass->nword_hash[hash].next;
assert(hash != -1);
/* Does we has any more bukkit? */
if (lmclass->n_hash_inuse == lmclass->n_hash) {
/* Oh noes! Ok, we makes more. */
lmclass->nword_hash = ckd_realloc(lmclass->nword_hash,
lmclass->n_hash * 2 * sizeof(*lmclass->nword_hash));
memset(lmclass->nword_hash + lmclass->n_hash,
0xff, lmclass->n_hash * sizeof(*lmclass->nword_hash));
/* Just use the next allocated one (easy) */
next = lmclass->n_hash;
lmclass->n_hash *= 2;
}
else {
/* Look for any available bucket. We hope this doesn't happen. */
for (next = 0; next < lmclass->n_hash; ++next)
if (lmclass->nword_hash[next].wid == -1)
break;
/* This should absolutely not happen. */
assert(next != lmclass->n_hash);
}
lmclass->nword_hash[next].wid = wid;
lmclass->nword_hash[next].prob1 = lweight;
lmclass->nword_hash[hash].next = next;
++lmclass->n_hash_inuse;
return next;
}
}
void
ngram_class_free(ngram_class_t *lmclass)
{
ckd_free(lmclass->nword_hash);
ckd_free(lmclass->prob1);
ckd_free(lmclass);
}
int32
ngram_model_add_class_word(ngram_model_t *model,
const char *classname,
const char *word,
float32 weight)
{
ngram_class_t *lmclass;
int32 classid, tag_wid, wid, i, scale;
float32 fprob;
/* Find the class corresponding to classname. Linear search
* probably okay here since there won't be very many classes, and
* this doesn't have to be fast. */
tag_wid = ngram_wid(model, classname);
if (tag_wid == NGRAM_INVALID_WID) {
E_ERROR("No such word or class tag: %s\n", classname);
return tag_wid;
}
for (classid = 0; classid < model->n_classes; ++classid) {
if (model->classes[classid]->tag_wid == tag_wid)
break;
}
/* Hmm, no such class. It's probably not a good idea to create one. */
if (classid == model->n_classes) {
E_ERROR("Word %s is not a class tag (call ngram_model_add_class() first)\n", classname);
return NGRAM_INVALID_WID;
}
lmclass = model->classes[classid];
/* Add this word to the model's set of words. */
wid = ngram_add_word_internal(model, word, classid);
if (wid == NGRAM_INVALID_WID)
return wid;
/* This is the fixed probability of the new word. */
fprob = weight * 1.0f / (lmclass->n_words + lmclass->n_hash_inuse + 1);
/* Now normalize everything else to fit it in. This is
* accomplished by simply scaling all the other probabilities
* by (1-fprob). */
scale = logmath_log(model->lmath, 1.0 - fprob);
for (i = 0; i < lmclass->n_words; ++i)
lmclass->prob1[i] += scale;
for (i = 0; i < lmclass->n_hash; ++i)
if (lmclass->nword_hash[i].wid != -1)
lmclass->nword_hash[i].prob1 += scale;
/* Now add it to the class hash table. */
return ngram_class_add_word(lmclass, wid, logmath_log(model->lmath, fprob));
}
int32
ngram_model_add_class(ngram_model_t *model,
const char *classname,
float32 classweight,
char **words,
const float32 *weights,
int32 n_words)
{
ngram_class_t *lmclass;
glist_t classwords = NULL;
int32 i, start_wid = -1;
int32 classid, tag_wid;
/* Check if classname already exists in model. If not, add it.*/
if ((tag_wid = ngram_wid(model, classname)) == ngram_unknown_wid(model)) {
tag_wid = ngram_model_add_word(model, classname, classweight);
if (tag_wid == NGRAM_INVALID_WID)
return -1;
}
if (model->n_classes == 128) {
E_ERROR("Number of classes cannot exceed 128 (sorry)\n");
return -1;
}
classid = model->n_classes;
for (i = 0; i < n_words; ++i) {
int32 wid;
wid = ngram_add_word_internal(model, words[i], classid);
if (wid == NGRAM_INVALID_WID)
return -1;
if (start_wid == -1)
start_wid = NGRAM_BASEWID(wid);
classwords = glist_add_float32(classwords, weights[i]);
}
classwords = glist_reverse(classwords);
lmclass = ngram_class_new(model, tag_wid, start_wid, classwords);
glist_free(classwords);
if (lmclass == NULL)
return -1;
++model->n_classes;
if (model->classes == NULL)
model->classes = ckd_calloc(1, sizeof(*model->classes));
else
model->classes = ckd_realloc(model->classes,
model->n_classes * sizeof(*model->classes));
model->classes[classid] = lmclass;
return classid;
}
int32
ngram_class_prob(ngram_class_t *lmclass, int32 wid)
{
int32 base_wid = NGRAM_BASEWID(wid);
if (base_wid < lmclass->start_wid
|| base_wid > lmclass->start_wid + lmclass->n_words) {
int32 hash;
/* Look it up in the hash table. */
hash = wid & (lmclass->n_hash - 1);
while (hash != -1 && lmclass->nword_hash[hash].wid != wid)
hash = lmclass->nword_hash[hash].next;
if (hash == -1)
return 1;
return lmclass->nword_hash[hash].prob1;
}
else {
return lmclass->prob1[base_wid - lmclass->start_wid];
}
}
int32
read_classdef_file(hash_table_t *classes, const char *file_name)
{
FILE *fp;
int32 is_pipe;
int inclass; /**< Are we currently reading a list of class words? */
int32 rv = -1;
gnode_t *gn;
glist_t classwords = NULL;
glist_t classprobs = NULL;
char *classname = NULL;
if ((fp = fopen_comp(file_name, "r", &is_pipe)) == NULL) {
E_ERROR("File %s not found\n", file_name);
return -1;
}
inclass = FALSE;
while (!feof(fp)) {
char line[512];
char *wptr[2];
int n_words;
if (fgets(line, sizeof(line), fp) == NULL)
break;
n_words = str2words(line, wptr, 2);
if (n_words <= 0)
continue;
if (inclass) {
/* Look for an end of class marker. */
if (n_words == 2 && 0 == strcmp(wptr[0], "END")) {
classdef_t *classdef;
gnode_t *word, *weight;
int32 i;
if (classname == NULL || 0 != strcmp(wptr[1], classname))
goto error_out;
inclass = FALSE;
/* Construct a class from the list of words collected. */
classdef = ckd_calloc(1, sizeof(*classdef));
classwords = glist_reverse(classwords);
classprobs = glist_reverse(classprobs);
classdef->n_words = glist_count(classwords);
classdef->words = ckd_calloc(classdef->n_words,
sizeof(*classdef->words));
classdef->weights = ckd_calloc(classdef->n_words,
sizeof(*classdef->weights));
word = classwords;
weight = classprobs;
for (i = 0; i < classdef->n_words; ++i) {
classdef->words[i] = gnode_ptr(word);
classdef->weights[i] = gnode_float32(weight);
word = gnode_next(word);
weight = gnode_next(weight);
}
/* Add this class to the hash table. */
if (hash_table_enter(classes, classname, classdef) != classdef) {
classdef_free(classdef);
goto error_out;
}
/* Reset everything. */
glist_free(classwords);
glist_free(classprobs);
classwords = NULL;
classprobs = NULL;
classname = NULL;
}
else {
float32 fprob;
if (n_words == 2)
fprob = (float32)atof_c(wptr[1]);
else
fprob = 1.0f;
/* Add it to the list of words for this class. */
classwords = glist_add_ptr(classwords, ckd_salloc(wptr[0]));
classprobs = glist_add_float32(classprobs, fprob);
}
}
else {
/* Start a new LM class if the LMCLASS marker is seen */
if (n_words == 2 && 0 == strcmp(wptr[0], "LMCLASS")) {
if (inclass)
goto error_out;
inclass = TRUE;
classname = ckd_salloc(wptr[1]);
}
/* Otherwise, just ignore whatever junk we got */
}
}
rv = 0; /* Success. */
error_out:
/* Free all the stuff we might have allocated. */
fclose_comp(fp, is_pipe);
for (gn = classwords; gn; gn = gnode_next(gn))
ckd_free(gnode_ptr(gn));
glist_free(classwords);
glist_free(classprobs);
ckd_free(classname);
return rv;
}
void
classdef_free(classdef_t *classdef)
{
int32 i;
for (i = 0; i < classdef->n_words; ++i)
ckd_free(classdef->words[i]);
ckd_free(classdef->words);
ckd_free(classdef->weights);
ckd_free(classdef);
}
int32
ngram_model_read_classdef(ngram_model_t *model,
const char *file_name)
{
hash_table_t *classes;
glist_t hl = NULL;
gnode_t *gn;
int32 rv = -1;
classes = hash_table_new(0, FALSE);
if (read_classdef_file(classes, file_name) < 0) {
hash_table_free(classes);
return -1;
}
/* Create a new class in the language model for each classdef. */
hl = hash_table_tolist(classes, NULL);
for (gn = hl; gn; gn = gnode_next(gn)) {
hash_entry_t *he = gnode_ptr(gn);
classdef_t *classdef = he->val;
if (ngram_model_add_class(model, he->key, 1.0,
classdef->words,
classdef->weights,
classdef->n_words) < 0)
goto error_out;
}
rv = 0;
error_out:
for (gn = hl; gn; gn = gnode_next(gn)) {
hash_entry_t *he = gnode_ptr(gn);
ckd_free((char *)he->key);
classdef_free(he->val);
}
glist_free(hl);
hash_table_free(classes);
return rv;
}
|