1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
* This is a modification of omxSP_FFTInit_R_S32.c to support float
* instead of S32.
*/
#include "dl/api/armOMX.h"
#include "dl/api/omxtypes.h"
#include "dl/sp/api/armSP.h"
#include "dl/sp/api/omxSP.h"
/**
* Function: omxSP_FFTInit_R_F32
*
* Description:
* Initialize the real forward-FFT specification information struct.
*
* Remarks:
* This function is used to initialize the specification structures
* for functions <ippsFFTFwd_RToCCS_F32_Sfs> and
* <ippsFFTInv_CCSToR_F32_Sfs>. Memory for *pFFTSpec must be
* allocated prior to calling this function. The number of bytes
* required for *pFFTSpec can be determined using
* <FFTGetBufSize_R_F32>.
*
* Parameters:
* [in] order base-2 logarithm of the desired block length;
* valid in the range [1,12]. ([1,15] if
* BIG_FFT_TABLE is defined.)
* [out] pFFTFwdSpec pointer to the initialized specification structure.
*
* Return Value:
* Standard omxError result. See enumeration for possible result codes.
*
*/
OMXResult omxSP_FFTInit_R_F32(OMXFFTSpec_R_F32* pFFTSpec, OMX_INT order) {
OMX_INT i;
OMX_INT j;
OMX_FC32* pTwiddle;
OMX_FC32* pTwiddle1;
OMX_FC32* pTwiddle2;
OMX_FC32* pTwiddle3;
OMX_FC32* pTwiddle4;
OMX_F32* pBuf;
OMX_U16* pBitRev;
OMX_U32 pTmp;
OMX_INT Nby2;
OMX_INT N;
OMX_INT M;
OMX_INT diff;
OMX_INT step;
OMX_F32 x;
OMX_F32 y;
OMX_F32 xNeg;
ARMsFFTSpec_R_FC32* pFFTStruct = 0;
pFFTStruct = (ARMsFFTSpec_R_FC32 *) pFFTSpec;
/* Validate args */
if (!pFFTSpec || (order < 1) || (order > TWIDDLE_TABLE_ORDER))
return OMX_Sts_BadArgErr;
/* Do the initializations */
Nby2 = 1 << (order - 1);
N = Nby2 << 1;
/* optimized implementations don't use bitreversal */
pBitRev = NULL;
pTwiddle = (OMX_FC32 *) (sizeof(ARMsFFTSpec_R_SC32) + (OMX_S8*) pFFTSpec);
/* Align to 32 byte boundary */
pTmp = ((OMX_U32)pTwiddle) & 31;
if (pTmp)
pTwiddle = (OMX_FC32*) ((OMX_S8*)pTwiddle + (32 - pTmp));
pBuf = (OMX_F32*) (sizeof(OMX_FC32)*(5*N/8) + (OMX_S8*) pTwiddle);
/* Align to 32 byte boundary */
pTmp = ((OMX_U32)pBuf)&31; /* (OMX_U32)pBuf % 32 */
if (pTmp)
pBuf = (OMX_F32*) ((OMX_S8*)pBuf + (32 - pTmp));
/*
* Filling Twiddle factors :
*
* exp^(-j*2*PI*k/ (N/2) ) ; k=0,1,2,...,3/4(N/2)
*
* N/2 point complex FFT is used to compute N point real FFT The
* original twiddle table "armSP_FFT_F32TwiddleTable" is of size
* (MaxSize/8 + 1) Rest of the values i.e., upto MaxSize are
* calculated using the symmetries of sin and cos The max size of
* the twiddle table needed is 3/4(N/2) for a radix-4 stage
*
* W = (-2 * PI) / N
* N = 1 << order
* W = -PI >> (order - 1)
*/
M = Nby2 >> 3;
diff = TWIDDLE_TABLE_ORDER - (order - 1);
/* step into the twiddle table for the current order */
step = 1 << diff;
x = armSP_FFT_F32TwiddleTable[0];
y = armSP_FFT_F32TwiddleTable[1];
xNeg = 1;
if ((order - 1) >= 3) {
/* i = 0 case */
pTwiddle[0].Re = x;
pTwiddle[0].Im = y;
pTwiddle[2*M].Re = -y;
pTwiddle[2*M].Im = xNeg;
pTwiddle[4*M].Re = xNeg;
pTwiddle[4*M].Im = y;
for (i = 1; i <= M; i++) {
j = i*step;
x = armSP_FFT_F32TwiddleTable[2*j];
y = armSP_FFT_F32TwiddleTable[2*j+1];
pTwiddle[i].Re = x;
pTwiddle[i].Im = y;
pTwiddle[2*M-i].Re = -y;
pTwiddle[2*M-i].Im = -x;
pTwiddle[2*M+i].Re = y;
pTwiddle[2*M+i].Im = -x;
pTwiddle[4*M-i].Re = -x;
pTwiddle[4*M-i].Im = y;
pTwiddle[4*M+i].Re = -x;
pTwiddle[4*M+i].Im = -y;
pTwiddle[6*M-i].Re = y;
pTwiddle[6*M-i].Im = x;
}
} else if ((order - 1) == 2) {
pTwiddle[0].Re = x;
pTwiddle[0].Im = y;
pTwiddle[1].Re = -y;
pTwiddle[1].Im = xNeg;
pTwiddle[2].Re = xNeg;
pTwiddle[2].Im = y;
} else if ((order-1) == 1) {
pTwiddle[0].Re = x;
pTwiddle[0].Im = y;
}
/*
* Now fill the last N/4 values : exp^(-j*2*PI*k/N) ;
* k=1,3,5,...,N/2-1 These are used for the final twiddle fix-up for
* converting complex to real FFT
*/
M = N >> 3;
diff = TWIDDLE_TABLE_ORDER - order;
step = 1 << diff;
pTwiddle1 = pTwiddle + 3*N/8;
pTwiddle4 = pTwiddle1 + (N/4 - 1);
pTwiddle3 = pTwiddle1 + N/8;
pTwiddle2 = pTwiddle1 + (N/8 - 1);
x = armSP_FFT_F32TwiddleTable[0];
y = armSP_FFT_F32TwiddleTable[1];
xNeg = 1;
if (order >=3) {
for (i = 1; i <= M; i += 2) {
j = i*step;
x = armSP_FFT_F32TwiddleTable[2*j];
y = armSP_FFT_F32TwiddleTable[2*j+1];
pTwiddle1[0].Re = x;
pTwiddle1[0].Im = y;
pTwiddle1 += 1;
pTwiddle2[0].Re = -y;
pTwiddle2[0].Im = -x;
pTwiddle2 -= 1;
pTwiddle3[0].Re = y;
pTwiddle3[0].Im = -x;
pTwiddle3 += 1;
pTwiddle4[0].Re = -x;
pTwiddle4[0].Im = y;
pTwiddle4 -= 1;
}
} else {
if (order == 2) {
pTwiddle1[0].Re = -y;
pTwiddle1[0].Im = xNeg;
}
}
/* Update the structure */
pFFTStruct->N = N;
pFFTStruct->pTwiddle = pTwiddle;
pFFTStruct->pBitRev = pBitRev;
pFFTStruct->pBuf = pBuf;
return OMX_Sts_NoErr;
}
|