1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Usee of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h> // AVX2
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
int64_t vp9_block_error_avx2(const int16_t *coeff,
const int16_t *dqcoeff,
intptr_t block_size,
int64_t *ssz) {
__m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_reg_64hi, ssz_reg_64hi;
__m128i sse_reg128, ssz_reg128;
int64_t sse;
int i;
const __m256i zero_reg = _mm256_set1_epi16(0);
// init sse and ssz registerd to zero
sse_reg = _mm256_set1_epi16(0);
ssz_reg = _mm256_set1_epi16(0);
for (i = 0 ; i < block_size ; i+= 16) {
// load 32 bytes from coeff and dqcoeff
coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
// dqcoeff - coeff
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
// madd (dqcoeff - coeff)
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
// madd coeff
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
// expand each double word of madd (dqcoeff - coeff) to quad word
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
// expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
// add each quad word of madd (dqcoeff - coeff) and madd (coeff)
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
}
// save the higher 64 bit of each 128 bit lane
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
// add the higher 64 bit to the low 64 bit
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
// add each 64 bit from each of the 128 bit lane of the 256 bit
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
_mm256_extractf128_si256(sse_reg, 1));
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
_mm256_extractf128_si256(ssz_reg, 1));
// store the results
_mm_storel_epi64((__m128i*)(&sse), sse_reg128);
_mm_storel_epi64((__m128i*)(ssz), ssz_reg128);
return sse;
}
|