summaryrefslogtreecommitdiffstats
path: root/media/libvpx/vp8/encoder/denoising.c
blob: d197f8f8166fe090e0a0548d093f964d4139f7eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <limits.h>

#include "denoising.h"

#include "vp8/common/reconinter.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8_rtcd.h"

static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
/* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
 * var(noise) ~= 100.
 */
static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60;

/*
 * The filter function was modified to reduce the computational complexity.
 * Step 1:
 * Instead of applying tap coefficients for each pixel, we calculated the
 * pixel adjustments vs. pixel diff value ahead of time.
 *     adjustment = filtered_value - current_raw
 *                = (filter_coefficient * diff + 128) >> 8
 * where
 *     filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
 *     filter_coefficient += filter_coefficient /
 *                           (3 + motion_magnitude_adjustment);
 *     filter_coefficient is clamped to 0 ~ 255.
 *
 * Step 2:
 * The adjustment vs. diff curve becomes flat very quick when diff increases.
 * This allowed us to use only several levels to approximate the curve without
 * changing the filtering algorithm too much.
 * The adjustments were further corrected by checking the motion magnitude.
 * The levels used are:
 * diff       adjustment w/o motion correction   adjustment w/ motion correction
 * [-255, -16]           -6                                   -7
 * [-15, -8]             -4                                   -5
 * [-7, -4]              -3                                   -4
 * [-3, 3]               diff                                 diff
 * [4, 7]                 3                                    4
 * [8, 15]                4                                    5
 * [16, 255]              6                                    7
 */

int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
                          unsigned char *running_avg_y, int avg_y_stride,
                          unsigned char *sig, int sig_stride,
                          unsigned int motion_magnitude,
                          int increase_denoising)
{
    unsigned char *running_avg_y_start = running_avg_y;
    unsigned char *sig_start = sig;
    int sum_diff_thresh;
    int r, c;
    int sum_diff = 0;
    int adj_val[3] = {3, 4, 6};
    int shift_inc1 = 0;
    int shift_inc2 = 1;
    int col_sum[16] = {0, 0, 0, 0,
                       0, 0, 0, 0,
                       0, 0, 0, 0,
                       0, 0, 0, 0};
    /* If motion_magnitude is small, making the denoiser more aggressive by
     * increasing the adjustment for each level. Add another increment for
     * blocks that are labeled for increase denoising. */
    if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
    {
      if (increase_denoising) {
        shift_inc1 = 1;
        shift_inc2 = 2;
      }
      adj_val[0] += shift_inc2;
      adj_val[1] += shift_inc2;
      adj_val[2] += shift_inc2;
    }

    for (r = 0; r < 16; ++r)
    {
        for (c = 0; c < 16; ++c)
        {
            int diff = 0;
            int adjustment = 0;
            int absdiff = 0;

            diff = mc_running_avg_y[c] - sig[c];
            absdiff = abs(diff);

            // When |diff| <= |3 + shift_inc1|, use pixel value from
            // last denoised raw.
            if (absdiff <= 3 + shift_inc1)
            {
                running_avg_y[c] = mc_running_avg_y[c];
                col_sum[c] += diff;
            }
            else
            {
                if (absdiff >= 4 + shift_inc1 && absdiff <= 7)
                    adjustment = adj_val[0];
                else if (absdiff >= 8 && absdiff <= 15)
                    adjustment = adj_val[1];
                else
                    adjustment = adj_val[2];

                if (diff > 0)
                {
                    if ((sig[c] + adjustment) > 255)
                        running_avg_y[c] = 255;
                    else
                        running_avg_y[c] = sig[c] + adjustment;

                    col_sum[c] += adjustment;
                }
                else
                {
                    if ((sig[c] - adjustment) < 0)
                        running_avg_y[c] = 0;
                    else
                        running_avg_y[c] = sig[c] - adjustment;

                    col_sum[c] -= adjustment;
                }
            }
        }

        /* Update pointers for next iteration. */
        sig += sig_stride;
        mc_running_avg_y += mc_avg_y_stride;
        running_avg_y += avg_y_stride;
    }

    for (c = 0; c < 16; ++c) {
      // Below we clip the value in the same way which SSE code use.
      // When adopting aggressive denoiser, the adj_val for each pixel
      // could be at most 8 (this is current max adjustment of the map).
      // In SSE code, we calculate the sum of adj_val for
      // the columns, so the sum could be upto 128(16 rows). However,
      // the range of the value is -128 ~ 127 in SSE code, that's why
      // we do this change in C code.
      // We don't do this for UV denoiser, since there are only 8 rows,
      // and max adjustments <= 8, so the sum of the columns will not
      // exceed 64.
      if (col_sum[c] >= 128) {
        col_sum[c] = 127;
      }
      sum_diff += col_sum[c];
    }

    sum_diff_thresh= SUM_DIFF_THRESHOLD;
    if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
    if (abs(sum_diff) > sum_diff_thresh) {
      // Before returning to copy the block (i.e., apply no denoising), check
      // if we can still apply some (weaker) temporal filtering to this block,
      // that would otherwise not be denoised at all. Simplest is to apply
      // an additional adjustment to running_avg_y to bring it closer to sig.
      // The adjustment is capped by a maximum delta, and chosen such that
      // in most cases the resulting sum_diff will be within the
      // accceptable range given by sum_diff_thresh.

      // The delta is set by the excess of absolute pixel diff over threshold.
      int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
      // Only apply the adjustment for max delta up to 3.
      if (delta < 4) {
        sig -= sig_stride * 16;
        mc_running_avg_y -= mc_avg_y_stride * 16;
        running_avg_y -= avg_y_stride * 16;
        for (r = 0; r < 16; ++r) {
          for (c = 0; c < 16; ++c) {
            int diff = mc_running_avg_y[c] - sig[c];
            int adjustment = abs(diff);
            if (adjustment > delta)
              adjustment = delta;
            if (diff > 0) {
              // Bring denoised signal down.
              if (running_avg_y[c] - adjustment < 0)
                running_avg_y[c] = 0;
              else
                running_avg_y[c] = running_avg_y[c] - adjustment;
              col_sum[c] -= adjustment;
            } else if (diff < 0) {
              // Bring denoised signal up.
              if (running_avg_y[c] + adjustment > 255)
                running_avg_y[c] = 255;
              else
                running_avg_y[c] = running_avg_y[c] + adjustment;
              col_sum[c] += adjustment;
            }
          }
          // TODO(marpan): Check here if abs(sum_diff) has gone below the
          // threshold sum_diff_thresh, and if so, we can exit the row loop.
          sig += sig_stride;
          mc_running_avg_y += mc_avg_y_stride;
          running_avg_y += avg_y_stride;
        }

        sum_diff = 0;
        for (c = 0; c < 16; ++c) {
          if (col_sum[c] >= 128) {
            col_sum[c] = 127;
          }
          sum_diff += col_sum[c];
        }

        if (abs(sum_diff) > sum_diff_thresh)
          return COPY_BLOCK;
      } else {
        return COPY_BLOCK;
      }
    }

    vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
    return FILTER_BLOCK;
}

int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
                             int mc_avg_uv_stride,
                             unsigned char *running_avg_uv,
                             int avg_uv_stride,
                             unsigned char *sig,
                             int sig_stride,
                             unsigned int motion_magnitude,
                             int increase_denoising) {
    unsigned char *running_avg_uv_start = running_avg_uv;
    unsigned char *sig_start = sig;
    int sum_diff_thresh;
    int r, c;
    int sum_diff = 0;
    int sum_block = 0;
    int adj_val[3] = {3, 4, 6};
    int shift_inc1 = 0;
    int shift_inc2 = 1;
    /* If motion_magnitude is small, making the denoiser more aggressive by
     * increasing the adjustment for each level. Add another increment for
     * blocks that are labeled for increase denoising. */
    if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
      if (increase_denoising) {
        shift_inc1 = 1;
        shift_inc2 = 2;
      }
      adj_val[0] += shift_inc2;
      adj_val[1] += shift_inc2;
      adj_val[2] += shift_inc2;
    }

    // Avoid denoising color signal if its close to average level.
    for (r = 0; r < 8; ++r) {
      for (c = 0; c < 8; ++c) {
        sum_block += sig[c];
      }
      sig += sig_stride;
    }
    if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
      return COPY_BLOCK;
    }

    sig -= sig_stride * 8;
    for (r = 0; r < 8; ++r) {
      for (c = 0; c < 8; ++c) {
        int diff = 0;
        int adjustment = 0;
        int absdiff = 0;

        diff = mc_running_avg_uv[c] - sig[c];
        absdiff = abs(diff);

        // When |diff| <= |3 + shift_inc1|, use pixel value from
        // last denoised raw.
        if (absdiff <= 3 + shift_inc1) {
          running_avg_uv[c] = mc_running_avg_uv[c];
          sum_diff += diff;
        } else {
          if (absdiff >= 4 && absdiff <= 7)
            adjustment = adj_val[0];
          else if (absdiff >= 8 && absdiff <= 15)
            adjustment = adj_val[1];
          else
            adjustment = adj_val[2];
          if (diff > 0) {
            if ((sig[c] + adjustment) > 255)
              running_avg_uv[c] = 255;
            else
              running_avg_uv[c] = sig[c] + adjustment;
            sum_diff += adjustment;
          } else {
            if ((sig[c] - adjustment) < 0)
              running_avg_uv[c] = 0;
            else
              running_avg_uv[c] = sig[c] - adjustment;
            sum_diff -= adjustment;
          }
        }
      }
      /* Update pointers for next iteration. */
      sig += sig_stride;
      mc_running_avg_uv += mc_avg_uv_stride;
      running_avg_uv += avg_uv_stride;
    }

    sum_diff_thresh= SUM_DIFF_THRESHOLD_UV;
    if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
    if (abs(sum_diff) > sum_diff_thresh) {
      // Before returning to copy the block (i.e., apply no denoising), check
      // if we can still apply some (weaker) temporal filtering to this block,
      // that would otherwise not be denoised at all. Simplest is to apply
      // an additional adjustment to running_avg_y to bring it closer to sig.
      // The adjustment is capped by a maximum delta, and chosen such that
      // in most cases the resulting sum_diff will be within the
      // accceptable range given by sum_diff_thresh.

      // The delta is set by the excess of absolute pixel diff over threshold.
      int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
      // Only apply the adjustment for max delta up to 3.
      if (delta < 4) {
        sig -= sig_stride * 8;
        mc_running_avg_uv -= mc_avg_uv_stride * 8;
        running_avg_uv -= avg_uv_stride * 8;
        for (r = 0; r < 8; ++r) {
          for (c = 0; c < 8; ++c) {
            int diff = mc_running_avg_uv[c] - sig[c];
            int adjustment = abs(diff);
            if (adjustment > delta)
              adjustment = delta;
            if (diff > 0) {
              // Bring denoised signal down.
              if (running_avg_uv[c] - adjustment < 0)
                running_avg_uv[c] = 0;
              else
                running_avg_uv[c] = running_avg_uv[c] - adjustment;
              sum_diff -= adjustment;
            } else if (diff < 0) {
              // Bring denoised signal up.
              if (running_avg_uv[c] + adjustment > 255)
                running_avg_uv[c] = 255;
              else
                running_avg_uv[c] = running_avg_uv[c] + adjustment;
              sum_diff += adjustment;
            }
          }
          // TODO(marpan): Check here if abs(sum_diff) has gone below the
          // threshold sum_diff_thresh, and if so, we can exit the row loop.
          sig += sig_stride;
          mc_running_avg_uv += mc_avg_uv_stride;
          running_avg_uv += avg_uv_stride;
        }
        if (abs(sum_diff) > sum_diff_thresh)
          return COPY_BLOCK;
      } else {
        return COPY_BLOCK;
      }
    }

    vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start,
                    sig_stride);
    return FILTER_BLOCK;
}

void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
  assert(mode > 0);  // Denoiser is allocated only if mode > 0.
  if (mode == 1) {
    denoiser->denoiser_mode = kDenoiserOnYOnly;
  } else if (mode == 2) {
    denoiser->denoiser_mode = kDenoiserOnYUV;
  } else if (mode == 3) {
    denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
  } else {
    denoiser->denoiser_mode = kDenoiserOnYUV;
  }
  if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
    denoiser->denoise_pars.scale_sse_thresh = 1;
    denoiser->denoise_pars.scale_motion_thresh = 8;
    denoiser->denoise_pars.scale_increase_filter = 0;
    denoiser->denoise_pars.denoise_mv_bias = 95;
    denoiser->denoise_pars.pickmode_mv_bias = 100;
    denoiser->denoise_pars.qp_thresh = 0;
    denoiser->denoise_pars.consec_zerolast = UINT_MAX;
    denoiser->denoise_pars.spatial_blur = 0;
  } else {
    denoiser->denoise_pars.scale_sse_thresh = 2;
    denoiser->denoise_pars.scale_motion_thresh = 16;
    denoiser->denoise_pars.scale_increase_filter = 1;
    denoiser->denoise_pars.denoise_mv_bias = 60;
    denoiser->denoise_pars.pickmode_mv_bias = 75;
    denoiser->denoise_pars.qp_thresh = 80;
    denoiser->denoise_pars.consec_zerolast = 15;
    denoiser->denoise_pars.spatial_blur = 0;
  }
}

int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
                          int num_mb_rows, int num_mb_cols, int mode)
{
    int i;
    assert(denoiser);
    denoiser->num_mb_cols = num_mb_cols;

    for (i = 0; i < MAX_REF_FRAMES; i++)
    {
        denoiser->yv12_running_avg[i].flags = 0;

        if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
                                        height, VP8BORDERINPIXELS)
            < 0)
        {
            vp8_denoiser_free(denoiser);
            return 1;
        }
        memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
               denoiser->yv12_running_avg[i].frame_size);

    }
    denoiser->yv12_mc_running_avg.flags = 0;

    if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
                                   height, VP8BORDERINPIXELS) < 0)
    {
        vp8_denoiser_free(denoiser);
        return 1;
    }

    memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
           denoiser->yv12_mc_running_avg.frame_size);

    if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width,
                                    height, VP8BORDERINPIXELS) < 0) {
      vp8_denoiser_free(denoiser);
      return 1;
    }
    memset(denoiser->yv12_last_source.buffer_alloc, 0,
           denoiser->yv12_last_source.frame_size);

    denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
    memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
    vp8_denoiser_set_parameters(denoiser, mode);
    denoiser->nmse_source_diff = 0;
    denoiser->nmse_source_diff_count = 0;
    denoiser->qp_avg = 0;
    // QP threshold below which we can go up to aggressive mode.
    denoiser->qp_threshold_up = 80;
    // QP threshold above which we can go back down to normal mode.
    // For now keep this second threshold high, so not used currently.
    denoiser->qp_threshold_down = 128;
    // Bitrate thresholds and noise metric (nmse) thresholds for switching to
    // aggressive mode.
    // TODO(marpan): Adjust thresholds, including effect on resolution.
    denoiser->bitrate_threshold = 400000;  // (bits/sec).
    denoiser->threshold_aggressive_mode = 80;
    if (width * height > 1280 * 720) {
      denoiser->bitrate_threshold = 3000000;
      denoiser->threshold_aggressive_mode = 200;
    } else if (width * height > 960 * 540) {
      denoiser->bitrate_threshold = 1200000;
      denoiser->threshold_aggressive_mode = 120;
    } else if (width * height > 640 * 480) {
      denoiser->bitrate_threshold = 600000;
      denoiser->threshold_aggressive_mode = 100;
    }
    return 0;
}


void vp8_denoiser_free(VP8_DENOISER *denoiser)
{
    int i;
    assert(denoiser);

    for (i = 0; i < MAX_REF_FRAMES ; i++)
    {
        vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
    }
    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
    vpx_free(denoiser->denoise_state);
}

void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
                             MACROBLOCK *x,
                             unsigned int best_sse,
                             unsigned int zero_mv_sse,
                             int recon_yoffset,
                             int recon_uvoffset,
                             loop_filter_info_n *lfi_n,
                             int mb_row,
                             int mb_col,
                             int block_index)

{
    int mv_row;
    int mv_col;
    unsigned int motion_threshold;
    unsigned int motion_magnitude2;
    unsigned int sse_thresh;
    int sse_diff_thresh = 0;
    // Spatial loop filter: only applied selectively based on
    // temporal filter state of block relative to top/left neighbors.
    int apply_spatial_loop_filter = 1;
    MV_REFERENCE_FRAME frame = x->best_reference_frame;
    MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;

    enum vp8_denoiser_decision decision = FILTER_BLOCK;
    enum vp8_denoiser_decision decision_u = COPY_BLOCK;
    enum vp8_denoiser_decision decision_v = COPY_BLOCK;

    if (zero_frame)
    {
        YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
        YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
        YV12_BUFFER_CONFIG saved_pre,saved_dst;
        MB_MODE_INFO saved_mbmi;
        MACROBLOCKD *filter_xd = &x->e_mbd;
        MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
        int sse_diff = 0;
        // Bias on zero motion vector sse.
        const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
        zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
        sse_diff = zero_mv_sse - best_sse;

        saved_mbmi = *mbmi;

        /* Use the best MV for the compensation. */
        mbmi->ref_frame = x->best_reference_frame;
        mbmi->mode = x->best_sse_inter_mode;
        mbmi->mv = x->best_sse_mv;
        mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
        mv_col = x->best_sse_mv.as_mv.col;
        mv_row = x->best_sse_mv.as_mv.row;
        // Bias to zero_mv if small amount of motion.
        // Note sse_diff_thresh is intialized to zero, so this ensures
        // we will always choose zero_mv for denoising if
        // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
        if ((unsigned int)(mv_row * mv_row + mv_col * mv_col)
            <= NOISE_MOTION_THRESHOLD)
            sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;

        if (frame == INTRA_FRAME ||
            sse_diff <= sse_diff_thresh)
        {
            /*
             * Handle intra blocks as referring to last frame with zero motion
             * and let the absolute pixel difference affect the filter factor.
             * Also consider small amount of motion as being random walk due
             * to noise, if it doesn't mean that we get a much bigger error.
             * Note that any changes to the mode info only affects the
             * denoising.
             */
            x->denoise_zeromv = 1;
            mbmi->ref_frame =
                    x->best_zeromv_reference_frame;

            src = &denoiser->yv12_running_avg[zero_frame];

            mbmi->mode = ZEROMV;
            mbmi->mv.as_int = 0;
            x->best_sse_inter_mode = ZEROMV;
            x->best_sse_mv.as_int = 0;
            best_sse = zero_mv_sse;
        }

        saved_pre = filter_xd->pre;
        saved_dst = filter_xd->dst;

        /* Compensate the running average. */
        filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
        filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
        filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
        /* Write the compensated running average to the destination buffer. */
        filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
        filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
        filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;

        if (!x->skip)
        {
            vp8_build_inter_predictors_mb(filter_xd);
        }
        else
        {
            vp8_build_inter16x16_predictors_mb(filter_xd,
                                               filter_xd->dst.y_buffer,
                                               filter_xd->dst.u_buffer,
                                               filter_xd->dst.v_buffer,
                                               filter_xd->dst.y_stride,
                                               filter_xd->dst.uv_stride);
        }
        filter_xd->pre = saved_pre;
        filter_xd->dst = saved_dst;
        *mbmi = saved_mbmi;

    }

    mv_row = x->best_sse_mv.as_mv.row;
    mv_col = x->best_sse_mv.as_mv.col;
    motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
    motion_threshold = denoiser->denoise_pars.scale_motion_thresh *
        NOISE_MOTION_THRESHOLD;

    // If block is considered to be skin area, lower the motion threshold.
    // In current version set threshold = 1, so only denoise very low
    // (i.e., zero) mv on skin.
    if (x->is_skin)
        motion_threshold = 1;

    if (motion_magnitude2 <
        denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD)
      x->increase_denoising = 1;

    sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
    if (x->increase_denoising)
      sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;

    if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold)
      decision = COPY_BLOCK;

    if (decision == FILTER_BLOCK)
    {
        unsigned char *mc_running_avg_y =
            denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
        int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
        unsigned char *running_avg_y =
            denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
        int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;

        /* Filter. */
        decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
                                       running_avg_y, avg_y_stride,
                                       x->thismb, 16, motion_magnitude2,
                                       x->increase_denoising);
        denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
            kFilterNonZeroMV : kFilterZeroMV;
        // Only denoise UV for zero motion, and if y channel was denoised.
        if (denoiser->denoiser_mode != kDenoiserOnYOnly &&
            motion_magnitude2 == 0 &&
            decision == FILTER_BLOCK) {
          unsigned char *mc_running_avg_u =
              denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
          unsigned char *running_avg_u =
              denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
          unsigned char *mc_running_avg_v =
              denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
          unsigned char *running_avg_v =
              denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
          int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
          int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
          int signal_stride = x->block[16].src_stride;
          decision_u =
              vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride,
                                      running_avg_u, avg_uv_stride,
                                      x->block[16].src + *x->block[16].base_src,
                                      signal_stride, motion_magnitude2, 0);
          decision_v =
              vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride,
                                      running_avg_v, avg_uv_stride,
                                      x->block[20].src + *x->block[20].base_src,
                                      signal_stride, motion_magnitude2, 0);
        }
    }
    if (decision == COPY_BLOCK)
    {
        /* No filtering of this block; it differs too much from the predictor,
         * or the motion vector magnitude is considered too big.
         */
        x->denoise_zeromv = 0;
        vp8_copy_mem16x16(
                x->thismb, 16,
                denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
                denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
        denoiser->denoise_state[block_index] = kNoFilter;
    }
    if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
      if (decision_u == COPY_BLOCK) {
        vp8_copy_mem8x8(
            x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
            denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
            denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
      }
      if (decision_v == COPY_BLOCK) {
        vp8_copy_mem8x8(
            x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
            denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
            denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
      }
    }
    // Option to selectively deblock the denoised signal, for y channel only.
    if (apply_spatial_loop_filter) {
      loop_filter_info lfi;
      int apply_filter_col = 0;
      int apply_filter_row = 0;
      int apply_filter = 0;
      int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
      int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;

      // Fix filter level to some nominal value for now.
      int filter_level = 48;

      int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
      lfi.mblim = lfi_n->mblim[filter_level];
      lfi.blim = lfi_n->blim[filter_level];
      lfi.lim = lfi_n->lim[filter_level];
      lfi.hev_thr = lfi_n->hev_thr[hev_index];

      // Apply filter if there is a difference in the denoiser filter state
      // between the current and left/top block, or if non-zero motion vector
      // is used for the motion-compensated filtering.
      if (mb_col > 0) {
        apply_filter_col = !((denoiser->denoise_state[block_index] ==
            denoiser->denoise_state[block_index - 1]) &&
            denoiser->denoise_state[block_index] != kFilterNonZeroMV);
        if (apply_filter_col) {
          // Filter left vertical edge.
          apply_filter = 1;
          vp8_loop_filter_mbv(
              denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
              NULL, NULL, y_stride, uv_stride, &lfi);
        }
      }
      if (mb_row > 0) {
        apply_filter_row = !((denoiser->denoise_state[block_index] ==
            denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
            denoiser->denoise_state[block_index] != kFilterNonZeroMV);
        if (apply_filter_row) {
          // Filter top horizontal edge.
          apply_filter = 1;
          vp8_loop_filter_mbh(
              denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
              NULL, NULL, y_stride, uv_stride, &lfi);
        }
      }
      if (apply_filter) {
        // Update the signal block |x|. Pixel changes are only to top and/or
        // left boundary pixels: can we avoid full block copy here.
        vp8_copy_mem16x16(
            denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
            y_stride, x->thismb, 16);
      }
    }
}