summaryrefslogtreecommitdiffstats
path: root/media/libcubeb/tests/test_resampler.cpp
blob: 7e62a357213a376b10caa7a3df5b36d56f9e4cc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/*
 * Copyright © 2016 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX

#ifdef NDEBUG
#undef NDEBUG
#endif
#include "cubeb_resampler_internal.h"
#include <assert.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>

/* Windows cmath USE_MATH_DEFINE thing... */
const float PI = 3.14159265359f;

/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
 * only part of the test suite is ran. */
#ifdef THOROUGH_TESTING
/* Some standard sample rates we're testing with. */
const uint32_t sample_rates[] = {
    8000,
   16000,
   32000,
   44100,
   48000,
   88200,
   96000,
  192000
};
/* The maximum number of channels we're resampling. */
const uint32_t max_channels = 2;
/* The minimum an maximum number of milliseconds we're resampling for. This is
 * used to simulate the fact that the audio stream is resampled in chunks,
 * because audio is delivered using callbacks. */
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 1;

#else

const uint32_t sample_rates[] = {
    8000,
   44100,
   48000,
};
const uint32_t max_channels = 2;
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 10;
#endif

#define DUMP_ARRAYS
#ifdef DUMP_ARRAYS
/**
 * Files produced by dump(...) can be converted to .wave files using:
 *
 * sox -c <channel_count> -r <rate> -e float -b 32  file.raw file.wav
 *
 * for floating-point audio, or:
 *
 * sox -c <channel_count> -r <rate> -e unsigned -b 16  file.raw file.wav
 *
 * for 16bit integer audio.
 */

/* Use the correct implementation of fopen, depending on the platform. */
void fopen_portable(FILE ** f, const char * name, const char * mode)
{
#ifdef WIN32
  fopen_s(f, name, mode);
#else
  *f = fopen(name, mode);
#endif
}

template<typename T>
void dump(const char * name, T * frames, size_t count)
{
  FILE * file;
  fopen_portable(&file, name, "wb");

  if (!file) {
    fprintf(stderr, "error opening %s\n", name);
    return;
  }

  if (count != fwrite(frames, sizeof(T), count, file)) {
    fprintf(stderr, "error writing to %s\n", name);
  }
  fclose(file);
}
#else
template<typename T>
void dump(const char * name, T * frames, size_t count)
{ }
#endif

// The more the ratio is far from 1, the more we accept a big error.
float epsilon_tweak_ratio(float ratio)
{
  return ratio >= 1 ? ratio : 1 / ratio;
}

// Epsilon values for comparing resampled data to expected data.
// The bigger the resampling ratio is, the more lax we are about errors.
template<typename T>
T epsilon(float ratio);

template<>
float epsilon(float ratio) {
  return 0.08f * epsilon_tweak_ratio(ratio);
}

template<>
int16_t epsilon(float ratio) {
  return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
}

void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
{
  const size_t length_s = 2;
  const size_t rate = 44100;
  const size_t length_frames = rate * length_s;
  delay_line<float> delay(delay_frames, channels);
  auto_array<float> input;
  auto_array<float> output;
  uint32_t chunk_length = channels * chunk_ms * rate / 1000;
  uint32_t output_offset = 0;
  uint32_t channel = 0;

  /** Generate diracs every 100 frames, and check they are delayed. */
  input.push_silence(length_frames * channels);
  for (uint32_t i = 0; i < input.length() - 1; i+=100) {
    input.data()[i + channel] = 0.5;
    channel = (channel + 1) % channels;
  }
  dump("input.raw", input.data(), input.length());
  while(input.length()) {
    uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels);
    float * in = delay.input_buffer(to_pop / channels);
    input.pop(in, to_pop);
    delay.written(to_pop / channels);
    output.push_silence(to_pop);
    delay.output(output.data() + output_offset, to_pop / channels);
    output_offset += to_pop;
  }

  // Check the diracs have been shifted by `delay_frames` frames.
  for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) {
    assert(output.data()[i + channel + delay_frames * channels] == 0.5);
    channel = (channel + 1) % channels;
  }

  dump("output.raw", output.data(), output.length());
}
/**
 * This takes sine waves with a certain `channels` count, `source_rate`, and
 * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
 * Then a sample-wise comparison is performed against a sine wave generated at
 * the correct rate.
 */
template<typename T>
void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration)
{
  size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
  float resampling_ratio = static_cast<float>(source_rate) / target_rate;
  cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3);
  auto_array<T> source(channels * source_rate * 10);
  auto_array<T> destination(channels * target_rate * 10);
  auto_array<T> expected(channels * target_rate * 10);
  uint32_t phase_index = 0;
  uint32_t offset = 0;
  const uint32_t buf_len = 2; /* seconds */

  // generate a sine wave in each channel, at the source sample rate
  source.push_silence(channels * source_rate * buf_len);
  while(offset != source.length()) {
    float  p = phase_index++ / static_cast<float>(source_rate);
    for (uint32_t j = 0; j < channels; j++) {
      source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }

  dump("input.raw", source.data(), source.length());

  expected.push_silence(channels * target_rate * buf_len);
  // generate a sine wave in each channel, at the target sample rate.
  // Insert silent samples at the beginning to account for the resampler latency.
  offset = resampler.latency() * channels;
  for (uint32_t i = 0; i < offset; i++) {
    expected.data()[i] = 0.0f;
  }
  phase_index = 0;
  while (offset != expected.length()) {
    float  p = phase_index++ / static_cast<float>(target_rate);
    for (uint32_t j = 0; j < channels; j++) {
      expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }

  dump("expected.raw", expected.data(), expected.length());

  // resample by chunk
  uint32_t write_offset = 0;
  destination.push_silence(channels * target_rate * buf_len);
  while (write_offset < destination.length())
  {
    size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio));
    uint32_t input_frames = resampler.input_needed_for_output(output_frames);
    resampler.input(source.data(), input_frames);
    source.pop(nullptr, input_frames * channels);
    resampler.output(destination.data() + write_offset,
                     std::min(output_frames, (destination.length() - write_offset) / channels));
    write_offset += output_frames * channels;
  }

  dump("output.raw", destination.data(), expected.length());

  // compare, taking the latency into account
  bool fuzzy_equal = true;
  for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
    float diff = fabs(expected.data()[i] - destination.data()[i]);
    if (diff > epsilon<T>(resampling_ratio)) {
      fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff);
      fuzzy_equal = false;
    }
  }
  assert(fuzzy_equal);
}

template<typename T>
cubeb_sample_format cubeb_format();

template<>
cubeb_sample_format cubeb_format<float>()
{
  return CUBEB_SAMPLE_FLOAT32NE;
}

template<>
cubeb_sample_format cubeb_format<short>()
{
  return CUBEB_SAMPLE_S16NE;
}

struct osc_state {
  osc_state()
    : input_phase_index(0)
    , output_phase_index(0)
    , output_offset(0)
    , input_channels(0)
    , output_channels(0)
  {}
  uint32_t input_phase_index;
  uint32_t max_output_phase_index;
  uint32_t output_phase_index;
  uint32_t output_offset;
  uint32_t input_channels;
  uint32_t output_channels;
  uint32_t output_rate;
  uint32_t target_rate;
  auto_array<float> input;
  auto_array<float> output;
};

uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels,
                        uint32_t frames, uint32_t initial_phase)
{
  uint32_t offset = 0;
  for (uint32_t i = 0; i < frames; i++) {
    float  p = initial_phase++ / static_cast<float>(rate);
    for (uint32_t j = 0; j < channels; j++) {
      buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }
  return initial_phase;
}

long data_cb(cubeb_stream * /*stm*/, void * user_ptr,
             const void * input_buffer, void * output_buffer, long frame_count)
{
  osc_state * state = reinterpret_cast<osc_state*>(user_ptr);
  const float * in = reinterpret_cast<const float*>(input_buffer);
  float * out = reinterpret_cast<float*>(output_buffer);


  state->input.push(in, frame_count * state->input_channels);

  /* Check how much output frames we need to write */
  uint32_t remaining = state->max_output_phase_index - state->output_phase_index;
  uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
  state->output_phase_index = fill_with_sine(out,
                                             state->target_rate,
                                             state->output_channels,
                                             to_write,
                                             state->output_phase_index);

  return to_write;
}

template<typename T>
bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi)
{
  uint32_t len = std::min(lhs.length(), rhs.length());

  for (uint32_t i = 0; i < len; i++) {
    if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
      std::cout << "not fuzzy equal at index: " << i
                << " lhs: " << lhs.at(i) <<  " rhs: " << rhs.at(i)
                << " delta: " << fabs(lhs.at(i) - rhs.at(i))
                << " epsilon: "<< epsi << std::endl;
      return false;
    }
  }
  return true;
}

template<typename T>
void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
                           uint32_t input_rate, uint32_t output_rate,
                           uint32_t target_rate, float chunk_duration)
{
  cubeb_stream_params input_params;
  cubeb_stream_params output_params;
  osc_state state;

  input_params.format = output_params.format = cubeb_format<T>();
  state.input_channels = input_params.channels = input_channels;
  state.output_channels = output_params.channels = output_channels;
  input_params.rate = input_rate;
  state.output_rate = output_params.rate = output_rate;
  state.target_rate = target_rate;
  long got;

  cubeb_resampler * resampler =
    cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate,
                           data_cb, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP);

  long latency = cubeb_resampler_latency(resampler);

  const uint32_t duration_s = 2;
  int32_t duration_frames = duration_s * target_rate;
  uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2;
  uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
  auto_array<float> input_buffer(input_channels * input_array_frame_count);
  auto_array<float> output_buffer(output_channels * output_array_frame_count);
  auto_array<float> expected_resampled_input(input_channels * duration_frames);
  auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s);

  state.max_output_phase_index = duration_s * target_rate;

  expected_resampled_input.push_silence(input_channels * duration_frames);
  expected_resampled_output.push_silence(output_channels * output_rate * duration_s);

  /* expected output is a 440Hz sine wave at 16kHz */
  fill_with_sine(expected_resampled_input.data() + latency,
                 target_rate, input_channels, duration_frames - latency, 0);
  /* expected output is a 440Hz sine wave at 32kHz */
  fill_with_sine(expected_resampled_output.data() + latency,
                 output_rate, output_channels, output_rate * duration_s - latency, 0);


  while (state.output_phase_index != state.max_output_phase_index) {
    uint32_t leftover_samples = input_buffer.length() * input_channels;
    input_buffer.reserve(input_array_frame_count);
    state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples,
                                             input_rate,
                                             input_channels,
                                             input_array_frame_count - leftover_samples,
                                             state.input_phase_index);
    long input_consumed = input_array_frame_count;
    input_buffer.set_length(input_array_frame_count);

    got = cubeb_resampler_fill(resampler,
                               input_buffer.data(), &input_consumed,
                               output_buffer.data(), output_array_frame_count);

    /* handle leftover input */
    if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
      input_buffer.pop(nullptr, input_consumed * input_channels);
    } else {
      input_buffer.clear();
    }

    state.output.push(output_buffer.data(), got * state.output_channels);
  }

  dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length());
  dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length());
  dump("input.raw", state.input.data(), state.input.length());
  dump("output.raw", state.output.data(), state.output.length());

  assert(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate)));
  assert(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate)));

  cubeb_resampler_destroy(resampler);
}

#define array_size(x) (sizeof(x) / sizeof(x[0]))

void test_resamplers_one_way()
{
  /* Test one way resamplers */
  for (uint32_t channels = 1; channels <= max_channels; channels++) {
    for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) {
      for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
        for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
          printf("one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n",
                  channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration);
          test_resampler_one_way<float>(channels, sample_rates[source_rate],
                                        sample_rates[dest_rate], chunk_duration);
        }
      }
    }
  }
}

void test_resamplers_duplex()
{
  /* Test duplex resamplers */
  for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) {
    for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) {
      for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) {
        for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) {
          for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
            for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
              printf("input channels:%d output_channels:%d input_rate:%d "
                     "output_rate:%d target_rate:%d chunk_ms:%d\n",
                     input_channels, output_channels,
                     sample_rates[source_rate_input],
                     sample_rates[source_rate_output],
                     sample_rates[dest_rate],
                     chunk_duration);
              test_resampler_duplex<float>(input_channels, output_channels,
                                           sample_rates[source_rate_input],
                                           sample_rates[source_rate_output],
                                           sample_rates[dest_rate],
                                           chunk_duration);
            }
          }
        }
      }
    }
  }
}

void test_delay_line()
{
  for (uint32_t channel = 1; channel <= 2; channel++) {
    for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) {
      for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
       printf("channel: %d, delay_frames: %d, chunk_size: %d\n",
              channel, delay_frames, chunk_size);
        test_delay_lines(delay_frames, channel, chunk_size);
      }
    }
  }
}

long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
                                   const void * input_buffer,
                                   void * output_buffer, long frame_count)
{
  assert(output_buffer);
  assert(!input_buffer);
  return frame_count;
}

void test_output_only_noop()
{
  cubeb_stream_params output_params;
  int target_rate;

  output_params.rate = 44100;
  output_params.channels = 1;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;
  target_rate = output_params.rate;

  cubeb_resampler * resampler =
    cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
                           test_output_only_noop_data_cb, nullptr,
                           CUBEB_RESAMPLER_QUALITY_VOIP);

  const long out_frames = 128;
  float out_buffer[out_frames];
  long got;

  got = cubeb_resampler_fill(resampler, nullptr, nullptr,
                             out_buffer, out_frames);

  assert(got == out_frames);

  cubeb_resampler_destroy(resampler);
}

long test_drain_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
                        const void * input_buffer,
                        void * output_buffer, long frame_count)
{
  assert(output_buffer);
  assert(!input_buffer);
  return frame_count - 10;
}

void test_resampler_drain()
{
  cubeb_stream_params output_params;
  int target_rate;

  output_params.rate = 44100;
  output_params.channels = 1;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;
  target_rate = 48000;

  cubeb_resampler * resampler =
    cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
                           test_drain_data_cb, nullptr,
                           CUBEB_RESAMPLER_QUALITY_VOIP);

  const long out_frames = 128;
  float out_buffer[out_frames];
  long got;

  do {
    got = cubeb_resampler_fill(resampler, nullptr, nullptr,
                               out_buffer, out_frames);
  } while (got == out_frames);

  /* If the above is not an infinite loop, the drain was a success, just mark
   * this test as such. */
  assert(true);

  cubeb_resampler_destroy(resampler);
}

int main()
{
  test_resamplers_one_way();
  test_delay_line();
  // This is disabled because the latency estimation in the resampler code is
  // slightly off so we can generate expected vectors.
  // test_resamplers_duplex();
  test_output_only_noop();
  test_resampler_drain();

  return 0;
}