1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*
* Copyright 2015 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wasm/WasmTypes.h"
#include "mozilla/MathAlgorithms.h"
#include "fdlibm.h"
#include "jslibmath.h"
#include "jsmath.h"
#include "jit/MacroAssembler.h"
#include "js/Conversions.h"
#include "vm/Interpreter.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmSerialize.h"
#include "wasm/WasmSignalHandlers.h"
#include "vm/Stack-inl.h"
using namespace js;
using namespace js::jit;
using namespace js::wasm;
using mozilla::IsNaN;
using mozilla::IsPowerOfTwo;
void
Val::writePayload(uint8_t* dst) const
{
switch (type_) {
case ValType::I32:
case ValType::F32:
memcpy(dst, &u.i32_, sizeof(u.i32_));
return;
case ValType::I64:
case ValType::F64:
memcpy(dst, &u.i64_, sizeof(u.i64_));
return;
case ValType::I8x16:
case ValType::I16x8:
case ValType::I32x4:
case ValType::F32x4:
case ValType::B8x16:
case ValType::B16x8:
case ValType::B32x4:
memcpy(dst, &u, jit::Simd128DataSize);
return;
}
}
#if defined(JS_CODEGEN_ARM)
extern "C" {
extern MOZ_EXPORT int64_t
__aeabi_idivmod(int, int);
extern MOZ_EXPORT int64_t
__aeabi_uidivmod(int, int);
}
#endif
static void
WasmReportOverRecursed()
{
ReportOverRecursed(JSRuntime::innermostWasmActivation()->cx());
}
static bool
WasmHandleExecutionInterrupt()
{
WasmActivation* activation = JSRuntime::innermostWasmActivation();
bool success = CheckForInterrupt(activation->cx());
// Preserve the invariant that having a non-null resumePC means that we are
// handling an interrupt. Note that resumePC has already been copied onto
// the stack by the interrupt stub, so we can clear it before returning
// to the stub.
activation->setResumePC(nullptr);
return success;
}
static void
WasmReportTrap(int32_t trapIndex)
{
JSContext* cx = JSRuntime::innermostWasmActivation()->cx();
MOZ_ASSERT(trapIndex < int32_t(Trap::Limit) && trapIndex >= 0);
Trap trap = Trap(trapIndex);
unsigned errorNumber;
switch (trap) {
case Trap::Unreachable:
errorNumber = JSMSG_WASM_UNREACHABLE;
break;
case Trap::IntegerOverflow:
errorNumber = JSMSG_WASM_INTEGER_OVERFLOW;
break;
case Trap::InvalidConversionToInteger:
errorNumber = JSMSG_WASM_INVALID_CONVERSION;
break;
case Trap::IntegerDivideByZero:
errorNumber = JSMSG_WASM_INT_DIVIDE_BY_ZERO;
break;
case Trap::IndirectCallToNull:
errorNumber = JSMSG_WASM_IND_CALL_TO_NULL;
break;
case Trap::IndirectCallBadSig:
errorNumber = JSMSG_WASM_IND_CALL_BAD_SIG;
break;
case Trap::ImpreciseSimdConversion:
errorNumber = JSMSG_SIMD_FAILED_CONVERSION;
break;
case Trap::OutOfBounds:
errorNumber = JSMSG_WASM_OUT_OF_BOUNDS;
break;
case Trap::StackOverflow:
errorNumber = JSMSG_OVER_RECURSED;
break;
default:
MOZ_CRASH("unexpected trap");
}
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, errorNumber);
}
static void
WasmReportOutOfBounds()
{
JSContext* cx = JSRuntime::innermostWasmActivation()->cx();
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_WASM_OUT_OF_BOUNDS);
}
static void
WasmReportUnalignedAccess()
{
JSContext* cx = JSRuntime::innermostWasmActivation()->cx();
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_WASM_UNALIGNED_ACCESS);
}
static int32_t
CoerceInPlace_ToInt32(MutableHandleValue val)
{
JSContext* cx = JSRuntime::innermostWasmActivation()->cx();
int32_t i32;
if (!ToInt32(cx, val, &i32))
return false;
val.set(Int32Value(i32));
return true;
}
static int32_t
CoerceInPlace_ToNumber(MutableHandleValue val)
{
JSContext* cx = JSRuntime::innermostWasmActivation()->cx();
double dbl;
if (!ToNumber(cx, val, &dbl))
return false;
val.set(DoubleValue(dbl));
return true;
}
static int64_t
DivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi, uint32_t y_lo)
{
int64_t x = ((uint64_t)x_hi << 32) + x_lo;
int64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(x != INT64_MIN || y != -1);
MOZ_ASSERT(y != 0);
return x / y;
}
static int64_t
UDivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi, uint32_t y_lo)
{
uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(y != 0);
return x / y;
}
static int64_t
ModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi, uint32_t y_lo)
{
int64_t x = ((uint64_t)x_hi << 32) + x_lo;
int64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(x != INT64_MIN || y != -1);
MOZ_ASSERT(y != 0);
return x % y;
}
static int64_t
UModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi, uint32_t y_lo)
{
uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(y != 0);
return x % y;
}
static int64_t
TruncateDoubleToInt64(double input)
{
// Note: INT64_MAX is not representable in double. It is actually
// INT64_MAX + 1. Therefore also sending the failure value.
if (input >= double(INT64_MAX) || input < double(INT64_MIN) || IsNaN(input))
return 0x8000000000000000;
return int64_t(input);
}
static uint64_t
TruncateDoubleToUint64(double input)
{
// Note: UINT64_MAX is not representable in double. It is actually UINT64_MAX + 1.
// Therefore also sending the failure value.
if (input >= double(UINT64_MAX) || input <= -1.0 || IsNaN(input))
return 0x8000000000000000;
return uint64_t(input);
}
static double
Int64ToFloatingPoint(int32_t x_hi, uint32_t x_lo)
{
int64_t x = int64_t((uint64_t(x_hi) << 32)) + int64_t(x_lo);
return double(x);
}
static double
Uint64ToFloatingPoint(int32_t x_hi, uint32_t x_lo)
{
uint64_t x = (uint64_t(x_hi) << 32) + uint64_t(x_lo);
return double(x);
}
template <class F>
static inline void*
FuncCast(F* pf, ABIFunctionType type)
{
void *pv = JS_FUNC_TO_DATA_PTR(void*, pf);
#ifdef JS_SIMULATOR
pv = Simulator::RedirectNativeFunction(pv, type);
#endif
return pv;
}
void*
wasm::AddressOf(SymbolicAddress imm, ExclusiveContext* cx)
{
switch (imm) {
case SymbolicAddress::Context:
return cx->contextAddressForJit();
case SymbolicAddress::InterruptUint32:
return cx->runtimeAddressOfInterruptUint32();
case SymbolicAddress::ReportOverRecursed:
return FuncCast(WasmReportOverRecursed, Args_General0);
case SymbolicAddress::HandleExecutionInterrupt:
return FuncCast(WasmHandleExecutionInterrupt, Args_General0);
case SymbolicAddress::ReportTrap:
return FuncCast(WasmReportTrap, Args_General1);
case SymbolicAddress::ReportOutOfBounds:
return FuncCast(WasmReportOutOfBounds, Args_General0);
case SymbolicAddress::ReportUnalignedAccess:
return FuncCast(WasmReportUnalignedAccess, Args_General0);
case SymbolicAddress::CallImport_Void:
return FuncCast(Instance::callImport_void, Args_General4);
case SymbolicAddress::CallImport_I32:
return FuncCast(Instance::callImport_i32, Args_General4);
case SymbolicAddress::CallImport_I64:
return FuncCast(Instance::callImport_i64, Args_General4);
case SymbolicAddress::CallImport_F64:
return FuncCast(Instance::callImport_f64, Args_General4);
case SymbolicAddress::CoerceInPlace_ToInt32:
return FuncCast(CoerceInPlace_ToInt32, Args_General1);
case SymbolicAddress::CoerceInPlace_ToNumber:
return FuncCast(CoerceInPlace_ToNumber, Args_General1);
case SymbolicAddress::ToInt32:
return FuncCast<int32_t (double)>(JS::ToInt32, Args_Int_Double);
case SymbolicAddress::DivI64:
return FuncCast(DivI64, Args_General4);
case SymbolicAddress::UDivI64:
return FuncCast(UDivI64, Args_General4);
case SymbolicAddress::ModI64:
return FuncCast(ModI64, Args_General4);
case SymbolicAddress::UModI64:
return FuncCast(UModI64, Args_General4);
case SymbolicAddress::TruncateDoubleToUint64:
return FuncCast(TruncateDoubleToUint64, Args_Int64_Double);
case SymbolicAddress::TruncateDoubleToInt64:
return FuncCast(TruncateDoubleToInt64, Args_Int64_Double);
case SymbolicAddress::Uint64ToFloatingPoint:
return FuncCast(Uint64ToFloatingPoint, Args_Double_IntInt);
case SymbolicAddress::Int64ToFloatingPoint:
return FuncCast(Int64ToFloatingPoint, Args_Double_IntInt);
#if defined(JS_CODEGEN_ARM)
case SymbolicAddress::aeabi_idivmod:
return FuncCast(__aeabi_idivmod, Args_General2);
case SymbolicAddress::aeabi_uidivmod:
return FuncCast(__aeabi_uidivmod, Args_General2);
case SymbolicAddress::AtomicCmpXchg:
return FuncCast(atomics_cmpxchg_asm_callout, Args_General5);
case SymbolicAddress::AtomicXchg:
return FuncCast(atomics_xchg_asm_callout, Args_General4);
case SymbolicAddress::AtomicFetchAdd:
return FuncCast(atomics_add_asm_callout, Args_General4);
case SymbolicAddress::AtomicFetchSub:
return FuncCast(atomics_sub_asm_callout, Args_General4);
case SymbolicAddress::AtomicFetchAnd:
return FuncCast(atomics_and_asm_callout, Args_General4);
case SymbolicAddress::AtomicFetchOr:
return FuncCast(atomics_or_asm_callout, Args_General4);
case SymbolicAddress::AtomicFetchXor:
return FuncCast(atomics_xor_asm_callout, Args_General4);
#endif
case SymbolicAddress::ModD:
return FuncCast(NumberMod, Args_Double_DoubleDouble);
case SymbolicAddress::SinD:
return FuncCast<double (double)>(sin, Args_Double_Double);
case SymbolicAddress::CosD:
return FuncCast<double (double)>(cos, Args_Double_Double);
case SymbolicAddress::TanD:
return FuncCast<double (double)>(tan, Args_Double_Double);
case SymbolicAddress::ASinD:
return FuncCast<double (double)>(fdlibm::asin, Args_Double_Double);
case SymbolicAddress::ACosD:
return FuncCast<double (double)>(fdlibm::acos, Args_Double_Double);
case SymbolicAddress::ATanD:
return FuncCast<double (double)>(fdlibm::atan, Args_Double_Double);
case SymbolicAddress::CeilD:
return FuncCast<double (double)>(fdlibm::ceil, Args_Double_Double);
case SymbolicAddress::CeilF:
return FuncCast<float (float)>(fdlibm::ceilf, Args_Float32_Float32);
case SymbolicAddress::FloorD:
return FuncCast<double (double)>(fdlibm::floor, Args_Double_Double);
case SymbolicAddress::FloorF:
return FuncCast<float (float)>(fdlibm::floorf, Args_Float32_Float32);
case SymbolicAddress::TruncD:
return FuncCast<double (double)>(fdlibm::trunc, Args_Double_Double);
case SymbolicAddress::TruncF:
return FuncCast<float (float)>(fdlibm::truncf, Args_Float32_Float32);
case SymbolicAddress::NearbyIntD:
return FuncCast<double (double)>(fdlibm::nearbyint, Args_Double_Double);
case SymbolicAddress::NearbyIntF:
return FuncCast<float (float)>(fdlibm::nearbyintf, Args_Float32_Float32);
case SymbolicAddress::ExpD:
return FuncCast<double (double)>(fdlibm::exp, Args_Double_Double);
case SymbolicAddress::LogD:
return FuncCast<double (double)>(fdlibm::log, Args_Double_Double);
case SymbolicAddress::PowD:
return FuncCast(ecmaPow, Args_Double_DoubleDouble);
case SymbolicAddress::ATan2D:
return FuncCast(ecmaAtan2, Args_Double_DoubleDouble);
case SymbolicAddress::GrowMemory:
return FuncCast<uint32_t (Instance*, uint32_t)>(Instance::growMemory_i32, Args_General2);
case SymbolicAddress::CurrentMemory:
return FuncCast<uint32_t (Instance*)>(Instance::currentMemory_i32, Args_General1);
case SymbolicAddress::Limit:
break;
}
MOZ_CRASH("Bad SymbolicAddress");
}
static uint32_t
GetCPUID()
{
enum Arch {
X86 = 0x1,
X64 = 0x2,
ARM = 0x3,
MIPS = 0x4,
MIPS64 = 0x5,
ARCH_BITS = 3
};
#if defined(JS_CODEGEN_X86)
MOZ_ASSERT(uint32_t(jit::CPUInfo::GetSSEVersion()) <= (UINT32_MAX >> ARCH_BITS));
return X86 | (uint32_t(jit::CPUInfo::GetSSEVersion()) << ARCH_BITS);
#elif defined(JS_CODEGEN_X64)
MOZ_ASSERT(uint32_t(jit::CPUInfo::GetSSEVersion()) <= (UINT32_MAX >> ARCH_BITS));
return X64 | (uint32_t(jit::CPUInfo::GetSSEVersion()) << ARCH_BITS);
#elif defined(JS_CODEGEN_ARM)
MOZ_ASSERT(jit::GetARMFlags() <= (UINT32_MAX >> ARCH_BITS));
return ARM | (jit::GetARMFlags() << ARCH_BITS);
#elif defined(JS_CODEGEN_ARM64)
MOZ_CRASH("not enabled");
#elif defined(JS_CODEGEN_MIPS32)
MOZ_ASSERT(jit::GetMIPSFlags() <= (UINT32_MAX >> ARCH_BITS));
return MIPS | (jit::GetMIPSFlags() << ARCH_BITS);
#elif defined(JS_CODEGEN_MIPS64)
MOZ_ASSERT(jit::GetMIPSFlags() <= (UINT32_MAX >> ARCH_BITS));
return MIPS64 | (jit::GetMIPSFlags() << ARCH_BITS);
#elif defined(JS_CODEGEN_NONE)
return 0;
#else
# error "unknown architecture"
#endif
}
size_t
Sig::serializedSize() const
{
return sizeof(ret_) +
SerializedPodVectorSize(args_);
}
uint8_t*
Sig::serialize(uint8_t* cursor) const
{
cursor = WriteScalar<ExprType>(cursor, ret_);
cursor = SerializePodVector(cursor, args_);
return cursor;
}
const uint8_t*
Sig::deserialize(const uint8_t* cursor)
{
(cursor = ReadScalar<ExprType>(cursor, &ret_)) &&
(cursor = DeserializePodVector(cursor, &args_));
return cursor;
}
size_t
Sig::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return args_.sizeOfExcludingThis(mallocSizeOf);
}
typedef uint32_t ImmediateType; // for 32/64 consistency
static const unsigned sTotalBits = sizeof(ImmediateType) * 8;
static const unsigned sTagBits = 1;
static const unsigned sReturnBit = 1;
static const unsigned sLengthBits = 4;
static const unsigned sTypeBits = 2;
static const unsigned sMaxTypes = (sTotalBits - sTagBits - sReturnBit - sLengthBits) / sTypeBits;
static bool
IsImmediateType(ValType vt)
{
switch (vt) {
case ValType::I32:
case ValType::I64:
case ValType::F32:
case ValType::F64:
return true;
case ValType::I8x16:
case ValType::I16x8:
case ValType::I32x4:
case ValType::F32x4:
case ValType::B8x16:
case ValType::B16x8:
case ValType::B32x4:
return false;
}
MOZ_CRASH("bad ValType");
}
static unsigned
EncodeImmediateType(ValType vt)
{
static_assert(3 < (1 << sTypeBits), "fits");
switch (vt) {
case ValType::I32:
return 0;
case ValType::I64:
return 1;
case ValType::F32:
return 2;
case ValType::F64:
return 3;
case ValType::I8x16:
case ValType::I16x8:
case ValType::I32x4:
case ValType::F32x4:
case ValType::B8x16:
case ValType::B16x8:
case ValType::B32x4:
break;
}
MOZ_CRASH("bad ValType");
}
/* static */ bool
SigIdDesc::isGlobal(const Sig& sig)
{
unsigned numTypes = (sig.ret() == ExprType::Void ? 0 : 1) +
(sig.args().length());
if (numTypes > sMaxTypes)
return true;
if (sig.ret() != ExprType::Void && !IsImmediateType(NonVoidToValType(sig.ret())))
return true;
for (ValType v : sig.args()) {
if (!IsImmediateType(v))
return true;
}
return false;
}
/* static */ SigIdDesc
SigIdDesc::global(const Sig& sig, uint32_t globalDataOffset)
{
MOZ_ASSERT(isGlobal(sig));
return SigIdDesc(Kind::Global, globalDataOffset);
}
static ImmediateType
LengthToBits(uint32_t length)
{
static_assert(sMaxTypes <= ((1 << sLengthBits) - 1), "fits");
MOZ_ASSERT(length <= sMaxTypes);
return length;
}
/* static */ SigIdDesc
SigIdDesc::immediate(const Sig& sig)
{
ImmediateType immediate = ImmediateBit;
uint32_t shift = sTagBits;
if (sig.ret() != ExprType::Void) {
immediate |= (1 << shift);
shift += sReturnBit;
immediate |= EncodeImmediateType(NonVoidToValType(sig.ret())) << shift;
shift += sTypeBits;
} else {
shift += sReturnBit;
}
immediate |= LengthToBits(sig.args().length()) << shift;
shift += sLengthBits;
for (ValType argType : sig.args()) {
immediate |= EncodeImmediateType(argType) << shift;
shift += sTypeBits;
}
MOZ_ASSERT(shift <= sTotalBits);
return SigIdDesc(Kind::Immediate, immediate);
}
size_t
SigWithId::serializedSize() const
{
return Sig::serializedSize() +
sizeof(id);
}
uint8_t*
SigWithId::serialize(uint8_t* cursor) const
{
cursor = Sig::serialize(cursor);
cursor = WriteBytes(cursor, &id, sizeof(id));
return cursor;
}
const uint8_t*
SigWithId::deserialize(const uint8_t* cursor)
{
(cursor = Sig::deserialize(cursor)) &&
(cursor = ReadBytes(cursor, &id, sizeof(id)));
return cursor;
}
size_t
SigWithId::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return Sig::sizeOfExcludingThis(mallocSizeOf);
}
Assumptions::Assumptions(JS::BuildIdCharVector&& buildId)
: cpuId(GetCPUID()),
buildId(Move(buildId))
{}
Assumptions::Assumptions()
: cpuId(GetCPUID()),
buildId()
{}
bool
Assumptions::initBuildIdFromContext(ExclusiveContext* cx)
{
if (!cx->buildIdOp() || !cx->buildIdOp()(&buildId)) {
ReportOutOfMemory(cx);
return false;
}
return true;
}
bool
Assumptions::clone(const Assumptions& other)
{
cpuId = other.cpuId;
return buildId.appendAll(other.buildId);
}
bool
Assumptions::operator==(const Assumptions& rhs) const
{
return cpuId == rhs.cpuId &&
buildId.length() == rhs.buildId.length() &&
PodEqual(buildId.begin(), rhs.buildId.begin(), buildId.length());
}
size_t
Assumptions::serializedSize() const
{
return sizeof(uint32_t) +
SerializedPodVectorSize(buildId);
}
uint8_t*
Assumptions::serialize(uint8_t* cursor) const
{
// The format of serialized Assumptions must never change in a way that
// would cause old cache files written with by an old build-id to match the
// assumptions of a different build-id.
cursor = WriteScalar<uint32_t>(cursor, cpuId);
cursor = SerializePodVector(cursor, buildId);
return cursor;
}
const uint8_t*
Assumptions::deserialize(const uint8_t* cursor, size_t remain)
{
(cursor = ReadScalarChecked<uint32_t>(cursor, &remain, &cpuId)) &&
(cursor = DeserializePodVectorChecked(cursor, &remain, &buildId));
return cursor;
}
size_t
Assumptions::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return buildId.sizeOfExcludingThis(mallocSizeOf);
}
// Heap length on ARM should fit in an ARM immediate. We approximate the set
// of valid ARM immediates with the predicate:
// 2^n for n in [16, 24)
// or
// 2^24 * n for n >= 1.
bool
wasm::IsValidARMImmediate(uint32_t i)
{
bool valid = (IsPowerOfTwo(i) ||
(i & 0x00ffffff) == 0);
MOZ_ASSERT_IF(valid, i % PageSize == 0);
return valid;
}
uint32_t
wasm::RoundUpToNextValidARMImmediate(uint32_t i)
{
MOZ_ASSERT(i <= 0xff000000);
if (i <= 16 * 1024 * 1024)
i = i ? mozilla::RoundUpPow2(i) : 0;
else
i = (i + 0x00ffffff) & ~0x00ffffff;
MOZ_ASSERT(IsValidARMImmediate(i));
return i;
}
#ifndef WASM_HUGE_MEMORY
bool
wasm::IsValidBoundsCheckImmediate(uint32_t i)
{
#ifdef JS_CODEGEN_ARM
return IsValidARMImmediate(i);
#else
return true;
#endif
}
size_t
wasm::ComputeMappedSize(uint32_t maxSize)
{
MOZ_ASSERT(maxSize % PageSize == 0);
// It is the bounds-check limit, not the mapped size, that gets baked into
// code. Thus round up the maxSize to the next valid immediate value
// *before* adding in the guard page.
# ifdef JS_CODEGEN_ARM
uint32_t boundsCheckLimit = RoundUpToNextValidARMImmediate(maxSize);
# else
uint32_t boundsCheckLimit = maxSize;
# endif
MOZ_ASSERT(IsValidBoundsCheckImmediate(boundsCheckLimit));
MOZ_ASSERT(boundsCheckLimit % gc::SystemPageSize() == 0);
MOZ_ASSERT(GuardSize % gc::SystemPageSize() == 0);
return boundsCheckLimit + GuardSize;
}
#endif // WASM_HUGE_MEMORY
|