summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmCode.h
blob: db14ace40df39370b35fd711edc8ad8fc371fc7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 *
 * Copyright 2016 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_code_h
#define wasm_code_h

#include "wasm/WasmGeneratedSourceMap.h"
#include "wasm/WasmTypes.h"

namespace js {

struct AsmJSMetadata;

namespace wasm {

struct LinkData;
struct Metadata;

// A wasm CodeSegment owns the allocated executable code for a wasm module.
// This allocation also currently includes the global data segment, which allows
// RIP-relative access to global data on some architectures, but this will
// change in the future to give global data its own allocation.

class CodeSegment;
typedef UniquePtr<CodeSegment> UniqueCodeSegment;

class CodeSegment
{
    // bytes_ points to a single allocation with two contiguous ranges:
    // executable machine code in the range [0, codeLength) and global data in
    // the range [codeLength, codeLength + globalDataLength). The range
    // [0, functionCodeLength) is the subrange of [0, codeLength) which contains
    // function code.
    uint8_t* bytes_;
    uint32_t functionCodeLength_;
    uint32_t codeLength_;
    uint32_t globalDataLength_;

    // These are pointers into code for stubs used for asynchronous
    // signal-handler control-flow transfer.
    uint8_t* interruptCode_;
    uint8_t* outOfBoundsCode_;
    uint8_t* unalignedAccessCode_;

    // The profiling mode may be changed dynamically.
    bool profilingEnabled_;

    CodeSegment() { PodZero(this); }
    template <class> friend struct js::MallocProvider;

    CodeSegment(const CodeSegment&) = delete;
    CodeSegment(CodeSegment&&) = delete;
    void operator=(const CodeSegment&) = delete;
    void operator=(CodeSegment&&) = delete;

  public:
    static UniqueCodeSegment create(JSContext* cx,
                                    const Bytes& code,
                                    const LinkData& linkData,
                                    const Metadata& metadata,
                                    HandleWasmMemoryObject memory);
    ~CodeSegment();

    uint8_t* base() const { return bytes_; }
    uint8_t* globalData() const { return bytes_ + codeLength_; }
    uint32_t codeLength() const { return codeLength_; }
    uint32_t globalDataLength() const { return globalDataLength_; }
    uint32_t totalLength() const { return codeLength_ + globalDataLength_; }

    uint8_t* interruptCode() const { return interruptCode_; }
    uint8_t* outOfBoundsCode() const { return outOfBoundsCode_; }
    uint8_t* unalignedAccessCode() const { return unalignedAccessCode_; }

    // The range [0, functionBytes) is a subrange of [0, codeBytes) that
    // contains only function body code, not the stub code. This distinction is
    // used by the async interrupt handler to only interrupt when the pc is in
    // function code which, in turn, simplifies reasoning about how stubs
    // enter/exit.

    bool containsFunctionPC(const void* pc) const {
        return pc >= base() && pc < (base() + functionCodeLength_);
    }
    bool containsCodePC(const void* pc) const {
        return pc >= base() && pc < (base() + codeLength_);
    }

    // onMovingGrow must be called if the memory passed to 'create' performs a
    // moving grow operation.

    void onMovingGrow(uint8_t* prevMemoryBase, const Metadata& metadata, ArrayBufferObject& buffer);
};

// ShareableBytes is a ref-counted vector of bytes which are incrementally built
// during compilation and then immutably shared.

struct ShareableBytes : ShareableBase<ShareableBytes>
{
    // Vector is 'final', so instead make Vector a member and add boilerplate.
    Bytes bytes;
    size_t sizeOfExcludingThis(MallocSizeOf m) const { return bytes.sizeOfExcludingThis(m); }
    const uint8_t* begin() const { return bytes.begin(); }
    const uint8_t* end() const { return bytes.end(); }
    size_t length() const { return bytes.length(); }
    bool append(const uint8_t *p, uint32_t ct) { return bytes.append(p, ct); }
};

typedef RefPtr<ShareableBytes> MutableBytes;
typedef RefPtr<const ShareableBytes> SharedBytes;

// A FuncExport represents a single function definition inside a wasm Module
// that has been exported one or more times. A FuncExport represents an
// internal entry point that can be called via function definition index by
// Instance::callExport(). To allow O(log(n)) lookup of a FuncExport by
// function definition index, the FuncExportVector is stored sorted by
// function definition index.

class FuncExport
{
    Sig sig_;
    MOZ_INIT_OUTSIDE_CTOR struct CacheablePod {
        uint32_t funcIndex_;
        uint32_t codeRangeIndex_;
        uint32_t entryOffset_;
    } pod;

  public:
    FuncExport() = default;
    explicit FuncExport(Sig&& sig,
                        uint32_t funcIndex,
                        uint32_t codeRangeIndex)
      : sig_(Move(sig))
    {
        pod.funcIndex_ = funcIndex;
        pod.codeRangeIndex_ = codeRangeIndex;
        pod.entryOffset_ = UINT32_MAX;
    }
    void initEntryOffset(uint32_t entryOffset) {
        MOZ_ASSERT(pod.entryOffset_ == UINT32_MAX);
        pod.entryOffset_ = entryOffset;
    }

    const Sig& sig() const {
        return sig_;
    }
    uint32_t funcIndex() const {
        return pod.funcIndex_;
    }
    uint32_t codeRangeIndex() const {
        return pod.codeRangeIndex_;
    }
    uint32_t entryOffset() const {
        MOZ_ASSERT(pod.entryOffset_ != UINT32_MAX);
        return pod.entryOffset_;
    }

    WASM_DECLARE_SERIALIZABLE(FuncExport)
};

typedef Vector<FuncExport, 0, SystemAllocPolicy> FuncExportVector;

// An FuncImport contains the runtime metadata needed to implement a call to an
// imported function. Each function import has two call stubs: an optimized path
// into JIT code and a slow path into the generic C++ js::Invoke and these
// offsets of these stubs are stored so that function-import callsites can be
// dynamically patched at runtime.

class FuncImport
{
    Sig sig_;
    struct CacheablePod {
        uint32_t tlsDataOffset_;
        uint32_t interpExitCodeOffset_;
        uint32_t jitExitCodeOffset_;
    } pod;

  public:
    FuncImport() {
        memset(&pod, 0, sizeof(CacheablePod));
    }

    FuncImport(Sig&& sig, uint32_t tlsDataOffset)
      : sig_(Move(sig))
    {
        pod.tlsDataOffset_ = tlsDataOffset;
        pod.interpExitCodeOffset_ = 0;
        pod.jitExitCodeOffset_ = 0;
    }

    void initInterpExitOffset(uint32_t off) {
        MOZ_ASSERT(!pod.interpExitCodeOffset_);
        pod.interpExitCodeOffset_ = off;
    }
    void initJitExitOffset(uint32_t off) {
        MOZ_ASSERT(!pod.jitExitCodeOffset_);
        pod.jitExitCodeOffset_ = off;
    }

    const Sig& sig() const {
        return sig_;
    }
    uint32_t tlsDataOffset() const {
        return pod.tlsDataOffset_;
    }
    uint32_t interpExitCodeOffset() const {
        return pod.interpExitCodeOffset_;
    }
    uint32_t jitExitCodeOffset() const {
        return pod.jitExitCodeOffset_;
    }

    WASM_DECLARE_SERIALIZABLE(FuncImport)
};

typedef Vector<FuncImport, 0, SystemAllocPolicy> FuncImportVector;

// A CodeRange describes a single contiguous range of code within a wasm
// module's code segment. A CodeRange describes what the code does and, for
// function bodies, the name and source coordinates of the function.

class CodeRange
{
  public:
    enum Kind {
        Function,          // function definition
        Entry,             // calls into wasm from C++
        ImportJitExit,     // fast-path calling from wasm into JIT code
        ImportInterpExit,  // slow-path calling from wasm into C++ interp
        TrapExit,          // calls C++ to report and jumps to throw stub
        FarJumpIsland,     // inserted to connect otherwise out-of-range insns
        Inline             // stub that is jumped-to, not called, and thus
                           // replaces/loses preceding innermost frame
    };

  private:
    // All fields are treated as cacheable POD:
    uint32_t begin_;
    uint32_t profilingReturn_;
    uint32_t end_;
    uint32_t funcIndex_;
    uint32_t funcLineOrBytecode_;
    uint8_t funcBeginToTableEntry_;
    uint8_t funcBeginToTableProfilingJump_;
    uint8_t funcBeginToNonProfilingEntry_;
    uint8_t funcProfilingJumpToProfilingReturn_;
    uint8_t funcProfilingEpilogueToProfilingReturn_;
    Kind kind_ : 8;

  public:
    CodeRange() = default;
    CodeRange(Kind kind, Offsets offsets);
    CodeRange(Kind kind, ProfilingOffsets offsets);
    CodeRange(uint32_t funcIndex, uint32_t lineOrBytecode, FuncOffsets offsets);

    // All CodeRanges have a begin and end.

    uint32_t begin() const {
        return begin_;
    }
    uint32_t end() const {
        return end_;
    }

    // Other fields are only available for certain CodeRange::Kinds.

    Kind kind() const {
        return kind_;
    }

    bool isFunction() const {
        return kind() == Function;
    }
    bool isImportExit() const {
        return kind() == ImportJitExit || kind() == ImportInterpExit;
    }
    bool isTrapExit() const {
        return kind() == TrapExit;
    }
    bool isInline() const {
        return kind() == Inline;
    }

    // Every CodeRange except entry and inline stubs has a profiling return
    // which is used for asynchronous profiling to determine the frame pointer.

    uint32_t profilingReturn() const {
        MOZ_ASSERT(isFunction() || isImportExit() || isTrapExit());
        return profilingReturn_;
    }

    // Functions have offsets which allow patching to selectively execute
    // profiling prologues/epilogues.

    uint32_t funcProfilingEntry() const {
        MOZ_ASSERT(isFunction());
        return begin();
    }
    uint32_t funcTableEntry() const {
        MOZ_ASSERT(isFunction());
        return begin_ + funcBeginToTableEntry_;
    }
    uint32_t funcTableProfilingJump() const {
        MOZ_ASSERT(isFunction());
        return begin_ + funcBeginToTableProfilingJump_;
    }
    uint32_t funcNonProfilingEntry() const {
        MOZ_ASSERT(isFunction());
        return begin_ + funcBeginToNonProfilingEntry_;
    }
    uint32_t funcProfilingJump() const {
        MOZ_ASSERT(isFunction());
        return profilingReturn_ - funcProfilingJumpToProfilingReturn_;
    }
    uint32_t funcProfilingEpilogue() const {
        MOZ_ASSERT(isFunction());
        return profilingReturn_ - funcProfilingEpilogueToProfilingReturn_;
    }
    uint32_t funcIndex() const {
        MOZ_ASSERT(isFunction());
        return funcIndex_;
    }
    uint32_t funcLineOrBytecode() const {
        MOZ_ASSERT(isFunction());
        return funcLineOrBytecode_;
    }

    // A sorted array of CodeRanges can be looked up via BinarySearch and PC.

    struct PC {
        size_t offset;
        explicit PC(size_t offset) : offset(offset) {}
        bool operator==(const CodeRange& rhs) const {
            return offset >= rhs.begin() && offset < rhs.end();
        }
        bool operator<(const CodeRange& rhs) const {
            return offset < rhs.begin();
        }
    };
};

WASM_DECLARE_POD_VECTOR(CodeRange, CodeRangeVector)

// A CallThunk describes the offset and target of thunks so that they may be
// patched at runtime when profiling is toggled. Thunks are emitted to connect
// callsites that are too far away from callees to fit in a single call
// instruction's relative offset.

struct CallThunk
{
    uint32_t offset;
    union {
        uint32_t funcIndex;
        uint32_t codeRangeIndex;
    } u;

    CallThunk(uint32_t offset, uint32_t funcIndex) : offset(offset) { u.funcIndex = funcIndex; }
    CallThunk() = default;
};

WASM_DECLARE_POD_VECTOR(CallThunk, CallThunkVector)

// A wasm module can either use no memory, a unshared memory (ArrayBuffer) or
// shared memory (SharedArrayBuffer).

enum class MemoryUsage
{
    None = false,
    Unshared = 1,
    Shared = 2
};

static inline bool
UsesMemory(MemoryUsage memoryUsage)
{
    return bool(memoryUsage);
}

// NameInBytecode represents a name that is embedded in the wasm bytecode.
// The presence of NameInBytecode implies that bytecode has been kept.

struct NameInBytecode
{
    uint32_t offset;
    uint32_t length;

    NameInBytecode() = default;
    NameInBytecode(uint32_t offset, uint32_t length) : offset(offset), length(length) {}
};

typedef Vector<NameInBytecode, 0, SystemAllocPolicy> NameInBytecodeVector;
typedef Vector<char16_t, 64> TwoByteName;

// Metadata holds all the data that is needed to describe compiled wasm code
// at runtime (as opposed to data that is only used to statically link or
// instantiate a module).
//
// Metadata is built incrementally by ModuleGenerator and then shared immutably
// between modules.

struct MetadataCacheablePod
{
    ModuleKind            kind;
    MemoryUsage           memoryUsage;
    uint32_t              minMemoryLength;
    Maybe<uint32_t>       maxMemoryLength;
    Maybe<uint32_t>       startFuncIndex;

    explicit MetadataCacheablePod(ModuleKind kind)
      : kind(kind),
        memoryUsage(MemoryUsage::None),
        minMemoryLength(0)
    {}
};

struct Metadata : ShareableBase<Metadata>, MetadataCacheablePod
{
    explicit Metadata(ModuleKind kind = ModuleKind::Wasm) : MetadataCacheablePod(kind) {}
    virtual ~Metadata() {}

    MetadataCacheablePod& pod() { return *this; }
    const MetadataCacheablePod& pod() const { return *this; }

    FuncImportVector      funcImports;
    FuncExportVector      funcExports;
    SigWithIdVector       sigIds;
    GlobalDescVector      globals;
    TableDescVector       tables;
    MemoryAccessVector    memoryAccesses;
    MemoryPatchVector     memoryPatches;
    BoundsCheckVector     boundsChecks;
    CodeRangeVector       codeRanges;
    CallSiteVector        callSites;
    CallThunkVector       callThunks;
    NameInBytecodeVector  funcNames;
    CacheableChars        filename;

    bool usesMemory() const { return UsesMemory(memoryUsage); }
    bool hasSharedMemory() const { return memoryUsage == MemoryUsage::Shared; }

    const FuncExport& lookupFuncExport(uint32_t funcIndex) const;

    // AsmJSMetadata derives Metadata iff isAsmJS(). Mostly this distinction is
    // encapsulated within AsmJS.cpp, but the additional virtual functions allow
    // asm.js to override wasm behavior in the handful of cases that can't be
    // easily encapsulated by AsmJS.cpp.

    bool isAsmJS() const {
        return kind == ModuleKind::AsmJS;
    }
    const AsmJSMetadata& asAsmJS() const {
        MOZ_ASSERT(isAsmJS());
        return *(const AsmJSMetadata*)this;
    }
    virtual bool mutedErrors() const {
        return false;
    }
    virtual const char16_t* displayURL() const {
        return nullptr;
    }
    virtual ScriptSource* maybeScriptSource() const {
        return nullptr;
    }
    virtual bool getFuncName(JSContext* cx, const Bytes* maybeBytecode, uint32_t funcIndex,
                             TwoByteName* name) const;

    WASM_DECLARE_SERIALIZABLE_VIRTUAL(Metadata);
};

typedef RefPtr<Metadata> MutableMetadata;
typedef RefPtr<const Metadata> SharedMetadata;

// Code objects own executable code and the metadata that describes it. At the
// moment, Code objects are owned uniquely by instances since CodeSegments are
// not shareable. However, once this restriction is removed, a single Code
// object will be shared between a module and all its instances.

class Code
{
    const UniqueCodeSegment  segment_;
    const SharedMetadata     metadata_;
    const SharedBytes        maybeBytecode_;
    UniqueGeneratedSourceMap maybeSourceMap_;
    CacheableCharsVector     funcLabels_;
    bool                     profilingEnabled_;

  public:
    Code(UniqueCodeSegment segment,
         const Metadata& metadata,
         const ShareableBytes* maybeBytecode);

    CodeSegment& segment() { return *segment_; }
    const CodeSegment& segment() const { return *segment_; }
    const Metadata& metadata() const { return *metadata_; }

    // Frame iterator support:

    const CallSite* lookupCallSite(void* returnAddress) const;
    const CodeRange* lookupRange(void* pc) const;
    const MemoryAccess* lookupMemoryAccess(void* pc) const;

    // Return the name associated with a given function index, or generate one
    // if none was given by the module.

    bool getFuncName(JSContext* cx, uint32_t funcIndex, TwoByteName* name) const;
    JSAtom* getFuncAtom(JSContext* cx, uint32_t funcIndex) const;

    // If the source bytecode was saved when this Code was constructed, this
    // method will render the binary as text. Otherwise, a diagnostic string
    // will be returned.

    JSString* createText(JSContext* cx);
    bool getLineOffsets(size_t lineno, Vector<uint32_t>& offsets) const;

    // Each Code has a profiling mode that is updated to match the runtime's
    // profiling mode when there are no other activations of the code live on
    // the stack. Once in profiling mode, ProfilingFrameIterator can be used to
    // asynchronously walk the stack. Otherwise, the ProfilingFrameIterator will
    // skip any activations of this code.

    MOZ_MUST_USE bool ensureProfilingState(JSContext* cx, bool enabled);
    bool profilingEnabled() const { return profilingEnabled_; }
    const char* profilingLabel(uint32_t funcIndex) const { return funcLabels_[funcIndex].get(); }

    // about:memory reporting:

    void addSizeOfMisc(MallocSizeOf mallocSizeOf,
                       Metadata::SeenSet* seenMetadata,
                       ShareableBytes::SeenSet* seenBytes,
                       size_t* code,
                       size_t* data) const;

    WASM_DECLARE_SERIALIZABLE(Code);
};

typedef UniquePtr<Code> UniqueCode;

} // namespace wasm
} // namespace js

#endif // wasm_code_h