1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*
* Copyright 2016 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* WebAssembly baseline compiler ("RabaldrMonkey")
*
* General status notes:
*
* "FIXME" indicates a known or suspected bug. Always has a bug#.
*
* "TODO" indicates an opportunity for a general improvement, with an additional
* tag to indicate the area of improvement. Usually has a bug#.
*
* Unimplemented functionality:
*
* - Tiered compilation (bug 1277562)
* - profiler support / devtools (bug 1286948)
* - SIMD
* - Atomics
*
* There are lots of machine dependencies here but they are pretty well isolated
* to a segment of the compiler. Many dependencies will eventually be factored
* into the MacroAssembler layer and shared with other code generators.
*
*
* High-value compiler performance improvements:
*
* - (Bug 1316802) The specific-register allocator (the needI32(r), needI64(r)
* etc methods) can avoid syncing the value stack if the specific register is
* in use but there is a free register to shuffle the specific register into.
* (This will also improve the generated code.) The sync happens often enough
* here to show up in profiles, because it is triggered by integer multiply
* and divide.
*
*
* High-value code generation improvements:
*
* - (Bug 1316803) Opportunities for cheaply folding in a constant rhs to
* arithmetic operations, we do this already for I32 add and shift operators,
* this reduces register pressure and instruction count.
*
* - (Bug 1286816) Opportunities for cheaply folding in a constant rhs to
* conditionals.
*
* - (Bug 1286816) Boolean evaluation for control can be optimized by pushing a
* bool-generating operation onto the value stack in the same way that we now
* push latent constants and local lookups, or (easier) by remembering the
* operation in a side location if the next Op will consume it.
*
* - (Bug 1286816) brIf pessimizes by branching over code that performs stack
* cleanup and a branch. If no cleanup is needed we can just branch
* conditionally to the target.
*
* - (Bug 1316804) brTable pessimizes by always dispatching to code that pops
* the stack and then jumps to the code for the target case. If no cleanup is
* needed we could just branch conditionally to the target; if the same amount
* of cleanup is needed for all cases then the cleanup can be done before the
* dispatch. Both are highly likely.
*
* - (Bug 1316806) Register management around calls: At the moment we sync the
* value stack unconditionally (this is simple) but there are probably many
* common cases where we could instead save/restore live caller-saves
* registers and perform parallel assignment into argument registers. This
* may be important if we keep some locals in registers.
*
* - (Bug 1316808) Allocate some locals to registers on machines where there are
* enough registers. This is probably hard to do well in a one-pass compiler
* but it might be that just keeping register arguments and the first few
* locals in registers is a viable strategy; another (more general) strategy
* is caching locals in registers in straight-line code. Such caching could
* also track constant values in registers, if that is deemed valuable. A
* combination of techniques may be desirable: parameters and the first few
* locals could be cached on entry to the function but not statically assigned
* to registers throughout.
*
* (On a large corpus of code it should be possible to compute, for every
* signature comprising the types of parameters and locals, and using a static
* weight for loops, a list in priority order of which parameters and locals
* that should be assigned to registers. Or something like that. Wasm makes
* this simple. Static assignments are desirable because they are not flushed
* to memory by the pre-block sync() call.)
*/
#include "wasm/WasmBaselineCompile.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/AtomicOp.h"
#include "jit/IonTypes.h"
#include "jit/JitAllocPolicy.h"
#include "jit/Label.h"
#include "jit/MacroAssembler.h"
#include "jit/MIR.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"
#if defined(JS_CODEGEN_ARM)
# include "jit/arm/Assembler-arm.h"
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
# include "jit/x86-shared/Architecture-x86-shared.h"
# include "jit/x86-shared/Assembler-x86-shared.h"
#endif
#include "wasm/WasmBinaryFormat.h"
#include "wasm/WasmBinaryIterator.h"
#include "wasm/WasmGenerator.h"
#include "wasm/WasmSignalHandlers.h"
#include "jit/MacroAssembler-inl.h"
using mozilla::DebugOnly;
using mozilla::FloatingPoint;
using mozilla::IsPowerOfTwo;
using mozilla::SpecificNaN;
namespace js {
namespace wasm {
using namespace js::jit;
using JS::GenericNaN;
struct BaseCompilePolicy : OpIterPolicy
{
static const bool Output = true;
// The baseline compiler tracks values on a stack of its own -- it
// needs to scan that stack for spilling -- and thus has no need
// for the values maintained by the iterator.
//
// The baseline compiler tracks control items on a stack of its
// own as well.
//
// TODO / REDUNDANT (Bug 1316814): It would be nice if we could
// make use of the iterator's ControlItems and not require our own
// stack for that.
};
typedef OpIter<BaseCompilePolicy> BaseOpIter;
typedef bool IsUnsigned;
typedef bool IsSigned;
typedef bool ZeroOnOverflow;
typedef bool IsKnownNotZero;
typedef bool HandleNaNSpecially;
typedef unsigned ByteSize;
typedef unsigned BitSize;
// UseABI::Wasm implies that the Tls/Heap/Global registers are nonvolatile,
// except when InterModule::True is also set, when they are volatile.
//
// UseABI::System implies that the Tls/Heap/Global registers are volatile.
// Additionally, the parameter passing mechanism may be slightly different from
// the UseABI::Wasm convention.
//
// When the Tls/Heap/Global registers are not volatile, the baseline compiler
// will restore the Tls register from its save slot before the call, since the
// baseline compiler uses the Tls register for other things.
//
// When those registers are volatile, the baseline compiler will reload them
// after the call (it will restore the Tls register from the save slot and load
// the other two from the Tls data).
enum class UseABI { Wasm, System };
enum class InterModule { False = false, True = true };
#ifdef JS_CODEGEN_ARM64
// FIXME: This is not correct, indeed for ARM64 there is no reliable
// StackPointer and we'll need to change the abstractions that use
// SP-relative addressing. There's a guard in emitFunction() below to
// prevent this workaround from having any consequence. This hack
// exists only as a stopgap; there is no ARM64 JIT support yet.
static const Register StackPointer = RealStackPointer;
#endif
#ifdef JS_CODEGEN_X86
// The selection of EBX here steps gingerly around: the need for EDX
// to be allocatable for multiply/divide; ECX to be allocatable for
// shift/rotate; EAX (= ReturnReg) to be allocatable as the joinreg;
// EBX not being one of the WasmTableCall registers; and needing a
// temp register for load/store that has a single-byte persona.
static const Register ScratchRegX86 = ebx;
# define INT_DIV_I64_CALLOUT
#endif
#ifdef JS_CODEGEN_ARM
// We need a temp for funcPtrCall. It can't be any of the
// WasmTableCall registers, an argument register, or a scratch
// register, and probably should not be ReturnReg.
static const Register FuncPtrCallTemp = CallTempReg1;
// We use our own scratch register, because the macro assembler uses
// the regular scratch register(s) pretty liberally. We could
// work around that in several cases but the mess does not seem
// worth it yet. CallTempReg2 seems safe.
static const Register ScratchRegARM = CallTempReg2;
# define INT_DIV_I64_CALLOUT
# define I64_TO_FLOAT_CALLOUT
# define FLOAT_TO_I64_CALLOUT
#endif
class BaseCompiler
{
// We define our own ScratchRegister abstractions, deferring to
// the platform's when possible.
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
typedef ScratchDoubleScope ScratchF64;
#else
class ScratchF64
{
public:
ScratchF64(BaseCompiler& b) {}
operator FloatRegister() const {
MOZ_CRASH("BaseCompiler platform hook - ScratchF64");
}
};
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
typedef ScratchFloat32Scope ScratchF32;
#else
class ScratchF32
{
public:
ScratchF32(BaseCompiler& b) {}
operator FloatRegister() const {
MOZ_CRASH("BaseCompiler platform hook - ScratchF32");
}
};
#endif
#if defined(JS_CODEGEN_X64)
typedef ScratchRegisterScope ScratchI32;
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
class ScratchI32
{
# ifdef DEBUG
BaseCompiler& bc;
public:
explicit ScratchI32(BaseCompiler& bc) : bc(bc) {
MOZ_ASSERT(!bc.scratchRegisterTaken());
bc.setScratchRegisterTaken(true);
}
~ScratchI32() {
MOZ_ASSERT(bc.scratchRegisterTaken());
bc.setScratchRegisterTaken(false);
}
# else
public:
explicit ScratchI32(BaseCompiler& bc) {}
# endif
operator Register() const {
# ifdef JS_CODEGEN_X86
return ScratchRegX86;
# else
return ScratchRegARM;
# endif
}
};
#else
class ScratchI32
{
public:
ScratchI32(BaseCompiler& bc) {}
operator Register() const {
MOZ_CRASH("BaseCompiler platform hook - ScratchI32");
}
};
#endif
// A Label in the code, allocated out of a temp pool in the
// TempAllocator attached to the compilation.
struct PooledLabel : public Label, public TempObject, public InlineListNode<PooledLabel>
{
PooledLabel() : f(nullptr) {}
explicit PooledLabel(BaseCompiler* f) : f(f) {}
BaseCompiler* f;
};
typedef Vector<PooledLabel*, 8, SystemAllocPolicy> LabelVector;
struct UniquePooledLabelFreePolicy
{
void operator()(PooledLabel* p) {
p->f->freeLabel(p);
}
};
typedef UniquePtr<PooledLabel, UniquePooledLabelFreePolicy> UniquePooledLabel;
// The strongly typed register wrappers have saved my bacon a few
// times; though they are largely redundant they stay, for now.
// TODO / INVESTIGATE (Bug 1316815): Things would probably be
// simpler if these inherited from Register, Register64, and
// FloatRegister.
struct RegI32
{
RegI32() : reg(Register::Invalid()) {}
explicit RegI32(Register reg) : reg(reg) {}
Register reg;
bool operator==(const RegI32& that) { return reg == that.reg; }
bool operator!=(const RegI32& that) { return reg != that.reg; }
};
struct RegI64
{
RegI64() : reg(Register64::Invalid()) {}
explicit RegI64(Register64 reg) : reg(reg) {}
Register64 reg;
bool operator==(const RegI64& that) { return reg == that.reg; }
bool operator!=(const RegI64& that) { return reg != that.reg; }
};
struct RegF32
{
RegF32() {}
explicit RegF32(FloatRegister reg) : reg(reg) {}
FloatRegister reg;
bool operator==(const RegF32& that) { return reg == that.reg; }
bool operator!=(const RegF32& that) { return reg != that.reg; }
};
struct RegF64
{
RegF64() {}
explicit RegF64(FloatRegister reg) : reg(reg) {}
FloatRegister reg;
bool operator==(const RegF64& that) { return reg == that.reg; }
bool operator!=(const RegF64& that) { return reg != that.reg; }
};
struct AnyReg
{
AnyReg() { tag = NONE; }
explicit AnyReg(RegI32 r) { tag = I32; i32_ = r; }
explicit AnyReg(RegI64 r) { tag = I64; i64_ = r; }
explicit AnyReg(RegF32 r) { tag = F32; f32_ = r; }
explicit AnyReg(RegF64 r) { tag = F64; f64_ = r; }
RegI32 i32() {
MOZ_ASSERT(tag == I32);
return i32_;
}
RegI64 i64() {
MOZ_ASSERT(tag == I64);
return i64_;
}
RegF32 f32() {
MOZ_ASSERT(tag == F32);
return f32_;
}
RegF64 f64() {
MOZ_ASSERT(tag == F64);
return f64_;
}
AnyRegister any() {
switch (tag) {
case F32: return AnyRegister(f32_.reg);
case F64: return AnyRegister(f64_.reg);
case I32: return AnyRegister(i32_.reg);
case I64:
#ifdef JS_PUNBOX64
return AnyRegister(i64_.reg.reg);
#else
// The compiler is written so that this is never needed: any() is called
// on arbitrary registers for asm.js but asm.js does not have 64-bit ints.
// For wasm, any() is called on arbitrary registers only on 64-bit platforms.
MOZ_CRASH("AnyReg::any() on 32-bit platform");
#endif
case NONE:
MOZ_CRASH("AnyReg::any() on NONE");
}
// Work around GCC 5 analysis/warning bug.
MOZ_CRASH("AnyReg::any(): impossible case");
}
union {
RegI32 i32_;
RegI64 i64_;
RegF32 f32_;
RegF64 f64_;
};
enum { NONE, I32, I64, F32, F64 } tag;
};
struct Local
{
Local() : type_(MIRType::None), offs_(UINT32_MAX) {}
Local(MIRType type, uint32_t offs) : type_(type), offs_(offs) {}
void init(MIRType type_, uint32_t offs_) {
this->type_ = type_;
this->offs_ = offs_;
}
MIRType type_; // Type of the value, or MIRType::None
uint32_t offs_; // Zero-based frame offset of value, or UINT32_MAX
MIRType type() const { MOZ_ASSERT(type_ != MIRType::None); return type_; }
uint32_t offs() const { MOZ_ASSERT(offs_ != UINT32_MAX); return offs_; }
};
// Control node, representing labels and stack heights at join points.
struct Control
{
Control(uint32_t framePushed, uint32_t stackSize)
: label(nullptr),
otherLabel(nullptr),
framePushed(framePushed),
stackSize(stackSize),
deadOnArrival(false),
deadThenBranch(false)
{}
PooledLabel* label;
PooledLabel* otherLabel; // Used for the "else" branch of if-then-else
uint32_t framePushed; // From masm
uint32_t stackSize; // Value stack height
bool deadOnArrival; // deadCode_ was set on entry to the region
bool deadThenBranch; // deadCode_ was set on exit from "then"
};
// Volatile registers except ReturnReg.
static LiveRegisterSet VolatileReturnGPR;
// The baseline compiler will use OOL code more sparingly than
// Baldr since our code is not high performance and frills like
// code density and branch prediction friendliness will be less
// important.
class OutOfLineCode : public TempObject
{
private:
Label entry_;
Label rejoin_;
uint32_t framePushed_;
public:
OutOfLineCode() : framePushed_(UINT32_MAX) {}
Label* entry() { return &entry_; }
Label* rejoin() { return &rejoin_; }
void setFramePushed(uint32_t framePushed) {
MOZ_ASSERT(framePushed_ == UINT32_MAX);
framePushed_ = framePushed;
}
void bind(MacroAssembler& masm) {
MOZ_ASSERT(framePushed_ != UINT32_MAX);
masm.bind(&entry_);
masm.setFramePushed(framePushed_);
}
// Save volatile registers but not ReturnReg.
void saveVolatileReturnGPR(MacroAssembler& masm) {
masm.PushRegsInMask(BaseCompiler::VolatileReturnGPR);
}
// Restore volatile registers but not ReturnReg.
void restoreVolatileReturnGPR(MacroAssembler& masm) {
masm.PopRegsInMask(BaseCompiler::VolatileReturnGPR);
}
// The generate() method must be careful about register use
// because it will be invoked when there is a register
// assignment in the BaseCompiler that does not correspond
// to the available registers when the generated OOL code is
// executed. The register allocator *must not* be called.
//
// The best strategy is for the creator of the OOL object to
// allocate all temps that the OOL code will need.
//
// Input, output, and temp registers are embedded in the OOL
// object and are known to the code generator.
//
// Scratch registers are available to use in OOL code.
//
// All other registers must be explicitly saved and restored
// by the OOL code before being used.
virtual void generate(MacroAssembler& masm) = 0;
};
const ModuleGeneratorData& mg_;
BaseOpIter iter_;
const FuncBytes& func_;
size_t lastReadCallSite_;
TempAllocator& alloc_;
const ValTypeVector& locals_; // Types of parameters and locals
int32_t localSize_; // Size of local area in bytes (stable after beginFunction)
int32_t varLow_; // Low byte offset of local area for true locals (not parameters)
int32_t varHigh_; // High byte offset + 1 of local area for true locals
int32_t maxFramePushed_; // Max value of masm.framePushed() observed
bool deadCode_; // Flag indicating we should decode & discard the opcode
ValTypeVector SigI64I64_;
ValTypeVector SigDD_;
ValTypeVector SigD_;
ValTypeVector SigF_;
ValTypeVector SigI_;
ValTypeVector Sig_;
Label returnLabel_;
Label outOfLinePrologue_;
Label bodyLabel_;
TrapOffset prologueTrapOffset_;
FuncCompileResults& compileResults_;
MacroAssembler& masm; // No '_' suffix - too tedious...
AllocatableGeneralRegisterSet availGPR_;
AllocatableFloatRegisterSet availFPU_;
#ifdef DEBUG
bool scratchRegisterTaken_;
#endif
TempObjectPool<PooledLabel> labelPool_;
Vector<Local, 8, SystemAllocPolicy> localInfo_;
Vector<OutOfLineCode*, 8, SystemAllocPolicy> outOfLine_;
// Index into localInfo_ of the special local used for saving the TLS
// pointer. This follows the function's real arguments and locals.
uint32_t tlsSlot_;
// On specific platforms we sometimes need to use specific registers.
#ifdef JS_CODEGEN_X64
RegI64 specific_rax;
RegI64 specific_rcx;
RegI64 specific_rdx;
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
RegI32 specific_eax;
RegI32 specific_ecx;
RegI32 specific_edx;
#endif
#if defined(JS_CODEGEN_X86)
AllocatableGeneralRegisterSet singleByteRegs_;
#endif
#if defined(JS_NUNBOX32)
RegI64 abiReturnRegI64;
#endif
// The join registers are used to carry values out of blocks.
// JoinRegI32 and joinRegI64 must overlap: emitBrIf and
// emitBrTable assume that.
RegI32 joinRegI32;
RegI64 joinRegI64;
RegF32 joinRegF32;
RegF64 joinRegF64;
// More members: see the stk_ and ctl_ vectors, defined below.
public:
BaseCompiler(const ModuleGeneratorData& mg,
Decoder& decoder,
const FuncBytes& func,
const ValTypeVector& locals,
FuncCompileResults& compileResults);
MOZ_MUST_USE bool init();
void finish();
MOZ_MUST_USE bool emitFunction();
// Used by some of the ScratchRegister implementations.
operator MacroAssembler&() const { return masm; }
#ifdef DEBUG
bool scratchRegisterTaken() const {
return scratchRegisterTaken_;
}
void setScratchRegisterTaken(bool state) {
scratchRegisterTaken_ = state;
}
#endif
private:
////////////////////////////////////////////////////////////
//
// Out of line code management.
MOZ_MUST_USE OutOfLineCode* addOutOfLineCode(OutOfLineCode* ool) {
if (!ool || !outOfLine_.append(ool))
return nullptr;
ool->setFramePushed(masm.framePushed());
return ool;
}
MOZ_MUST_USE bool generateOutOfLineCode() {
for (uint32_t i = 0; i < outOfLine_.length(); i++) {
OutOfLineCode* ool = outOfLine_[i];
ool->bind(masm);
ool->generate(masm);
}
return !masm.oom();
}
////////////////////////////////////////////////////////////
//
// The stack frame.
// SP-relative load and store.
int32_t localOffsetToSPOffset(int32_t offset) {
return masm.framePushed() - offset;
}
void storeToFrameI32(Register r, int32_t offset) {
masm.store32(r, Address(StackPointer, localOffsetToSPOffset(offset)));
}
void storeToFrameI64(Register64 r, int32_t offset) {
masm.store64(r, Address(StackPointer, localOffsetToSPOffset(offset)));
}
void storeToFramePtr(Register r, int32_t offset) {
masm.storePtr(r, Address(StackPointer, localOffsetToSPOffset(offset)));
}
void storeToFrameF64(FloatRegister r, int32_t offset) {
masm.storeDouble(r, Address(StackPointer, localOffsetToSPOffset(offset)));
}
void storeToFrameF32(FloatRegister r, int32_t offset) {
masm.storeFloat32(r, Address(StackPointer, localOffsetToSPOffset(offset)));
}
void loadFromFrameI32(Register r, int32_t offset) {
masm.load32(Address(StackPointer, localOffsetToSPOffset(offset)), r);
}
void loadFromFrameI64(Register64 r, int32_t offset) {
masm.load64(Address(StackPointer, localOffsetToSPOffset(offset)), r);
}
void loadFromFramePtr(Register r, int32_t offset) {
masm.loadPtr(Address(StackPointer, localOffsetToSPOffset(offset)), r);
}
void loadFromFrameF64(FloatRegister r, int32_t offset) {
masm.loadDouble(Address(StackPointer, localOffsetToSPOffset(offset)), r);
}
void loadFromFrameF32(FloatRegister r, int32_t offset) {
masm.loadFloat32(Address(StackPointer, localOffsetToSPOffset(offset)), r);
}
// Stack-allocated local slots.
int32_t pushLocal(size_t nbytes) {
if (nbytes == 8)
localSize_ = AlignBytes(localSize_, 8u);
else if (nbytes == 16)
localSize_ = AlignBytes(localSize_, 16u);
localSize_ += nbytes;
return localSize_; // Locals grow down so capture base address
}
int32_t frameOffsetFromSlot(uint32_t slot, MIRType type) {
MOZ_ASSERT(localInfo_[slot].type() == type);
return localInfo_[slot].offs();
}
////////////////////////////////////////////////////////////
//
// Low-level register allocation.
bool isAvailable(Register r) {
return availGPR_.has(r);
}
bool hasGPR() {
return !availGPR_.empty();
}
void allocGPR(Register r) {
MOZ_ASSERT(isAvailable(r));
availGPR_.take(r);
}
Register allocGPR() {
MOZ_ASSERT(hasGPR());
return availGPR_.takeAny();
}
void freeGPR(Register r) {
availGPR_.add(r);
}
bool isAvailable(Register64 r) {
#ifdef JS_PUNBOX64
return isAvailable(r.reg);
#else
return isAvailable(r.low) && isAvailable(r.high);
#endif
}
bool hasInt64() {
#ifdef JS_PUNBOX64
return !availGPR_.empty();
#else
if (availGPR_.empty())
return false;
Register r = allocGPR();
bool available = !availGPR_.empty();
freeGPR(r);
return available;
#endif
}
void allocInt64(Register64 r) {
MOZ_ASSERT(isAvailable(r));
#ifdef JS_PUNBOX64
availGPR_.take(r.reg);
#else
availGPR_.take(r.low);
availGPR_.take(r.high);
#endif
}
Register64 allocInt64() {
MOZ_ASSERT(hasInt64());
#ifdef JS_PUNBOX64
return Register64(availGPR_.takeAny());
#else
Register high = availGPR_.takeAny();
Register low = availGPR_.takeAny();
return Register64(high, low);
#endif
}
void freeInt64(Register64 r) {
#ifdef JS_PUNBOX64
availGPR_.add(r.reg);
#else
availGPR_.add(r.low);
availGPR_.add(r.high);
#endif
}
// Notes on float register allocation.
//
// The general rule in SpiderMonkey is that float registers can
// alias double registers, but there are predicates to handle
// exceptions to that rule: hasUnaliasedDouble() and
// hasMultiAlias(). The way aliasing actually works is platform
// dependent and exposed through the aliased(n, &r) predicate,
// etc.
//
// - hasUnaliasedDouble(): on ARM VFPv3-D32 there are double
// registers that cannot be treated as float.
// - hasMultiAlias(): on ARM and MIPS a double register aliases
// two float registers.
// - notes in Architecture-arm.h indicate that when we use a
// float register that aliases a double register we only use
// the low float register, never the high float register. I
// think those notes lie, or at least are confusing.
// - notes in Architecture-mips32.h suggest that the MIPS port
// will use both low and high float registers except on the
// Longsoon, which may be the only MIPS that's being tested, so
// who knows what's working.
// - SIMD is not yet implemented on ARM or MIPS so constraints
// may change there.
//
// On some platforms (x86, x64, ARM64) but not all (ARM)
// ScratchFloat32Register is the same as ScratchDoubleRegister.
//
// It's a basic invariant of the AllocatableRegisterSet that it
// deals properly with aliasing of registers: if s0 or s1 are
// allocated then d0 is not allocatable; if s0 and s1 are freed
// individually then d0 becomes allocatable.
template<MIRType t>
FloatRegisters::SetType maskFromTypeFPU() {
static_assert(t == MIRType::Float32 || t == MIRType::Double, "Float mask type");
if (t == MIRType::Float32)
return FloatRegisters::AllSingleMask;
return FloatRegisters::AllDoubleMask;
}
template<MIRType t>
bool hasFPU() {
return !!(availFPU_.bits() & maskFromTypeFPU<t>());
}
bool isAvailable(FloatRegister r) {
return availFPU_.has(r);
}
void allocFPU(FloatRegister r) {
MOZ_ASSERT(isAvailable(r));
availFPU_.take(r);
}
template<MIRType t>
FloatRegister allocFPU() {
MOZ_ASSERT(hasFPU<t>());
FloatRegister r =
FloatRegisterSet::Intersect(FloatRegisterSet(availFPU_.bits()),
FloatRegisterSet(maskFromTypeFPU<t>())).getAny();
availFPU_.take(r);
return r;
}
void freeFPU(FloatRegister r) {
availFPU_.add(r);
}
////////////////////////////////////////////////////////////
//
// Value stack and high-level register allocation.
//
// The value stack facilitates some on-the-fly register allocation
// and immediate-constant use. It tracks constants, latent
// references to locals, register contents, and values on the CPU
// stack.
//
// The stack can be flushed to memory using sync(). This is handy
// to avoid problems with control flow and messy register usage
// patterns.
struct Stk
{
enum Kind
{
// The Mem opcodes are all clustered at the beginning to
// allow for a quick test within sync().
MemI32, // 32-bit integer stack value ("offs")
MemI64, // 64-bit integer stack value ("offs")
MemF32, // 32-bit floating stack value ("offs")
MemF64, // 64-bit floating stack value ("offs")
// The Local opcodes follow the Mem opcodes for a similar
// quick test within hasLocal().
LocalI32, // Local int32 var ("slot")
LocalI64, // Local int64 var ("slot")
LocalF32, // Local float32 var ("slot")
LocalF64, // Local double var ("slot")
RegisterI32, // 32-bit integer register ("i32reg")
RegisterI64, // 64-bit integer register ("i64reg")
RegisterF32, // 32-bit floating register ("f32reg")
RegisterF64, // 64-bit floating register ("f64reg")
ConstI32, // 32-bit integer constant ("i32val")
ConstI64, // 64-bit integer constant ("i64val")
ConstF32, // 32-bit floating constant ("f32val")
ConstF64, // 64-bit floating constant ("f64val")
None // Uninitialized or void
};
Kind kind_;
static const Kind MemLast = MemF64;
static const Kind LocalLast = LocalF64;
union {
RegI32 i32reg_;
RegI64 i64reg_;
RegF32 f32reg_;
RegF64 f64reg_;
int32_t i32val_;
int64_t i64val_;
RawF32 f32val_;
RawF64 f64val_;
uint32_t slot_;
uint32_t offs_;
};
Stk() { kind_ = None; }
Kind kind() const { return kind_; }
bool isMem() const { return kind_ <= MemLast; }
RegI32 i32reg() const { MOZ_ASSERT(kind_ == RegisterI32); return i32reg_; }
RegI64 i64reg() const { MOZ_ASSERT(kind_ == RegisterI64); return i64reg_; }
RegF32 f32reg() const { MOZ_ASSERT(kind_ == RegisterF32); return f32reg_; }
RegF64 f64reg() const { MOZ_ASSERT(kind_ == RegisterF64); return f64reg_; }
int32_t i32val() const { MOZ_ASSERT(kind_ == ConstI32); return i32val_; }
int64_t i64val() const { MOZ_ASSERT(kind_ == ConstI64); return i64val_; }
RawF32 f32val() const { MOZ_ASSERT(kind_ == ConstF32); return f32val_; }
RawF64 f64val() const { MOZ_ASSERT(kind_ == ConstF64); return f64val_; }
uint32_t slot() const { MOZ_ASSERT(kind_ > MemLast && kind_ <= LocalLast); return slot_; }
uint32_t offs() const { MOZ_ASSERT(isMem()); return offs_; }
void setI32Reg(RegI32 r) { kind_ = RegisterI32; i32reg_ = r; }
void setI64Reg(RegI64 r) { kind_ = RegisterI64; i64reg_ = r; }
void setF32Reg(RegF32 r) { kind_ = RegisterF32; f32reg_ = r; }
void setF64Reg(RegF64 r) { kind_ = RegisterF64; f64reg_ = r; }
void setI32Val(int32_t v) { kind_ = ConstI32; i32val_ = v; }
void setI64Val(int64_t v) { kind_ = ConstI64; i64val_ = v; }
void setF32Val(RawF32 v) { kind_ = ConstF32; f32val_ = v; }
void setF64Val(RawF64 v) { kind_ = ConstF64; f64val_ = v; }
void setSlot(Kind k, uint32_t v) { MOZ_ASSERT(k > MemLast && k <= LocalLast); kind_ = k; slot_ = v; }
void setOffs(Kind k, uint32_t v) { MOZ_ASSERT(k <= MemLast); kind_ = k; offs_ = v; }
};
Vector<Stk, 8, SystemAllocPolicy> stk_;
Stk& push() {
stk_.infallibleEmplaceBack(Stk());
return stk_.back();
}
Register64 invalidRegister64() {
return Register64::Invalid();
}
RegI32 invalidI32() {
return RegI32(Register::Invalid());
}
RegI64 invalidI64() {
return RegI64(invalidRegister64());
}
RegF64 invalidF64() {
return RegF64(InvalidFloatReg);
}
RegI32 fromI64(RegI64 r) {
return RegI32(lowPart(r));
}
RegI64 widenI32(RegI32 r) {
MOZ_ASSERT(!isAvailable(r.reg));
#ifdef JS_PUNBOX64
return RegI64(Register64(r.reg));
#else
RegI32 high = needI32();
return RegI64(Register64(high.reg, r.reg));
#endif
}
Register lowPart(RegI64 r) {
#ifdef JS_PUNBOX64
return r.reg.reg;
#else
return r.reg.low;
#endif
}
Register maybeHighPart(RegI64 r) {
#ifdef JS_PUNBOX64
return Register::Invalid();
#else
return r.reg.high;
#endif
}
void maybeClearHighPart(RegI64 r) {
#ifdef JS_NUNBOX32
masm.move32(Imm32(0), r.reg.high);
#endif
}
void freeI32(RegI32 r) {
freeGPR(r.reg);
}
void freeI64(RegI64 r) {
freeInt64(r.reg);
}
void freeI64Except(RegI64 r, RegI32 except) {
#ifdef JS_PUNBOX64
MOZ_ASSERT(r.reg.reg == except.reg);
#else
MOZ_ASSERT(r.reg.high == except.reg || r.reg.low == except.reg);
freeI64(r);
needI32(except);
#endif
}
void freeF64(RegF64 r) {
freeFPU(r.reg);
}
void freeF32(RegF32 r) {
freeFPU(r.reg);
}
MOZ_MUST_USE RegI32 needI32() {
if (!hasGPR())
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
return RegI32(allocGPR());
}
void needI32(RegI32 specific) {
if (!isAvailable(specific.reg))
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
allocGPR(specific.reg);
}
// TODO / OPTIMIZE: need2xI32() can be optimized along with needI32()
// to avoid sync(). (Bug 1316802)
void need2xI32(RegI32 r0, RegI32 r1) {
needI32(r0);
needI32(r1);
}
MOZ_MUST_USE RegI64 needI64() {
if (!hasInt64())
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
return RegI64(allocInt64());
}
void needI64(RegI64 specific) {
if (!isAvailable(specific.reg))
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
allocInt64(specific.reg);
}
void need2xI64(RegI64 r0, RegI64 r1) {
needI64(r0);
needI64(r1);
}
MOZ_MUST_USE RegF32 needF32() {
if (!hasFPU<MIRType::Float32>())
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
return RegF32(allocFPU<MIRType::Float32>());
}
void needF32(RegF32 specific) {
if (!isAvailable(specific.reg))
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
allocFPU(specific.reg);
}
MOZ_MUST_USE RegF64 needF64() {
if (!hasFPU<MIRType::Double>())
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
return RegF64(allocFPU<MIRType::Double>());
}
void needF64(RegF64 specific) {
if (!isAvailable(specific.reg))
sync(); // TODO / OPTIMIZE: improve this (Bug 1316802)
allocFPU(specific.reg);
}
void moveI32(RegI32 src, RegI32 dest) {
if (src != dest)
masm.move32(src.reg, dest.reg);
}
void moveI64(RegI64 src, RegI64 dest) {
if (src != dest)
masm.move64(src.reg, dest.reg);
}
void moveF64(RegF64 src, RegF64 dest) {
if (src != dest)
masm.moveDouble(src.reg, dest.reg);
}
void moveF32(RegF32 src, RegF32 dest) {
if (src != dest)
masm.moveFloat32(src.reg, dest.reg);
}
void setI64(int64_t v, RegI64 r) {
masm.move64(Imm64(v), r.reg);
}
void loadConstI32(Register r, Stk& src) {
masm.mov(ImmWord((uint32_t)src.i32val() & 0xFFFFFFFFU), r);
}
void loadMemI32(Register r, Stk& src) {
loadFromFrameI32(r, src.offs());
}
void loadLocalI32(Register r, Stk& src) {
loadFromFrameI32(r, frameOffsetFromSlot(src.slot(), MIRType::Int32));
}
void loadRegisterI32(Register r, Stk& src) {
if (src.i32reg().reg != r)
masm.move32(src.i32reg().reg, r);
}
void loadI32(Register r, Stk& src) {
switch (src.kind()) {
case Stk::ConstI32:
loadConstI32(r, src);
break;
case Stk::MemI32:
loadMemI32(r, src);
break;
case Stk::LocalI32:
loadLocalI32(r, src);
break;
case Stk::RegisterI32:
loadRegisterI32(r, src);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: Expected int on stack");
}
}
// TODO / OPTIMIZE: Refactor loadI64, loadF64, and loadF32 in the
// same way as loadI32 to avoid redundant dispatch in callers of
// these load() functions. (Bug 1316816, also see annotations on
// popI64 et al below.)
void loadI64(Register64 r, Stk& src) {
switch (src.kind()) {
case Stk::ConstI64:
masm.move64(Imm64(src.i64val()), r);
break;
case Stk::MemI64:
loadFromFrameI64(r, src.offs());
break;
case Stk::LocalI64:
loadFromFrameI64(r, frameOffsetFromSlot(src.slot(), MIRType::Int64));
break;
case Stk::RegisterI64:
if (src.i64reg().reg != r)
masm.move64(src.i64reg().reg, r);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: Expected int on stack");
}
}
#ifdef JS_NUNBOX32
void loadI64Low(Register r, Stk& src) {
switch (src.kind()) {
case Stk::ConstI64:
masm.move32(Imm64(src.i64val()).low(), r);
break;
case Stk::MemI64:
loadFromFrameI32(r, src.offs() - INT64LOW_OFFSET);
break;
case Stk::LocalI64:
loadFromFrameI32(r, frameOffsetFromSlot(src.slot(), MIRType::Int64) - INT64LOW_OFFSET);
break;
case Stk::RegisterI64:
if (src.i64reg().reg.low != r)
masm.move32(src.i64reg().reg.low, r);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: Expected int on stack");
}
}
void loadI64High(Register r, Stk& src) {
switch (src.kind()) {
case Stk::ConstI64:
masm.move32(Imm64(src.i64val()).hi(), r);
break;
case Stk::MemI64:
loadFromFrameI32(r, src.offs() - INT64HIGH_OFFSET);
break;
case Stk::LocalI64:
loadFromFrameI32(r, frameOffsetFromSlot(src.slot(), MIRType::Int64) - INT64HIGH_OFFSET);
break;
case Stk::RegisterI64:
if (src.i64reg().reg.high != r)
masm.move32(src.i64reg().reg.high, r);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: Expected int on stack");
}
}
#endif
void loadF64(FloatRegister r, Stk& src) {
switch (src.kind()) {
case Stk::ConstF64:
masm.loadConstantDouble(src.f64val(), r);
break;
case Stk::MemF64:
loadFromFrameF64(r, src.offs());
break;
case Stk::LocalF64:
loadFromFrameF64(r, frameOffsetFromSlot(src.slot(), MIRType::Double));
break;
case Stk::RegisterF64:
if (src.f64reg().reg != r)
masm.moveDouble(src.f64reg().reg, r);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: expected double on stack");
}
}
void loadF32(FloatRegister r, Stk& src) {
switch (src.kind()) {
case Stk::ConstF32:
masm.loadConstantFloat32(src.f32val(), r);
break;
case Stk::MemF32:
loadFromFrameF32(r, src.offs());
break;
case Stk::LocalF32:
loadFromFrameF32(r, frameOffsetFromSlot(src.slot(), MIRType::Float32));
break;
case Stk::RegisterF32:
if (src.f32reg().reg != r)
masm.moveFloat32(src.f32reg().reg, r);
break;
case Stk::None:
break;
default:
MOZ_CRASH("Compiler bug: expected float on stack");
}
}
// Flush all local and register value stack elements to memory.
//
// TODO / OPTIMIZE: As this is fairly expensive and causes worse
// code to be emitted subsequently, it is useful to avoid calling
// it. (Bug 1316802)
//
// Some optimization has been done already. Remaining
// opportunities:
//
// - It would be interesting to see if we can specialize it
// before calls with particularly simple signatures, or where
// we can do parallel assignment of register arguments, or
// similar. See notes in emitCall().
//
// - Operations that need specific registers: multiply, quotient,
// remainder, will tend to sync because the registers we need
// will tend to be allocated. We may be able to avoid that by
// prioritizing registers differently (takeLast instead of
// takeFirst) but we may also be able to allocate an unused
// register on demand to free up one we need, thus avoiding the
// sync. That type of fix would go into needI32().
void sync() {
size_t start = 0;
size_t lim = stk_.length();
for (size_t i = lim; i > 0; i--) {
// Memory opcodes are first in the enum, single check against MemLast is fine.
if (stk_[i - 1].kind() <= Stk::MemLast) {
start = i;
break;
}
}
for (size_t i = start; i < lim; i++) {
Stk& v = stk_[i];
switch (v.kind()) {
case Stk::LocalI32: {
ScratchI32 scratch(*this);
loadLocalI32(scratch, v);
masm.Push(scratch);
v.setOffs(Stk::MemI32, masm.framePushed());
break;
}
case Stk::RegisterI32: {
masm.Push(v.i32reg().reg);
freeI32(v.i32reg());
v.setOffs(Stk::MemI32, masm.framePushed());
break;
}
case Stk::LocalI64: {
ScratchI32 scratch(*this);
#ifdef JS_PUNBOX64
loadI64(Register64(scratch), v);
masm.Push(scratch);
#else
int32_t offset = frameOffsetFromSlot(v.slot(), MIRType::Int64);
loadFromFrameI32(scratch, offset - INT64HIGH_OFFSET);
masm.Push(scratch);
loadFromFrameI32(scratch, offset - INT64LOW_OFFSET);
masm.Push(scratch);
#endif
v.setOffs(Stk::MemI64, masm.framePushed());
break;
}
case Stk::RegisterI64: {
#ifdef JS_PUNBOX64
masm.Push(v.i64reg().reg.reg);
freeI64(v.i64reg());
#else
masm.Push(v.i64reg().reg.high);
masm.Push(v.i64reg().reg.low);
freeI64(v.i64reg());
#endif
v.setOffs(Stk::MemI64, masm.framePushed());
break;
}
case Stk::LocalF64: {
ScratchF64 scratch(*this);
loadF64(scratch, v);
masm.Push(scratch);
v.setOffs(Stk::MemF64, masm.framePushed());
break;
}
case Stk::RegisterF64: {
masm.Push(v.f64reg().reg);
freeF64(v.f64reg());
v.setOffs(Stk::MemF64, masm.framePushed());
break;
}
case Stk::LocalF32: {
ScratchF32 scratch(*this);
loadF32(scratch, v);
masm.Push(scratch);
v.setOffs(Stk::MemF32, masm.framePushed());
break;
}
case Stk::RegisterF32: {
masm.Push(v.f32reg().reg);
freeF32(v.f32reg());
v.setOffs(Stk::MemF32, masm.framePushed());
break;
}
default: {
break;
}
}
}
maxFramePushed_ = Max(maxFramePushed_, int32_t(masm.framePushed()));
}
// This is an optimization used to avoid calling sync() for
// setLocal(): if the local does not exist unresolved on the stack
// then we can skip the sync.
bool hasLocal(uint32_t slot) {
for (size_t i = stk_.length(); i > 0; i--) {
// Memory opcodes are first in the enum, single check against MemLast is fine.
Stk::Kind kind = stk_[i-1].kind();
if (kind <= Stk::MemLast)
return false;
// Local opcodes follow memory opcodes in the enum, single check against
// LocalLast is sufficient.
if (kind <= Stk::LocalLast && stk_[i-1].slot() == slot)
return true;
}
return false;
}
void syncLocal(uint32_t slot) {
if (hasLocal(slot))
sync(); // TODO / OPTIMIZE: Improve this? (Bug 1316817)
}
// Push the register r onto the stack.
void pushI32(RegI32 r) {
MOZ_ASSERT(!isAvailable(r.reg));
Stk& x = push();
x.setI32Reg(r);
}
void pushI64(RegI64 r) {
MOZ_ASSERT(!isAvailable(r.reg));
Stk& x = push();
x.setI64Reg(r);
}
void pushF64(RegF64 r) {
MOZ_ASSERT(!isAvailable(r.reg));
Stk& x = push();
x.setF64Reg(r);
}
void pushF32(RegF32 r) {
MOZ_ASSERT(!isAvailable(r.reg));
Stk& x = push();
x.setF32Reg(r);
}
// Push the value onto the stack.
void pushI32(int32_t v) {
Stk& x = push();
x.setI32Val(v);
}
void pushI64(int64_t v) {
Stk& x = push();
x.setI64Val(v);
}
void pushF64(RawF64 v) {
Stk& x = push();
x.setF64Val(v);
}
void pushF32(RawF32 v) {
Stk& x = push();
x.setF32Val(v);
}
// Push the local slot onto the stack. The slot will not be read
// here; it will be read when it is consumed, or when a side
// effect to the slot forces its value to be saved.
void pushLocalI32(uint32_t slot) {
Stk& x = push();
x.setSlot(Stk::LocalI32, slot);
}
void pushLocalI64(uint32_t slot) {
Stk& x = push();
x.setSlot(Stk::LocalI64, slot);
}
void pushLocalF64(uint32_t slot) {
Stk& x = push();
x.setSlot(Stk::LocalF64, slot);
}
void pushLocalF32(uint32_t slot) {
Stk& x = push();
x.setSlot(Stk::LocalF32, slot);
}
// PRIVATE. Call only from other popI32() variants.
// v must be the stack top.
void popI32(Stk& v, RegI32 r) {
switch (v.kind()) {
case Stk::ConstI32:
loadConstI32(r.reg, v);
break;
case Stk::LocalI32:
loadLocalI32(r.reg, v);
break;
case Stk::MemI32:
masm.Pop(r.reg);
break;
case Stk::RegisterI32:
moveI32(v.i32reg(), r);
break;
case Stk::None:
// This case crops up in situations where there's unreachable code that
// the type system interprets as "generating" a value of the correct type:
//
// (if (return) E1 E2) type is type(E1) meet type(E2)
// (if E (unreachable) (i32.const 1)) type is int
// (if E (i32.const 1) (unreachable)) type is int
//
// It becomes silly to handle this throughout the code, so just handle it
// here even if that means weaker run-time checking.
break;
default:
MOZ_CRASH("Compiler bug: expected int on stack");
}
}
MOZ_MUST_USE RegI32 popI32() {
Stk& v = stk_.back();
RegI32 r;
if (v.kind() == Stk::RegisterI32)
r = v.i32reg();
else
popI32(v, (r = needI32()));
stk_.popBack();
return r;
}
RegI32 popI32(RegI32 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterI32 && v.i32reg() == specific)) {
needI32(specific);
popI32(v, specific);
if (v.kind() == Stk::RegisterI32)
freeI32(v.i32reg());
}
stk_.popBack();
return specific;
}
// PRIVATE. Call only from other popI64() variants.
// v must be the stack top.
void popI64(Stk& v, RegI64 r) {
// TODO / OPTIMIZE: avoid loadI64() here. (Bug 1316816)
switch (v.kind()) {
case Stk::ConstI64:
case Stk::LocalI64:
loadI64(r.reg, v);
break;
case Stk::MemI64:
#ifdef JS_PUNBOX64
masm.Pop(r.reg.reg);
#else
masm.Pop(r.reg.low);
masm.Pop(r.reg.high);
#endif
break;
case Stk::RegisterI64:
moveI64(v.i64reg(), r);
break;
case Stk::None:
// See popI32()
break;
default:
MOZ_CRASH("Compiler bug: expected long on stack");
}
}
MOZ_MUST_USE RegI64 popI64() {
Stk& v = stk_.back();
RegI64 r;
if (v.kind() == Stk::RegisterI64)
r = v.i64reg();
else
popI64(v, (r = needI64()));
stk_.popBack();
return r;
}
// Note, the stack top can be in one half of "specific" on 32-bit
// systems. We can optimize, but for simplicity, if the register
// does not match exactly, then just force the stack top to memory
// and then read it back in.
RegI64 popI64(RegI64 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterI64 && v.i64reg() == specific)) {
needI64(specific);
popI64(v, specific);
if (v.kind() == Stk::RegisterI64)
freeI64(v.i64reg());
}
stk_.popBack();
return specific;
}
// PRIVATE. Call only from other popF64() variants.
// v must be the stack top.
void popF64(Stk& v, RegF64 r) {
// TODO / OPTIMIZE: avoid loadF64 here. (Bug 1316816)
switch (v.kind()) {
case Stk::ConstF64:
case Stk::LocalF64:
loadF64(r.reg, v);
break;
case Stk::MemF64:
masm.Pop(r.reg);
break;
case Stk::RegisterF64:
moveF64(v.f64reg(), r);
break;
case Stk::None:
// See popI32()
break;
default:
MOZ_CRASH("Compiler bug: expected double on stack");
}
}
MOZ_MUST_USE RegF64 popF64() {
Stk& v = stk_.back();
RegF64 r;
if (v.kind() == Stk::RegisterF64)
r = v.f64reg();
else
popF64(v, (r = needF64()));
stk_.popBack();
return r;
}
RegF64 popF64(RegF64 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterF64 && v.f64reg() == specific)) {
needF64(specific);
popF64(v, specific);
if (v.kind() == Stk::RegisterF64)
freeF64(v.f64reg());
}
stk_.popBack();
return specific;
}
// PRIVATE. Call only from other popF32() variants.
// v must be the stack top.
void popF32(Stk& v, RegF32 r) {
// TODO / OPTIMIZE: avoid loadF32 here. (Bug 1316816)
switch (v.kind()) {
case Stk::ConstF32:
case Stk::LocalF32:
loadF32(r.reg, v);
break;
case Stk::MemF32:
masm.Pop(r.reg);
break;
case Stk::RegisterF32:
moveF32(v.f32reg(), r);
break;
case Stk::None:
// See popI32()
break;
default:
MOZ_CRASH("Compiler bug: expected float on stack");
}
}
MOZ_MUST_USE RegF32 popF32() {
Stk& v = stk_.back();
RegF32 r;
if (v.kind() == Stk::RegisterF32)
r = v.f32reg();
else
popF32(v, (r = needF32()));
stk_.popBack();
return r;
}
RegF32 popF32(RegF32 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterF32 && v.f32reg() == specific)) {
needF32(specific);
popF32(v, specific);
if (v.kind() == Stk::RegisterF32)
freeF32(v.f32reg());
}
stk_.popBack();
return specific;
}
MOZ_MUST_USE bool popConstI32(int32_t& c) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI32)
return false;
c = v.i32val();
stk_.popBack();
return true;
}
// TODO / OPTIMIZE (Bug 1316818): At the moment we use ReturnReg
// for JoinReg. It is possible other choices would lead to better
// register allocation, as ReturnReg is often first in the
// register set and will be heavily wanted by the register
// allocator that uses takeFirst().
//
// Obvious options:
// - pick a register at the back of the register set
// - pick a random register per block (different blocks have
// different join regs)
//
// On the other hand, we sync() before every block and only the
// JoinReg is live out of the block. But on the way out, we
// currently pop the JoinReg before freeing regs to be discarded,
// so there is a real risk of some pointless shuffling there. If
// we instead integrate the popping of the join reg into the
// popping of the stack we can just use the JoinReg as it will
// become available in that process.
MOZ_MUST_USE AnyReg popJoinReg() {
switch (stk_.back().kind()) {
case Stk::RegisterI32:
case Stk::ConstI32:
case Stk::MemI32:
case Stk::LocalI32:
return AnyReg(popI32(joinRegI32));
case Stk::RegisterI64:
case Stk::ConstI64:
case Stk::MemI64:
case Stk::LocalI64:
return AnyReg(popI64(joinRegI64));
case Stk::RegisterF64:
case Stk::ConstF64:
case Stk::MemF64:
case Stk::LocalF64:
return AnyReg(popF64(joinRegF64));
case Stk::RegisterF32:
case Stk::ConstF32:
case Stk::MemF32:
case Stk::LocalF32:
return AnyReg(popF32(joinRegF32));
case Stk::None:
stk_.popBack();
return AnyReg();
default:
MOZ_CRASH("Compiler bug: unexpected value on stack");
}
}
MOZ_MUST_USE AnyReg allocJoinReg(ExprType type) {
switch (type) {
case ExprType::I32:
allocGPR(joinRegI32.reg);
return AnyReg(joinRegI32);
case ExprType::I64:
allocInt64(joinRegI64.reg);
return AnyReg(joinRegI64);
case ExprType::F32:
allocFPU(joinRegF32.reg);
return AnyReg(joinRegF32);
case ExprType::F64:
allocFPU(joinRegF64.reg);
return AnyReg(joinRegF64);
case ExprType::Void:
MOZ_CRASH("Compiler bug: allocating void join reg");
default:
MOZ_CRASH("Compiler bug: unexpected type");
}
}
void pushJoinReg(AnyReg r) {
switch (r.tag) {
case AnyReg::NONE:
MOZ_CRASH("Compile bug: attempting to push void");
break;
case AnyReg::I32:
pushI32(r.i32());
break;
case AnyReg::I64:
pushI64(r.i64());
break;
case AnyReg::F64:
pushF64(r.f64());
break;
case AnyReg::F32:
pushF32(r.f32());
break;
}
}
void freeJoinReg(AnyReg r) {
switch (r.tag) {
case AnyReg::NONE:
MOZ_CRASH("Compile bug: attempting to free void reg");
break;
case AnyReg::I32:
freeI32(r.i32());
break;
case AnyReg::I64:
freeI64(r.i64());
break;
case AnyReg::F64:
freeF64(r.f64());
break;
case AnyReg::F32:
freeF32(r.f32());
break;
}
}
void maybeReserveJoinRegI(ExprType type) {
if (type == ExprType::I32)
needI32(joinRegI32);
else if (type == ExprType::I64)
needI64(joinRegI64);
}
void maybeUnreserveJoinRegI(ExprType type) {
if (type == ExprType::I32)
freeI32(joinRegI32);
else if (type == ExprType::I64)
freeI64(joinRegI64);
}
// Return the amount of execution stack consumed by the top numval
// values on the value stack.
size_t stackConsumed(size_t numval) {
size_t size = 0;
MOZ_ASSERT(numval <= stk_.length());
for (uint32_t i = stk_.length() - 1; numval > 0; numval--, i--) {
// The size computations come from the implementation of Push() in
// MacroAssembler-x86-shared.cpp and MacroAssembler-arm-shared.cpp,
// and from VFPRegister::size() in Architecture-arm.h.
//
// On ARM unlike on x86 we push a single for float.
Stk& v = stk_[i];
switch (v.kind()) {
case Stk::MemI32:
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
size += sizeof(intptr_t);
#else
MOZ_CRASH("BaseCompiler platform hook: stackConsumed I32");
#endif
break;
case Stk::MemI64:
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
size += sizeof(int64_t);
#else
MOZ_CRASH("BaseCompiler platform hook: stackConsumed I64");
#endif
break;
case Stk::MemF64:
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
size += sizeof(double);
#else
MOZ_CRASH("BaseCompiler platform hook: stackConsumed F64");
#endif
break;
case Stk::MemF32:
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
size += sizeof(double);
#elif defined(JS_CODEGEN_ARM)
size += sizeof(float);
#else
MOZ_CRASH("BaseCompiler platform hook: stackConsumed F32");
#endif
break;
default:
break;
}
}
return size;
}
void popValueStackTo(uint32_t stackSize) {
for (uint32_t i = stk_.length(); i > stackSize; i--) {
Stk& v = stk_[i-1];
switch (v.kind()) {
case Stk::RegisterI32:
freeI32(v.i32reg());
break;
case Stk::RegisterI64:
freeI64(v.i64reg());
break;
case Stk::RegisterF64:
freeF64(v.f64reg());
break;
case Stk::RegisterF32:
freeF32(v.f32reg());
break;
default:
break;
}
}
stk_.shrinkTo(stackSize);
}
void popValueStackBy(uint32_t items) {
popValueStackTo(stk_.length() - items);
}
// Before branching to an outer control label, pop the execution
// stack to the level expected by that region, but do not free the
// stack as that will happen as compilation leaves the block.
void popStackBeforeBranch(uint32_t framePushed) {
uint32_t frameHere = masm.framePushed();
if (frameHere > framePushed)
masm.addPtr(ImmWord(frameHere - framePushed), StackPointer);
}
// Before exiting a nested control region, pop the execution stack
// to the level expected by the nesting region, and free the
// stack.
void popStackOnBlockExit(uint32_t framePushed) {
uint32_t frameHere = masm.framePushed();
if (frameHere > framePushed) {
if (deadCode_)
masm.adjustStack(frameHere - framePushed);
else
masm.freeStack(frameHere - framePushed);
}
}
void popStackIfMemory() {
if (peek(0).isMem())
masm.freeStack(stackConsumed(1));
}
// Peek at the stack, for calls.
Stk& peek(uint32_t relativeDepth) {
return stk_[stk_.length()-1-relativeDepth];
}
////////////////////////////////////////////////////////////
//
// Control stack
Vector<Control, 8, SystemAllocPolicy> ctl_;
MOZ_MUST_USE bool pushControl(UniquePooledLabel* label, UniquePooledLabel* otherLabel = nullptr)
{
uint32_t framePushed = masm.framePushed();
uint32_t stackSize = stk_.length();
if (!ctl_.emplaceBack(Control(framePushed, stackSize)))
return false;
if (label)
ctl_.back().label = label->release();
if (otherLabel)
ctl_.back().otherLabel = otherLabel->release();
ctl_.back().deadOnArrival = deadCode_;
return true;
}
void popControl() {
Control last = ctl_.popCopy();
if (last.label)
freeLabel(last.label);
if (last.otherLabel)
freeLabel(last.otherLabel);
if (deadCode_ && !ctl_.empty())
popValueStackTo(ctl_.back().stackSize);
}
Control& controlItem(uint32_t relativeDepth) {
return ctl_[ctl_.length() - 1 - relativeDepth];
}
MOZ_MUST_USE PooledLabel* newLabel() {
// TODO / INVESTIGATE (Bug 1316819): allocate() is fallible, but we can
// probably rely on an infallible allocator here. That would simplify
// code later.
PooledLabel* candidate = labelPool_.allocate();
if (!candidate)
return nullptr;
return new (candidate) PooledLabel(this);
}
void freeLabel(PooledLabel* label) {
label->~PooledLabel();
labelPool_.free(label);
}
//////////////////////////////////////////////////////////////////////
//
// Function prologue and epilogue.
void beginFunction() {
JitSpew(JitSpew_Codegen, "# Emitting wasm baseline code");
SigIdDesc sigId = mg_.funcSigs[func_.index()]->id;
GenerateFunctionPrologue(masm, localSize_, sigId, &compileResults_.offsets());
MOZ_ASSERT(masm.framePushed() == uint32_t(localSize_));
maxFramePushed_ = localSize_;
// We won't know until after we've generated code how big the
// frame will be (we may need arbitrary spill slots and
// outgoing param slots) so branch to code emitted after the
// function body that will perform the check.
//
// Code there will also assume that the fixed-size stack frame
// has been allocated.
masm.jump(&outOfLinePrologue_);
masm.bind(&bodyLabel_);
// Copy arguments from registers to stack.
const ValTypeVector& args = func_.sig().args();
for (ABIArgIter<const ValTypeVector> i(args); !i.done(); i++) {
Local& l = localInfo_[i.index()];
switch (i.mirType()) {
case MIRType::Int32:
if (i->argInRegister())
storeToFrameI32(i->gpr(), l.offs());
break;
case MIRType::Int64:
if (i->argInRegister())
storeToFrameI64(i->gpr64(), l.offs());
break;
case MIRType::Double:
if (i->argInRegister())
storeToFrameF64(i->fpu(), l.offs());
break;
case MIRType::Float32:
if (i->argInRegister())
storeToFrameF32(i->fpu(), l.offs());
break;
default:
MOZ_CRASH("Function argument type");
}
}
// The TLS pointer is always passed as a hidden argument in WasmTlsReg.
// Save it into its assigned local slot.
storeToFramePtr(WasmTlsReg, localInfo_[tlsSlot_].offs());
// Initialize the stack locals to zero.
//
// The following are all Bug 1316820:
//
// TODO / OPTIMIZE: on x64, at least, scratch will be a 64-bit
// register and we can move 64 bits at a time.
//
// TODO / OPTIMIZE: On SSE2 or better SIMD systems we may be
// able to store 128 bits at a time. (I suppose on some
// systems we have 512-bit SIMD for that matter.)
//
// TODO / OPTIMIZE: if we have only one initializing store
// then it's better to store a zero literal, probably.
if (varLow_ < varHigh_) {
ScratchI32 scratch(*this);
masm.mov(ImmWord(0), scratch);
for (int32_t i = varLow_ ; i < varHigh_ ; i += 4)
storeToFrameI32(scratch, i + 4);
}
}
bool endFunction() {
// Out-of-line prologue. Assumes that the in-line prologue has
// been executed and that a frame of size = localSize_ + sizeof(Frame)
// has been allocated.
masm.bind(&outOfLinePrologue_);
MOZ_ASSERT(maxFramePushed_ >= localSize_);
// ABINonArgReg0 != ScratchReg, which can be used by branchPtr().
masm.movePtr(masm.getStackPointer(), ABINonArgReg0);
if (maxFramePushed_ - localSize_)
masm.subPtr(Imm32(maxFramePushed_ - localSize_), ABINonArgReg0);
masm.branchPtr(Assembler::Below,
Address(WasmTlsReg, offsetof(TlsData, stackLimit)),
ABINonArgReg0,
&bodyLabel_);
// Since we just overflowed the stack, to be on the safe side, pop the
// stack so that, when the trap exit stub executes, it is a safe
// distance away from the end of the native stack.
if (localSize_)
masm.addToStackPtr(Imm32(localSize_));
masm.jump(TrapDesc(prologueTrapOffset_, Trap::StackOverflow, /* framePushed = */ 0));
masm.bind(&returnLabel_);
// Restore the TLS register in case it was overwritten by the function.
loadFromFramePtr(WasmTlsReg, frameOffsetFromSlot(tlsSlot_, MIRType::Pointer));
GenerateFunctionEpilogue(masm, localSize_, &compileResults_.offsets());
#if defined(JS_ION_PERF)
// FIXME - profiling code missing. Bug 1286948.
// Note the end of the inline code and start of the OOL code.
//gen->perfSpewer().noteEndInlineCode(masm);
#endif
if (!generateOutOfLineCode())
return false;
masm.wasmEmitTrapOutOfLineCode();
compileResults_.offsets().end = masm.currentOffset();
// A frame greater than 256KB is implausible, probably an attack,
// so fail the compilation.
if (maxFramePushed_ > 256 * 1024)
return false;
return true;
}
//////////////////////////////////////////////////////////////////////
//
// Calls.
struct FunctionCall
{
explicit FunctionCall(uint32_t lineOrBytecode)
: lineOrBytecode(lineOrBytecode),
reloadMachineStateAfter(false),
usesSystemAbi(false),
loadTlsBefore(false),
#ifdef JS_CODEGEN_ARM
hardFP(true),
#endif
frameAlignAdjustment(0),
stackArgAreaSize(0)
{}
uint32_t lineOrBytecode;
ABIArgGenerator abi;
bool reloadMachineStateAfter;
bool usesSystemAbi;
bool loadTlsBefore;
#ifdef JS_CODEGEN_ARM
bool hardFP;
#endif
size_t frameAlignAdjustment;
size_t stackArgAreaSize;
};
void beginCall(FunctionCall& call, UseABI useABI, InterModule interModule)
{
call.reloadMachineStateAfter = interModule == InterModule::True || useABI == UseABI::System;
call.usesSystemAbi = useABI == UseABI::System;
call.loadTlsBefore = useABI == UseABI::Wasm;
if (call.usesSystemAbi) {
// Call-outs need to use the appropriate system ABI.
#if defined(JS_CODEGEN_ARM)
# if defined(JS_SIMULATOR_ARM)
call.hardFP = UseHardFpABI();
# elif defined(JS_CODEGEN_ARM_HARDFP)
call.hardFP = true;
# else
call.hardFP = false;
# endif
call.abi.setUseHardFp(call.hardFP);
#endif
}
call.frameAlignAdjustment = ComputeByteAlignment(masm.framePushed() + sizeof(Frame),
JitStackAlignment);
}
void endCall(FunctionCall& call)
{
size_t adjustment = call.stackArgAreaSize + call.frameAlignAdjustment;
if (adjustment)
masm.freeStack(adjustment);
if (call.reloadMachineStateAfter) {
loadFromFramePtr(WasmTlsReg, frameOffsetFromSlot(tlsSlot_, MIRType::Pointer));
masm.loadWasmPinnedRegsFromTls();
}
}
// TODO / OPTIMIZE (Bug 1316820): This is expensive; let's roll the iterator
// walking into the walking done for passArg. See comments in passArg.
size_t stackArgAreaSize(const ValTypeVector& args) {
ABIArgIter<const ValTypeVector> i(args);
while (!i.done())
i++;
return AlignBytes(i.stackBytesConsumedSoFar(), 16u);
}
void startCallArgs(FunctionCall& call, size_t stackArgAreaSize)
{
call.stackArgAreaSize = stackArgAreaSize;
size_t adjustment = call.stackArgAreaSize + call.frameAlignAdjustment;
if (adjustment)
masm.reserveStack(adjustment);
}
const ABIArg reservePointerArgument(FunctionCall& call) {
return call.abi.next(MIRType::Pointer);
}
// TODO / OPTIMIZE (Bug 1316820): Note passArg is used only in one place.
// (Or it was, until Luke wandered through, but that can be fixed again.)
// I'm not saying we should manually inline it, but we could hoist the
// dispatch into the caller and have type-specific implementations of
// passArg: passArgI32(), etc. Then those might be inlined, at least in PGO
// builds.
//
// The bulk of the work here (60%) is in the next() call, though.
//
// Notably, since next() is so expensive, stackArgAreaSize() becomes
// expensive too.
//
// Somehow there could be a trick here where the sequence of
// argument types (read from the input stream) leads to a cached
// entry for stackArgAreaSize() and for how to pass arguments...
//
// But at least we could reduce the cost of stackArgAreaSize() by
// first reading the argument types into a (reusable) vector, then
// we have the outgoing size at low cost, and then we can pass
// args based on the info we read.
void passArg(FunctionCall& call, ValType type, Stk& arg) {
switch (type) {
case ValType::I32: {
ABIArg argLoc = call.abi.next(MIRType::Int32);
if (argLoc.kind() == ABIArg::Stack) {
ScratchI32 scratch(*this);
loadI32(scratch, arg);
masm.store32(scratch, Address(StackPointer, argLoc.offsetFromArgBase()));
} else {
loadI32(argLoc.gpr(), arg);
}
break;
}
case ValType::I64: {
ABIArg argLoc = call.abi.next(MIRType::Int64);
if (argLoc.kind() == ABIArg::Stack) {
ScratchI32 scratch(*this);
#if defined(JS_CODEGEN_X64)
loadI64(Register64(scratch), arg);
masm.movq(scratch, Operand(StackPointer, argLoc.offsetFromArgBase()));
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
loadI64Low(scratch, arg);
masm.store32(scratch, Address(StackPointer, argLoc.offsetFromArgBase() + INT64LOW_OFFSET));
loadI64High(scratch, arg);
masm.store32(scratch, Address(StackPointer, argLoc.offsetFromArgBase() + INT64HIGH_OFFSET));
#else
MOZ_CRASH("BaseCompiler platform hook: passArg I64");
#endif
} else {
loadI64(argLoc.gpr64(), arg);
}
break;
}
case ValType::F64: {
ABIArg argLoc = call.abi.next(MIRType::Double);
switch (argLoc.kind()) {
case ABIArg::Stack: {
ScratchF64 scratch(*this);
loadF64(scratch, arg);
masm.storeDouble(scratch, Address(StackPointer, argLoc.offsetFromArgBase()));
break;
}
#if defined(JS_CODEGEN_REGISTER_PAIR)
case ABIArg::GPR_PAIR: {
# ifdef JS_CODEGEN_ARM
ScratchF64 scratch(*this);
loadF64(scratch, arg);
masm.ma_vxfer(scratch, argLoc.evenGpr(), argLoc.oddGpr());
break;
# else
MOZ_CRASH("BaseCompiler platform hook: passArg F64 pair");
# endif
}
#endif
case ABIArg::FPU: {
loadF64(argLoc.fpu(), arg);
break;
}
case ABIArg::GPR: {
MOZ_CRASH("Unexpected parameter passing discipline");
}
}
break;
}
case ValType::F32: {
ABIArg argLoc = call.abi.next(MIRType::Float32);
switch (argLoc.kind()) {
case ABIArg::Stack: {
ScratchF32 scratch(*this);
loadF32(scratch, arg);
masm.storeFloat32(scratch, Address(StackPointer, argLoc.offsetFromArgBase()));
break;
}
case ABIArg::GPR: {
ScratchF32 scratch(*this);
loadF32(scratch, arg);
masm.moveFloat32ToGPR(scratch, argLoc.gpr());
break;
}
case ABIArg::FPU: {
loadF32(argLoc.fpu(), arg);
break;
}
#if defined(JS_CODEGEN_REGISTER_PAIR)
case ABIArg::GPR_PAIR: {
MOZ_CRASH("Unexpected parameter passing discipline");
}
#endif
}
break;
}
default:
MOZ_CRASH("Function argument type");
}
}
void callDefinition(uint32_t funcIndex, const FunctionCall& call)
{
CallSiteDesc desc(call.lineOrBytecode, CallSiteDesc::Func);
masm.call(desc, funcIndex);
}
void callSymbolic(SymbolicAddress callee, const FunctionCall& call) {
CallSiteDesc desc(call.lineOrBytecode, CallSiteDesc::Symbolic);
masm.call(callee);
}
// Precondition: sync()
void callIndirect(uint32_t sigIndex, Stk& indexVal, const FunctionCall& call)
{
loadI32(WasmTableCallIndexReg, indexVal);
const SigWithId& sig = mg_.sigs[sigIndex];
CalleeDesc callee;
if (isCompilingAsmJS()) {
MOZ_ASSERT(sig.id.kind() == SigIdDesc::Kind::None);
const TableDesc& table = mg_.tables[mg_.asmJSSigToTableIndex[sigIndex]];
MOZ_ASSERT(IsPowerOfTwo(table.limits.initial));
masm.andPtr(Imm32((table.limits.initial - 1)), WasmTableCallIndexReg);
callee = CalleeDesc::asmJSTable(table);
} else {
MOZ_ASSERT(sig.id.kind() != SigIdDesc::Kind::None);
MOZ_ASSERT(mg_.tables.length() == 1);
const TableDesc& table = mg_.tables[0];
callee = CalleeDesc::wasmTable(table, sig.id);
}
CallSiteDesc desc(call.lineOrBytecode, CallSiteDesc::Dynamic);
masm.wasmCallIndirect(desc, callee);
}
// Precondition: sync()
void callImport(unsigned globalDataOffset, const FunctionCall& call)
{
CallSiteDesc desc(call.lineOrBytecode, CallSiteDesc::Dynamic);
CalleeDesc callee = CalleeDesc::import(globalDataOffset);
masm.wasmCallImport(desc, callee);
}
void builtinCall(SymbolicAddress builtin, const FunctionCall& call)
{
callSymbolic(builtin, call);
}
void builtinInstanceMethodCall(SymbolicAddress builtin, const ABIArg& instanceArg,
const FunctionCall& call)
{
// Builtin method calls assume the TLS register has been set.
loadFromFramePtr(WasmTlsReg, frameOffsetFromSlot(tlsSlot_, MIRType::Pointer));
CallSiteDesc desc(call.lineOrBytecode, CallSiteDesc::Symbolic);
masm.wasmCallBuiltinInstanceMethod(instanceArg, builtin);
}
//////////////////////////////////////////////////////////////////////
//
// Sundry low-level code generators.
void addInterruptCheck()
{
// Always use signals for interrupts with Asm.JS/Wasm
MOZ_RELEASE_ASSERT(HaveSignalHandlers());
}
void jumpTable(LabelVector& labels) {
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
for (uint32_t i = 0; i < labels.length(); i++) {
CodeLabel cl;
masm.writeCodePointer(cl.patchAt());
cl.target()->bind(labels[i]->offset());
masm.addCodeLabel(cl);
}
#else
MOZ_CRASH("BaseCompiler platform hook: jumpTable");
#endif
}
void tableSwitch(Label* theTable, RegI32 switchValue) {
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
ScratchI32 scratch(*this);
CodeLabel tableCl;
masm.mov(tableCl.patchAt(), scratch);
tableCl.target()->bind(theTable->offset());
masm.addCodeLabel(tableCl);
masm.jmp(Operand(scratch, switchValue.reg, ScalePointer));
#elif defined(JS_CODEGEN_ARM)
ScratchI32 scratch(*this);
// Compute the offset from the next instruction to the jump table
Label here;
masm.bind(&here);
uint32_t offset = here.offset() - theTable->offset();
// Read PC+8
masm.ma_mov(pc, scratch);
// Required by ma_sub.
ScratchRegisterScope arm_scratch(*this);
// Compute the table base pointer
masm.ma_sub(Imm32(offset + 8), scratch, arm_scratch);
// Jump indirect via table element
masm.ma_ldr(DTRAddr(scratch, DtrRegImmShift(switchValue.reg, LSL, 2)), pc, Offset,
Assembler::Always);
#else
MOZ_CRASH("BaseCompiler platform hook: tableSwitch");
#endif
}
RegI32 captureReturnedI32() {
RegI32 rv = RegI32(ReturnReg);
MOZ_ASSERT(isAvailable(rv.reg));
needI32(rv);
return rv;
}
RegI64 captureReturnedI64() {
RegI64 rv = RegI64(ReturnReg64);
MOZ_ASSERT(isAvailable(rv.reg));
needI64(rv);
return rv;
}
RegF32 captureReturnedF32(const FunctionCall& call) {
RegF32 rv = RegF32(ReturnFloat32Reg);
MOZ_ASSERT(isAvailable(rv.reg));
needF32(rv);
#if defined(JS_CODEGEN_X86)
if (call.usesSystemAbi) {
masm.reserveStack(sizeof(float));
Operand op(esp, 0);
masm.fstp32(op);
masm.loadFloat32(op, rv.reg);
masm.freeStack(sizeof(float));
}
#elif defined(JS_CODEGEN_ARM)
if (call.usesSystemAbi && !call.hardFP)
masm.ma_vxfer(r0, rv.reg);
#endif
return rv;
}
RegF64 captureReturnedF64(const FunctionCall& call) {
RegF64 rv = RegF64(ReturnDoubleReg);
MOZ_ASSERT(isAvailable(rv.reg));
needF64(rv);
#if defined(JS_CODEGEN_X86)
if (call.usesSystemAbi) {
masm.reserveStack(sizeof(double));
Operand op(esp, 0);
masm.fstp(op);
masm.loadDouble(op, rv.reg);
masm.freeStack(sizeof(double));
}
#elif defined(JS_CODEGEN_ARM)
if (call.usesSystemAbi && !call.hardFP)
masm.ma_vxfer(r0, r1, rv.reg);
#endif
return rv;
}
void returnCleanup() {
popStackBeforeBranch(ctl_[0].framePushed);
masm.jump(&returnLabel_);
}
void pop2xI32ForIntMulDiv(RegI32* r0, RegI32* r1) {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
// srcDest must be eax, and edx will be clobbered.
need2xI32(specific_eax, specific_edx);
*r1 = popI32();
*r0 = popI32ToSpecific(specific_eax);
freeI32(specific_edx);
#else
pop2xI32(r0, r1);
#endif
}
void pop2xI64ForIntDiv(RegI64* r0, RegI64* r1) {
#ifdef JS_CODEGEN_X64
// srcDest must be rax, and rdx will be clobbered.
need2xI64(specific_rax, specific_rdx);
*r1 = popI64();
*r0 = popI64ToSpecific(specific_rax);
freeI64(specific_rdx);
#else
pop2xI64(r0, r1);
#endif
}
void checkDivideByZeroI32(RegI32 rhs, RegI32 srcDest, Label* done) {
if (isCompilingAsmJS()) {
// Truncated division by zero is zero (Infinity|0 == 0)
Label notDivByZero;
masm.branchTest32(Assembler::NonZero, rhs.reg, rhs.reg, ¬DivByZero);
masm.move32(Imm32(0), srcDest.reg);
masm.jump(done);
masm.bind(¬DivByZero);
} else {
masm.branchTest32(Assembler::Zero, rhs.reg, rhs.reg, trap(Trap::IntegerDivideByZero));
}
}
void checkDivideByZeroI64(RegI64 r) {
MOZ_ASSERT(!isCompilingAsmJS());
ScratchI32 scratch(*this);
masm.branchTest64(Assembler::Zero, r.reg, r.reg, scratch, trap(Trap::IntegerDivideByZero));
}
void checkDivideSignedOverflowI32(RegI32 rhs, RegI32 srcDest, Label* done, bool zeroOnOverflow) {
Label notMin;
masm.branch32(Assembler::NotEqual, srcDest.reg, Imm32(INT32_MIN), ¬Min);
if (zeroOnOverflow) {
masm.branch32(Assembler::NotEqual, rhs.reg, Imm32(-1), ¬Min);
masm.move32(Imm32(0), srcDest.reg);
masm.jump(done);
} else if (isCompilingAsmJS()) {
// (-INT32_MIN)|0 == INT32_MIN and INT32_MIN is already in srcDest.
masm.branch32(Assembler::Equal, rhs.reg, Imm32(-1), done);
} else {
masm.branch32(Assembler::Equal, rhs.reg, Imm32(-1), trap(Trap::IntegerOverflow));
}
masm.bind(¬Min);
}
void checkDivideSignedOverflowI64(RegI64 rhs, RegI64 srcDest, Label* done, bool zeroOnOverflow) {
MOZ_ASSERT(!isCompilingAsmJS());
Label notmin;
masm.branch64(Assembler::NotEqual, srcDest.reg, Imm64(INT64_MIN), ¬min);
masm.branch64(Assembler::NotEqual, rhs.reg, Imm64(-1), ¬min);
if (zeroOnOverflow) {
masm.xor64(srcDest.reg, srcDest.reg);
masm.jump(done);
} else {
masm.jump(trap(Trap::IntegerOverflow));
}
masm.bind(¬min);
}
#ifndef INT_DIV_I64_CALLOUT
void quotientI64(RegI64 rhs, RegI64 srcDest, IsUnsigned isUnsigned) {
Label done;
checkDivideByZeroI64(rhs);
if (!isUnsigned)
checkDivideSignedOverflowI64(rhs, srcDest, &done, ZeroOnOverflow(false));
# if defined(JS_CODEGEN_X64)
// The caller must set up the following situation.
MOZ_ASSERT(srcDest.reg.reg == rax);
MOZ_ASSERT(isAvailable(rdx));
if (isUnsigned) {
masm.xorq(rdx, rdx);
masm.udivq(rhs.reg.reg);
} else {
masm.cqo();
masm.idivq(rhs.reg.reg);
}
# else
MOZ_CRASH("BaseCompiler platform hook: quotientI64");
# endif
masm.bind(&done);
}
void remainderI64(RegI64 rhs, RegI64 srcDest, IsUnsigned isUnsigned) {
Label done;
checkDivideByZeroI64(rhs);
if (!isUnsigned)
checkDivideSignedOverflowI64(rhs, srcDest, &done, ZeroOnOverflow(true));
# if defined(JS_CODEGEN_X64)
// The caller must set up the following situation.
MOZ_ASSERT(srcDest.reg.reg == rax);
MOZ_ASSERT(isAvailable(rdx));
if (isUnsigned) {
masm.xorq(rdx, rdx);
masm.udivq(rhs.reg.reg);
} else {
masm.cqo();
masm.idivq(rhs.reg.reg);
}
masm.movq(rdx, rax);
# else
MOZ_CRASH("BaseCompiler platform hook: remainderI64");
# endif
masm.bind(&done);
}
#endif // INT_DIV_I64_CALLOUT
void pop2xI32ForShiftOrRotate(RegI32* r0, RegI32* r1) {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
*r1 = popI32(specific_ecx);
*r0 = popI32();
#else
pop2xI32(r0, r1);
#endif
}
void pop2xI64ForShiftOrRotate(RegI64* r0, RegI64* r1) {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
needI32(specific_ecx);
*r1 = widenI32(specific_ecx);
*r1 = popI64ToSpecific(*r1);
*r0 = popI64();
#else
pop2xI64(r0, r1);
#endif
}
void maskShiftCount32(RegI32 r) {
#if defined(JS_CODEGEN_ARM)
masm.and32(Imm32(31), r.reg);
#endif
}
bool popcnt32NeedsTemp() const {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
return !AssemblerX86Shared::HasPOPCNT();
#elif defined(JS_CODEGEN_ARM)
return true;
#else
MOZ_CRASH("BaseCompiler platform hook: popcnt32NeedsTemp");
#endif
}
bool popcnt64NeedsTemp() const {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
return !AssemblerX86Shared::HasPOPCNT();
#elif defined(JS_CODEGEN_ARM)
return true;
#else
MOZ_CRASH("BaseCompiler platform hook: popcnt64NeedsTemp");
#endif
}
void reinterpretI64AsF64(RegI64 src, RegF64 dest) {
#if defined(JS_CODEGEN_X64)
masm.vmovq(src.reg.reg, dest.reg);
#elif defined(JS_CODEGEN_X86)
masm.Push(src.reg.high);
masm.Push(src.reg.low);
masm.vmovq(Operand(esp, 0), dest.reg);
masm.freeStack(sizeof(uint64_t));
#elif defined(JS_CODEGEN_ARM)
masm.ma_vxfer(src.reg.low, src.reg.high, dest.reg);
#else
MOZ_CRASH("BaseCompiler platform hook: reinterpretI64AsF64");
#endif
}
void reinterpretF64AsI64(RegF64 src, RegI64 dest) {
#if defined(JS_CODEGEN_X64)
masm.vmovq(src.reg, dest.reg.reg);
#elif defined(JS_CODEGEN_X86)
masm.reserveStack(sizeof(uint64_t));
masm.vmovq(src.reg, Operand(esp, 0));
masm.Pop(dest.reg.low);
masm.Pop(dest.reg.high);
#elif defined(JS_CODEGEN_ARM)
masm.ma_vxfer(src.reg, dest.reg.low, dest.reg.high);
#else
MOZ_CRASH("BaseCompiler platform hook: reinterpretF64AsI64");
#endif
}
void wrapI64ToI32(RegI64 src, RegI32 dest) {
#if defined(JS_CODEGEN_X64)
// movl clears the high bits if the two registers are the same.
masm.movl(src.reg.reg, dest.reg);
#elif defined(JS_NUNBOX32)
masm.move32(src.reg.low, dest.reg);
#else
MOZ_CRASH("BaseCompiler platform hook: wrapI64ToI32");
#endif
}
RegI64 popI32ForSignExtendI64() {
#if defined(JS_CODEGEN_X86)
need2xI32(specific_edx, specific_eax);
RegI32 r0 = popI32ToSpecific(specific_eax);
RegI64 x0 = RegI64(Register64(specific_edx.reg, specific_eax.reg));
(void)r0; // x0 is the widening of r0
#else
RegI32 r0 = popI32();
RegI64 x0 = widenI32(r0);
#endif
return x0;
}
void signExtendI32ToI64(RegI32 src, RegI64 dest) {
#if defined(JS_CODEGEN_X64)
masm.movslq(src.reg, dest.reg.reg);
#elif defined(JS_CODEGEN_X86)
MOZ_ASSERT(dest.reg.low == src.reg);
MOZ_ASSERT(dest.reg.low == eax);
MOZ_ASSERT(dest.reg.high == edx);
masm.cdq();
#elif defined(JS_CODEGEN_ARM)
masm.ma_mov(src.reg, dest.reg.low);
masm.ma_asr(Imm32(31), src.reg, dest.reg.high);
#else
MOZ_CRASH("BaseCompiler platform hook: signExtendI32ToI64");
#endif
}
void extendU32ToI64(RegI32 src, RegI64 dest) {
#if defined(JS_CODEGEN_X64)
masm.movl(src.reg, dest.reg.reg);
#elif defined(JS_NUNBOX32)
masm.move32(src.reg, dest.reg.low);
masm.move32(Imm32(0), dest.reg.high);
#else
MOZ_CRASH("BaseCompiler platform hook: extendU32ToI64");
#endif
}
class OutOfLineTruncateF32OrF64ToI32 : public OutOfLineCode
{
AnyReg src;
RegI32 dest;
bool isAsmJS;
bool isUnsigned;
TrapOffset off;
public:
OutOfLineTruncateF32OrF64ToI32(AnyReg src, RegI32 dest, bool isAsmJS, bool isUnsigned,
TrapOffset off)
: src(src),
dest(dest),
isAsmJS(isAsmJS),
isUnsigned(isUnsigned),
off(off)
{
MOZ_ASSERT_IF(isAsmJS, !isUnsigned);
}
virtual void generate(MacroAssembler& masm) {
bool isFloat = src.tag == AnyReg::F32;
FloatRegister fsrc = isFloat ? src.f32().reg : src.f64().reg;
if (isAsmJS) {
saveVolatileReturnGPR(masm);
masm.outOfLineTruncateSlow(fsrc, dest.reg, isFloat, /* isAsmJS */ true);
restoreVolatileReturnGPR(masm);
masm.jump(rejoin());
} else {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
if (isFloat)
masm.outOfLineWasmTruncateFloat32ToInt32(fsrc, isUnsigned, off, rejoin());
else
masm.outOfLineWasmTruncateDoubleToInt32(fsrc, isUnsigned, off, rejoin());
#elif defined(JS_CODEGEN_ARM)
masm.outOfLineWasmTruncateToIntCheck(fsrc,
isFloat ? MIRType::Float32 : MIRType::Double,
MIRType::Int32, isUnsigned, rejoin(), off);
#else
(void)isUnsigned; // Suppress warnings
(void)off; // for unused private
MOZ_CRASH("BaseCompiler platform hook: OutOfLineTruncateF32OrF64ToI32 wasm");
#endif
}
}
};
MOZ_MUST_USE bool truncateF32ToI32(RegF32 src, RegI32 dest, bool isUnsigned) {
TrapOffset off = trapOffset();
OutOfLineCode* ool;
if (isCompilingAsmJS()) {
ool = new(alloc_) OutOfLineTruncateF32OrF64ToI32(AnyReg(src), dest, true, false, off);
ool = addOutOfLineCode(ool);
if (!ool)
return false;
masm.branchTruncateFloat32ToInt32(src.reg, dest.reg, ool->entry());
} else {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_ARM)
ool = new(alloc_) OutOfLineTruncateF32OrF64ToI32(AnyReg(src), dest, false, isUnsigned,
off);
ool = addOutOfLineCode(ool);
if (!ool)
return false;
if (isUnsigned)
masm.wasmTruncateFloat32ToUInt32(src.reg, dest.reg, ool->entry());
else
masm.wasmTruncateFloat32ToInt32(src.reg, dest.reg, ool->entry());
#else
MOZ_CRASH("BaseCompiler platform hook: truncateF32ToI32 wasm");
#endif
}
masm.bind(ool->rejoin());
return true;
}
MOZ_MUST_USE bool truncateF64ToI32(RegF64 src, RegI32 dest, bool isUnsigned) {
TrapOffset off = trapOffset();
OutOfLineCode* ool;
if (isCompilingAsmJS()) {
ool = new(alloc_) OutOfLineTruncateF32OrF64ToI32(AnyReg(src), dest, true, false, off);
ool = addOutOfLineCode(ool);
if (!ool)
return false;
masm.branchTruncateDoubleToInt32(src.reg, dest.reg, ool->entry());
} else {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_ARM)
ool = new(alloc_) OutOfLineTruncateF32OrF64ToI32(AnyReg(src), dest, false, isUnsigned,
off);
ool = addOutOfLineCode(ool);
if (!ool)
return false;
if (isUnsigned)
masm.wasmTruncateDoubleToUInt32(src.reg, dest.reg, ool->entry());
else
masm.wasmTruncateDoubleToInt32(src.reg, dest.reg, ool->entry());
#else
MOZ_CRASH("BaseCompiler platform hook: truncateF64ToI32 wasm");
#endif
}
masm.bind(ool->rejoin());
return true;
}
// This does not generate a value; if the truncation failed then it traps.
class OutOfLineTruncateCheckF32OrF64ToI64 : public OutOfLineCode
{
AnyReg src;
bool isUnsigned;
TrapOffset off;
public:
OutOfLineTruncateCheckF32OrF64ToI64(AnyReg src, bool isUnsigned, TrapOffset off)
: src(src),
isUnsigned(isUnsigned),
off(off)
{}
virtual void generate(MacroAssembler& masm) {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
if (src.tag == AnyReg::F32)
masm.outOfLineWasmTruncateFloat32ToInt64(src.f32().reg, isUnsigned, off, rejoin());
else if (src.tag == AnyReg::F64)
masm.outOfLineWasmTruncateDoubleToInt64(src.f64().reg, isUnsigned, off, rejoin());
else
MOZ_CRASH("unexpected type");
#elif defined(JS_CODEGEN_ARM)
if (src.tag == AnyReg::F32)
masm.outOfLineWasmTruncateToIntCheck(src.f32().reg, MIRType::Float32,
MIRType::Int64, isUnsigned, rejoin(), off);
else if (src.tag == AnyReg::F64)
masm.outOfLineWasmTruncateToIntCheck(src.f64().reg, MIRType::Double, MIRType::Int64,
isUnsigned, rejoin(), off);
else
MOZ_CRASH("unexpected type");
#else
(void)src;
(void)isUnsigned;
(void)off;
MOZ_CRASH("BaseCompiler platform hook: OutOfLineTruncateCheckF32OrF64ToI64");
#endif
}
};
#ifndef FLOAT_TO_I64_CALLOUT
MOZ_MUST_USE bool truncateF32ToI64(RegF32 src, RegI64 dest, bool isUnsigned, RegF64 temp) {
# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
OutOfLineCode* ool =
addOutOfLineCode(new (alloc_) OutOfLineTruncateCheckF32OrF64ToI64(AnyReg(src),
isUnsigned,
trapOffset()));
if (!ool)
return false;
if (isUnsigned)
masm.wasmTruncateFloat32ToUInt64(src.reg, dest.reg, ool->entry(),
ool->rejoin(), temp.reg);
else
masm.wasmTruncateFloat32ToInt64(src.reg, dest.reg, ool->entry(),
ool->rejoin(), temp.reg);
# else
MOZ_CRASH("BaseCompiler platform hook: truncateF32ToI64");
# endif
return true;
}
MOZ_MUST_USE bool truncateF64ToI64(RegF64 src, RegI64 dest, bool isUnsigned, RegF64 temp) {
# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
OutOfLineCode* ool =
addOutOfLineCode(new (alloc_) OutOfLineTruncateCheckF32OrF64ToI64(AnyReg(src),
isUnsigned,
trapOffset()));
if (!ool)
return false;
if (isUnsigned)
masm.wasmTruncateDoubleToUInt64(src.reg, dest.reg, ool->entry(),
ool->rejoin(), temp.reg);
else
masm.wasmTruncateDoubleToInt64(src.reg, dest.reg, ool->entry(),
ool->rejoin(), temp.reg);
# else
MOZ_CRASH("BaseCompiler platform hook: truncateF64ToI64");
# endif
return true;
}
#endif // FLOAT_TO_I64_CALLOUT
#ifndef I64_TO_FLOAT_CALLOUT
bool convertI64ToFloatNeedsTemp(bool isUnsigned) const {
# if defined(JS_CODEGEN_X86)
return isUnsigned && AssemblerX86Shared::HasSSE3();
# else
return false;
# endif
}
void convertI64ToF32(RegI64 src, bool isUnsigned, RegF32 dest, RegI32 temp) {
# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
if (isUnsigned)
masm.convertUInt64ToFloat32(src.reg, dest.reg, temp.reg);
else
masm.convertInt64ToFloat32(src.reg, dest.reg);
# else
MOZ_CRASH("BaseCompiler platform hook: convertI64ToF32");
# endif
}
void convertI64ToF64(RegI64 src, bool isUnsigned, RegF64 dest, RegI32 temp) {
# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
if (isUnsigned)
masm.convertUInt64ToDouble(src.reg, dest.reg, temp.reg);
else
masm.convertInt64ToDouble(src.reg, dest.reg);
# else
MOZ_CRASH("BaseCompiler platform hook: convertI64ToF64");
# endif
}
#endif // I64_TO_FLOAT_CALLOUT
void cmp64Set(Assembler::Condition cond, RegI64 lhs, RegI64 rhs, RegI32 dest) {
#if defined(JS_CODEGEN_X64)
masm.cmpq(rhs.reg.reg, lhs.reg.reg);
masm.emitSet(cond, dest.reg);
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
// TODO / OPTIMIZE (Bug 1316822): This is pretty branchy, we should be
// able to do better.
Label done, condTrue;
masm.branch64(cond, lhs.reg, rhs.reg, &condTrue);
masm.move32(Imm32(0), dest.reg);
masm.jump(&done);
masm.bind(&condTrue);
masm.move32(Imm32(1), dest.reg);
masm.bind(&done);
#else
MOZ_CRASH("BaseCompiler platform hook: cmp64Set");
#endif
}
void unreachableTrap()
{
masm.jump(trap(Trap::Unreachable));
#ifdef DEBUG
masm.breakpoint();
#endif
}
//////////////////////////////////////////////////////////////////////
//
// Global variable access.
// CodeGenerator{X86,X64}::visitWasmLoadGlobal()
void loadGlobalVarI32(unsigned globalDataOffset, RegI32 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.loadRipRelativeInt32(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.movlWithPatch(PatchedAbsoluteAddress(), r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
ScratchRegisterScope scratch(*this); // Really must be the ARM scratchreg
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_dtr(js::jit::IsLoad, GlobalReg, Imm32(addr), r.reg, scratch);
#else
MOZ_CRASH("BaseCompiler platform hook: loadGlobalVarI32");
#endif
}
void loadGlobalVarI64(unsigned globalDataOffset, RegI64 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.loadRipRelativeInt64(r.reg.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset labelLow = masm.movlWithPatch(PatchedAbsoluteAddress(), r.reg.low);
masm.append(GlobalAccess(labelLow, globalDataOffset + INT64LOW_OFFSET));
CodeOffset labelHigh = masm.movlWithPatch(PatchedAbsoluteAddress(), r.reg.high);
masm.append(GlobalAccess(labelHigh, globalDataOffset + INT64HIGH_OFFSET));
#elif defined(JS_CODEGEN_ARM)
ScratchRegisterScope scratch(*this); // Really must be the ARM scratchreg
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_dtr(js::jit::IsLoad, GlobalReg, Imm32(addr + INT64LOW_OFFSET), r.reg.low, scratch);
masm.ma_dtr(js::jit::IsLoad, GlobalReg, Imm32(addr + INT64HIGH_OFFSET), r.reg.high,
scratch);
#else
MOZ_CRASH("BaseCompiler platform hook: loadGlobalVarI64");
#endif
}
void loadGlobalVarF32(unsigned globalDataOffset, RegF32 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.loadRipRelativeFloat32(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.vmovssWithPatch(PatchedAbsoluteAddress(), r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
unsigned addr = globalDataOffset - WasmGlobalRegBias;
VFPRegister vd(r.reg);
masm.ma_vldr(VFPAddr(GlobalReg, VFPOffImm(addr)), vd.singleOverlay());
#else
MOZ_CRASH("BaseCompiler platform hook: loadGlobalVarF32");
#endif
}
void loadGlobalVarF64(unsigned globalDataOffset, RegF64 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.loadRipRelativeDouble(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.vmovsdWithPatch(PatchedAbsoluteAddress(), r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_vldr(VFPAddr(GlobalReg, VFPOffImm(addr)), r.reg);
#else
MOZ_CRASH("BaseCompiler platform hook: loadGlobalVarF64");
#endif
}
// CodeGeneratorX64::visitWasmStoreGlobal()
void storeGlobalVarI32(unsigned globalDataOffset, RegI32 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.storeRipRelativeInt32(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.movlWithPatch(r.reg, PatchedAbsoluteAddress());
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
ScratchRegisterScope scratch(*this); // Really must be the ARM scratchreg
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_dtr(js::jit::IsStore, GlobalReg, Imm32(addr), r.reg, scratch);
#else
MOZ_CRASH("BaseCompiler platform hook: storeGlobalVarI32");
#endif
}
void storeGlobalVarI64(unsigned globalDataOffset, RegI64 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.storeRipRelativeInt64(r.reg.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset labelLow = masm.movlWithPatch(r.reg.low, PatchedAbsoluteAddress());
masm.append(GlobalAccess(labelLow, globalDataOffset + INT64LOW_OFFSET));
CodeOffset labelHigh = masm.movlWithPatch(r.reg.high, PatchedAbsoluteAddress());
masm.append(GlobalAccess(labelHigh, globalDataOffset + INT64HIGH_OFFSET));
#elif defined(JS_CODEGEN_ARM)
ScratchRegisterScope scratch(*this); // Really must be the ARM scratchreg
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_dtr(js::jit::IsStore, GlobalReg, Imm32(addr + INT64LOW_OFFSET), r.reg.low, scratch);
masm.ma_dtr(js::jit::IsStore, GlobalReg, Imm32(addr + INT64HIGH_OFFSET), r.reg.high,
scratch);
#else
MOZ_CRASH("BaseCompiler platform hook: storeGlobalVarI64");
#endif
}
void storeGlobalVarF32(unsigned globalDataOffset, RegF32 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.storeRipRelativeFloat32(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.vmovssWithPatch(r.reg, PatchedAbsoluteAddress());
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
unsigned addr = globalDataOffset - WasmGlobalRegBias;
VFPRegister vd(r.reg);
masm.ma_vstr(vd.singleOverlay(), VFPAddr(GlobalReg, VFPOffImm(addr)));
#else
MOZ_CRASH("BaseCompiler platform hook: storeGlobalVarF32");
#endif
}
void storeGlobalVarF64(unsigned globalDataOffset, RegF64 r)
{
#if defined(JS_CODEGEN_X64)
CodeOffset label = masm.storeRipRelativeDouble(r.reg);
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_X86)
CodeOffset label = masm.vmovsdWithPatch(r.reg, PatchedAbsoluteAddress());
masm.append(GlobalAccess(label, globalDataOffset));
#elif defined(JS_CODEGEN_ARM)
unsigned addr = globalDataOffset - WasmGlobalRegBias;
masm.ma_vstr(r.reg, VFPAddr(GlobalReg, VFPOffImm(addr)));
#else
MOZ_CRASH("BaseCompiler platform hook: storeGlobalVarF64");
#endif
}
//////////////////////////////////////////////////////////////////////
//
// Heap access.
#ifndef WASM_HUGE_MEMORY
class AsmJSLoadOOB : public OutOfLineCode
{
Scalar::Type viewType;
AnyRegister dest;
public:
AsmJSLoadOOB(Scalar::Type viewType, AnyRegister dest)
: viewType(viewType),
dest(dest)
{}
void generate(MacroAssembler& masm) {
# if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
switch (viewType) {
case Scalar::Float32x4:
case Scalar::Int32x4:
case Scalar::Int8x16:
case Scalar::Int16x8:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
case Scalar::Float32:
masm.loadConstantFloat32(float(GenericNaN()), dest.fpu());
break;
case Scalar::Float64:
masm.loadConstantDouble(GenericNaN(), dest.fpu());
break;
case Scalar::Int8:
case Scalar::Uint8:
case Scalar::Int16:
case Scalar::Uint16:
case Scalar::Int32:
case Scalar::Uint32:
case Scalar::Uint8Clamped:
masm.movePtr(ImmWord(0), dest.gpr());
break;
case Scalar::Int64:
MOZ_CRASH("unexpected array type");
}
masm.jump(rejoin());
# else
Unused << viewType;
Unused << dest;
MOZ_CRASH("Compiler bug: Unexpected platform.");
# endif
}
};
#endif
void checkOffset(MemoryAccessDesc* access, RegI32 ptr) {
if (access->offset() >= OffsetGuardLimit) {
masm.branchAdd32(Assembler::CarrySet, Imm32(access->offset()), ptr.reg,
trap(Trap::OutOfBounds));
access->clearOffset();
}
}
// This is the temp register passed as the last argument to load()
MOZ_MUST_USE size_t loadStoreTemps(MemoryAccessDesc& access) {
#if defined(JS_CODEGEN_ARM)
if (access.isUnaligned()) {
switch (access.type()) {
case Scalar::Float32:
return 1;
case Scalar::Float64:
return 2;
default:
break;
}
}
return 0;
#else
return 0;
#endif
}
// ptr and dest may be the same iff dest is I32.
// This may destroy ptr even if ptr and dest are not the same.
MOZ_MUST_USE bool load(MemoryAccessDesc& access, RegI32 ptr, AnyReg dest, RegI32 tmp1,
RegI32 tmp2)
{
checkOffset(&access, ptr);
OutOfLineCode* ool = nullptr;
#ifndef WASM_HUGE_MEMORY
if (access.isPlainAsmJS()) {
ool = new (alloc_) AsmJSLoadOOB(access.type(), dest.any());
if (!addOutOfLineCode(ool))
return false;
masm.wasmBoundsCheck(Assembler::AboveOrEqual, ptr.reg, ool->entry());
} else {
masm.wasmBoundsCheck(Assembler::AboveOrEqual, ptr.reg, trap(Trap::OutOfBounds));
}
#endif
#if defined(JS_CODEGEN_X64)
Operand srcAddr(HeapReg, ptr.reg, TimesOne, access.offset());
if (dest.tag == AnyReg::I64)
masm.wasmLoadI64(access, srcAddr, dest.i64().reg);
else
masm.wasmLoad(access, srcAddr, dest.any());
#elif defined(JS_CODEGEN_X86)
Operand srcAddr(ptr.reg, access.offset());
if (dest.tag == AnyReg::I64) {
masm.wasmLoadI64(access, srcAddr, dest.i64().reg);
} else {
bool byteRegConflict = access.byteSize() == 1 && !singleByteRegs_.has(dest.i32().reg);
AnyRegister out = byteRegConflict ? AnyRegister(ScratchRegX86) : dest.any();
masm.wasmLoad(access, srcAddr, out);
if (byteRegConflict)
masm.mov(ScratchRegX86, dest.i32().reg);
}
#elif defined(JS_CODEGEN_ARM)
if (access.offset() != 0)
masm.add32(Imm32(access.offset()), ptr.reg);
bool isSigned = true;
switch (access.type()) {
case Scalar::Uint8:
case Scalar::Uint16:
case Scalar::Uint32: {
isSigned = false;
MOZ_FALLTHROUGH;
case Scalar::Int8:
case Scalar::Int16:
case Scalar::Int32:
Register rt = dest.tag == AnyReg::I64 ? dest.i64().reg.low : dest.i32().reg;
loadI32(access, isSigned, ptr, rt);
if (dest.tag == AnyReg::I64) {
if (isSigned)
masm.ma_asr(Imm32(31), rt, dest.i64().reg.high);
else
masm.move32(Imm32(0), dest.i64().reg.high);
}
break;
}
case Scalar::Int64:
loadI64(access, ptr, dest.i64());
break;
case Scalar::Float32:
loadF32(access, ptr, dest.f32(), tmp1);
break;
case Scalar::Float64:
loadF64(access, ptr, dest.f64(), tmp1, tmp2);
break;
default:
MOZ_CRASH("Compiler bug: unexpected array type");
}
#else
MOZ_CRASH("BaseCompiler platform hook: load");
#endif
if (ool)
masm.bind(ool->rejoin());
return true;
}
// ptr and src must not be the same register.
// This may destroy ptr.
MOZ_MUST_USE bool store(MemoryAccessDesc access, RegI32 ptr, AnyReg src, RegI32 tmp1,
RegI32 tmp2)
{
checkOffset(&access, ptr);
Label rejoin;
#ifndef WASM_HUGE_MEMORY
if (access.isPlainAsmJS())
masm.wasmBoundsCheck(Assembler::AboveOrEqual, ptr.reg, &rejoin);
else
masm.wasmBoundsCheck(Assembler::AboveOrEqual, ptr.reg, trap(Trap::OutOfBounds));
#endif
// Emit the store
#if defined(JS_CODEGEN_X64)
Operand dstAddr(HeapReg, ptr.reg, TimesOne, access.offset());
masm.wasmStore(access, src.any(), dstAddr);
#elif defined(JS_CODEGEN_X86)
Operand dstAddr(ptr.reg, access.offset());
if (access.type() == Scalar::Int64) {
masm.wasmStoreI64(access, src.i64().reg, dstAddr);
} else {
AnyRegister value;
if (src.tag == AnyReg::I64) {
value = AnyRegister(src.i64().reg.low);
} else if (access.byteSize() == 1 && !singleByteRegs_.has(src.i32().reg)) {
masm.mov(src.i32().reg, ScratchRegX86);
value = AnyRegister(ScratchRegX86);
} else {
value = src.any();
}
masm.wasmStore(access, value, dstAddr);
}
#elif defined(JS_CODEGEN_ARM)
if (access.offset() != 0)
masm.add32(Imm32(access.offset()), ptr.reg);
switch (access.type()) {
case Scalar::Uint8:
MOZ_FALLTHROUGH;
case Scalar::Uint16:
MOZ_FALLTHROUGH;
case Scalar::Int8:
MOZ_FALLTHROUGH;
case Scalar::Int16:
MOZ_FALLTHROUGH;
case Scalar::Int32:
MOZ_FALLTHROUGH;
case Scalar::Uint32: {
Register rt = src.tag == AnyReg::I64 ? src.i64().reg.low : src.i32().reg;
storeI32(access, ptr, rt);
break;
}
case Scalar::Int64:
storeI64(access, ptr, src.i64());
break;
case Scalar::Float32:
storeF32(access, ptr, src.f32(), tmp1);
break;
case Scalar::Float64:
storeF64(access, ptr, src.f64(), tmp1, tmp2);
break;
default:
MOZ_CRASH("Compiler bug: unexpected array type");
}
#else
MOZ_CRASH("BaseCompiler platform hook: store");
#endif
if (rejoin.used())
masm.bind(&rejoin);
return true;
}
#ifdef JS_CODEGEN_ARM
void
loadI32(MemoryAccessDesc access, bool isSigned, RegI32 ptr, Register rt) {
if (access.byteSize() > 1 && access.isUnaligned()) {
masm.add32(HeapReg, ptr.reg);
SecondScratchRegisterScope scratch(*this);
masm.emitUnalignedLoad(isSigned, access.byteSize(), ptr.reg, scratch, rt, 0);
} else {
BufferOffset ld =
masm.ma_dataTransferN(js::jit::IsLoad, BitSize(access.byteSize()*8),
isSigned, HeapReg, ptr.reg, rt, Offset, Assembler::Always);
masm.append(access, ld.getOffset(), masm.framePushed());
}
}
void
storeI32(MemoryAccessDesc access, RegI32 ptr, Register rt) {
if (access.byteSize() > 1 && access.isUnaligned()) {
masm.add32(HeapReg, ptr.reg);
masm.emitUnalignedStore(access.byteSize(), ptr.reg, rt, 0);
} else {
BufferOffset st =
masm.ma_dataTransferN(js::jit::IsStore, BitSize(access.byteSize()*8),
IsSigned(false), ptr.reg, HeapReg, rt, Offset,
Assembler::Always);
masm.append(access, st.getOffset(), masm.framePushed());
}
}
void
loadI64(MemoryAccessDesc access, RegI32 ptr, RegI64 dest) {
if (access.isUnaligned()) {
masm.add32(HeapReg, ptr.reg);
SecondScratchRegisterScope scratch(*this);
masm.emitUnalignedLoad(IsSigned(false), ByteSize(4), ptr.reg, scratch, dest.reg.low,
0);
masm.emitUnalignedLoad(IsSigned(false), ByteSize(4), ptr.reg, scratch, dest.reg.high,
4);
} else {
BufferOffset ld;
ld = masm.ma_dataTransferN(js::jit::IsLoad, BitSize(32), IsSigned(false), HeapReg,
ptr.reg, dest.reg.low, Offset, Assembler::Always);
masm.append(access, ld.getOffset(), masm.framePushed());
masm.add32(Imm32(4), ptr.reg);
ld = masm.ma_dataTransferN(js::jit::IsLoad, BitSize(32), IsSigned(false), HeapReg,
ptr.reg, dest.reg.high, Offset, Assembler::Always);
masm.append(access, ld.getOffset(), masm.framePushed());
}
}
void
storeI64(MemoryAccessDesc access, RegI32 ptr, RegI64 src) {
if (access.isUnaligned()) {
masm.add32(HeapReg, ptr.reg);
masm.emitUnalignedStore(ByteSize(4), ptr.reg, src.reg.low, 0);
masm.emitUnalignedStore(ByteSize(4), ptr.reg, src.reg.high, 4);
} else {
BufferOffset st;
st = masm.ma_dataTransferN(js::jit::IsStore, BitSize(32), IsSigned(false), HeapReg,
ptr.reg, src.reg.low, Offset, Assembler::Always);
masm.append(access, st.getOffset(), masm.framePushed());
masm.add32(Imm32(4), ptr.reg);
st = masm.ma_dataTransferN(js::jit::IsStore, BitSize(32), IsSigned(false), HeapReg,
ptr.reg, src.reg.high, Offset, Assembler::Always);
masm.append(access, st.getOffset(), masm.framePushed());
}
}
void
loadF32(MemoryAccessDesc access, RegI32 ptr, RegF32 dest, RegI32 tmp1) {
masm.add32(HeapReg, ptr.reg);
if (access.isUnaligned()) {
SecondScratchRegisterScope scratch(*this);
masm.emitUnalignedLoad(IsSigned(false), ByteSize(4), ptr.reg, scratch, tmp1.reg, 0);
masm.ma_vxfer(tmp1.reg, dest.reg);
} else {
BufferOffset ld = masm.ma_vldr(VFPAddr(ptr.reg, VFPOffImm(0)), dest.reg,
Assembler::Always);
masm.append(access, ld.getOffset(), masm.framePushed());
}
}
void
storeF32(MemoryAccessDesc access, RegI32 ptr, RegF32 src, RegI32 tmp1) {
masm.add32(HeapReg, ptr.reg);
if (access.isUnaligned()) {
masm.ma_vxfer(src.reg, tmp1.reg);
masm.emitUnalignedStore(ByteSize(4), ptr.reg, tmp1.reg, 0);
} else {
BufferOffset st =
masm.ma_vstr(src.reg, VFPAddr(ptr.reg, VFPOffImm(0)), Assembler::Always);
masm.append(access, st.getOffset(), masm.framePushed());
}
}
void
loadF64(MemoryAccessDesc access, RegI32 ptr, RegF64 dest, RegI32 tmp1, RegI32 tmp2) {
masm.add32(HeapReg, ptr.reg);
if (access.isUnaligned()) {
SecondScratchRegisterScope scratch(*this);
masm.emitUnalignedLoad(IsSigned(false), ByteSize(4), ptr.reg, scratch, tmp1.reg, 0);
masm.emitUnalignedLoad(IsSigned(false), ByteSize(4), ptr.reg, scratch, tmp2.reg, 4);
masm.ma_vxfer(tmp1.reg, tmp2.reg, dest.reg);
} else {
BufferOffset ld = masm.ma_vldr(VFPAddr(ptr.reg, VFPOffImm(0)), dest.reg,
Assembler::Always);
masm.append(access, ld.getOffset(), masm.framePushed());
}
}
void
storeF64(MemoryAccessDesc access, RegI32 ptr, RegF64 src, RegI32 tmp1, RegI32 tmp2) {
masm.add32(HeapReg, ptr.reg);
if (access.isUnaligned()) {
masm.ma_vxfer(src.reg, tmp1.reg, tmp2.reg);
masm.emitUnalignedStore(ByteSize(4), ptr.reg, tmp1.reg, 0);
masm.emitUnalignedStore(ByteSize(4), ptr.reg, tmp2.reg, 4);
} else {
BufferOffset st =
masm.ma_vstr(src.reg, VFPAddr(ptr.reg, VFPOffImm(0)), Assembler::Always);
masm.append(access, st.getOffset(), masm.framePushed());
}
}
#endif // JS_CODEGEN_ARM
////////////////////////////////////////////////////////////
// Generally speaking, ABOVE this point there should be no value
// stack manipulation (calls to popI32 etc).
// Generally speaking, BELOW this point there should be no
// platform dependencies. We make an exception for x86 register
// targeting, which is not too hard to keep clean.
////////////////////////////////////////////////////////////
//
// Sundry wrappers.
void pop2xI32(RegI32* r0, RegI32* r1) {
*r1 = popI32();
*r0 = popI32();
}
RegI32 popI32ToSpecific(RegI32 specific) {
freeI32(specific);
return popI32(specific);
}
void pop2xI64(RegI64* r0, RegI64* r1) {
*r1 = popI64();
*r0 = popI64();
}
RegI64 popI64ToSpecific(RegI64 specific) {
freeI64(specific);
return popI64(specific);
}
void pop2xF32(RegF32* r0, RegF32* r1) {
*r1 = popF32();
*r0 = popF32();
}
void pop2xF64(RegF64* r0, RegF64* r1) {
*r1 = popF64();
*r0 = popF64();
}
////////////////////////////////////////////////////////////
//
// Sundry helpers.
uint32_t readCallSiteLineOrBytecode() {
if (!func_.callSiteLineNums().empty())
return func_.callSiteLineNums()[lastReadCallSite_++];
return trapOffset().bytecodeOffset;
}
bool done() const {
return iter_.done();
}
bool isCompilingAsmJS() const {
return mg_.kind == ModuleKind::AsmJS;
}
TrapOffset trapOffset() const {
return iter_.trapOffset();
}
Maybe<TrapOffset> trapIfNotAsmJS() const {
return isCompilingAsmJS() ? Nothing() : Some(trapOffset());
}
TrapDesc trap(Trap t) const {
return TrapDesc(trapOffset(), t, masm.framePushed());
}
//////////////////////////////////////////////////////////////////////
MOZ_MUST_USE bool emitBody();
MOZ_MUST_USE bool emitBlock();
MOZ_MUST_USE bool emitLoop();
MOZ_MUST_USE bool emitIf();
MOZ_MUST_USE bool emitElse();
MOZ_MUST_USE bool emitEnd();
MOZ_MUST_USE bool emitBr();
MOZ_MUST_USE bool emitBrIf();
MOZ_MUST_USE bool emitBrTable();
MOZ_MUST_USE bool emitDrop();
MOZ_MUST_USE bool emitReturn();
MOZ_MUST_USE bool emitCallArgs(const ValTypeVector& args, FunctionCall& baselineCall);
MOZ_MUST_USE bool emitCall();
MOZ_MUST_USE bool emitCallIndirect(bool oldStyle);
MOZ_MUST_USE bool emitCommonMathCall(uint32_t lineOrBytecode, SymbolicAddress callee,
ValTypeVector& signature, ExprType retType);
MOZ_MUST_USE bool emitUnaryMathBuiltinCall(SymbolicAddress callee, ValType operandType);
MOZ_MUST_USE bool emitBinaryMathBuiltinCall(SymbolicAddress callee, ValType operandType);
#ifdef INT_DIV_I64_CALLOUT
MOZ_MUST_USE bool emitDivOrModI64BuiltinCall(SymbolicAddress callee, ValType operandType);
#endif
MOZ_MUST_USE bool emitGetLocal();
MOZ_MUST_USE bool emitSetLocal();
MOZ_MUST_USE bool emitTeeLocal();
MOZ_MUST_USE bool emitGetGlobal();
MOZ_MUST_USE bool emitSetGlobal();
MOZ_MUST_USE bool emitTeeGlobal();
MOZ_MUST_USE bool emitLoad(ValType type, Scalar::Type viewType);
MOZ_MUST_USE bool emitStore(ValType resultType, Scalar::Type viewType);
MOZ_MUST_USE bool emitTeeStore(ValType resultType, Scalar::Type viewType);
MOZ_MUST_USE bool emitTeeStoreWithCoercion(ValType resultType, Scalar::Type viewType);
MOZ_MUST_USE bool emitSelect();
void endBlock(ExprType type, bool isFunctionBody);
void endLoop(ExprType type);
void endIfThen();
void endIfThenElse(ExprType type);
void doReturn(ExprType returnType);
void pushReturned(const FunctionCall& call, ExprType type);
void emitCompareI32(JSOp compareOp, MCompare::CompareType compareType);
void emitCompareI64(JSOp compareOp, MCompare::CompareType compareType);
void emitCompareF32(JSOp compareOp, MCompare::CompareType compareType);
void emitCompareF64(JSOp compareOp, MCompare::CompareType compareType);
void emitAddI32();
void emitAddI64();
void emitAddF64();
void emitAddF32();
void emitSubtractI32();
void emitSubtractI64();
void emitSubtractF32();
void emitSubtractF64();
void emitMultiplyI32();
void emitMultiplyI64();
void emitMultiplyF32();
void emitMultiplyF64();
void emitQuotientI32();
void emitQuotientU32();
void emitRemainderI32();
void emitRemainderU32();
#ifndef INT_DIV_I64_CALLOUT
void emitQuotientI64();
void emitQuotientU64();
void emitRemainderI64();
void emitRemainderU64();
#endif
void emitDivideF32();
void emitDivideF64();
void emitMinI32();
void emitMaxI32();
void emitMinMaxI32(Assembler::Condition cond);
void emitMinF32();
void emitMaxF32();
void emitMinF64();
void emitMaxF64();
void emitCopysignF32();
void emitCopysignF64();
void emitOrI32();
void emitOrI64();
void emitAndI32();
void emitAndI64();
void emitXorI32();
void emitXorI64();
void emitShlI32();
void emitShlI64();
void emitShrI32();
void emitShrI64();
void emitShrU32();
void emitShrU64();
void emitRotrI32();
void emitRotrI64();
void emitRotlI32();
void emitRotlI64();
void emitEqzI32();
void emitEqzI64();
void emitClzI32();
void emitClzI64();
void emitCtzI32();
void emitCtzI64();
void emitPopcntI32();
void emitPopcntI64();
void emitBitNotI32();
void emitAbsI32();
void emitAbsF32();
void emitAbsF64();
void emitNegateI32();
void emitNegateF32();
void emitNegateF64();
void emitSqrtF32();
void emitSqrtF64();
template<bool isUnsigned> MOZ_MUST_USE bool emitTruncateF32ToI32();
template<bool isUnsigned> MOZ_MUST_USE bool emitTruncateF64ToI32();
#ifdef FLOAT_TO_I64_CALLOUT
MOZ_MUST_USE bool emitConvertFloatingToInt64Callout(SymbolicAddress callee, ValType operandType,
ValType resultType);
#else
template<bool isUnsigned> MOZ_MUST_USE bool emitTruncateF32ToI64();
template<bool isUnsigned> MOZ_MUST_USE bool emitTruncateF64ToI64();
#endif
void emitWrapI64ToI32();
void emitExtendI32ToI64();
void emitExtendU32ToI64();
void emitReinterpretF32AsI32();
void emitReinterpretF64AsI64();
void emitConvertF64ToF32();
void emitConvertI32ToF32();
void emitConvertU32ToF32();
void emitConvertF32ToF64();
void emitConvertI32ToF64();
void emitConvertU32ToF64();
#ifdef I64_TO_FLOAT_CALLOUT
MOZ_MUST_USE bool emitConvertInt64ToFloatingCallout(SymbolicAddress callee, ValType operandType,
ValType resultType);
#else
void emitConvertI64ToF32();
void emitConvertU64ToF32();
void emitConvertI64ToF64();
void emitConvertU64ToF64();
#endif
void emitReinterpretI32AsF32();
void emitReinterpretI64AsF64();
MOZ_MUST_USE bool emitGrowMemory();
MOZ_MUST_USE bool emitCurrentMemory();
};
void
BaseCompiler::emitAddI32()
{
int32_t c;
if (popConstI32(c)) {
RegI32 r = popI32();
masm.add32(Imm32(c), r.reg);
pushI32(r);
} else {
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.add32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
}
void
BaseCompiler::emitAddI64()
{
// TODO / OPTIMIZE: Ditto check for constant here (Bug 1316803)
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.add64(r1.reg, r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitAddF64()
{
// TODO / OPTIMIZE: Ditto check for constant here (Bug 1316803)
RegF64 r0, r1;
pop2xF64(&r0, &r1);
masm.addDouble(r1.reg, r0.reg);
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitAddF32()
{
// TODO / OPTIMIZE: Ditto check for constant here (Bug 1316803)
RegF32 r0, r1;
pop2xF32(&r0, &r1);
masm.addFloat32(r1.reg, r0.reg);
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitSubtractI32()
{
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.sub32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitSubtractI64()
{
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.sub64(r1.reg, r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitSubtractF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
masm.subFloat32(r1.reg, r0.reg);
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitSubtractF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
masm.subDouble(r1.reg, r0.reg);
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitMultiplyI32()
{
// TODO / OPTIMIZE: Multiplication by constant is common (Bug 1275442, 1316803)
RegI32 r0, r1;
pop2xI32ForIntMulDiv(&r0, &r1);
masm.mul32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitMultiplyI64()
{
// TODO / OPTIMIZE: Multiplication by constant is common (Bug 1275442, 1316803)
RegI64 r0, r1;
RegI32 temp;
#if defined(JS_CODEGEN_X64)
// srcDest must be rax, and rdx will be clobbered.
need2xI64(specific_rax, specific_rdx);
r1 = popI64();
r0 = popI64ToSpecific(specific_rax);
freeI64(specific_rdx);
#elif defined(JS_CODEGEN_X86)
need2xI32(specific_eax, specific_edx);
r1 = popI64();
r0 = popI64ToSpecific(RegI64(Register64(specific_edx.reg, specific_eax.reg)));
temp = needI32();
#else
pop2xI64(&r0, &r1);
temp = needI32();
#endif
masm.mul64(r1.reg, r0.reg, temp.reg);
if (temp.reg != Register::Invalid())
freeI32(temp);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitMultiplyF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
masm.mulFloat32(r1.reg, r0.reg);
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitMultiplyF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
masm.mulDouble(r1.reg, r0.reg);
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitQuotientI32()
{
// TODO / OPTIMIZE: Fast case if lhs >= 0 and rhs is power of two (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForIntMulDiv(&r0, &r1);
Label done;
checkDivideByZeroI32(r1, r0, &done);
checkDivideSignedOverflowI32(r1, r0, &done, ZeroOnOverflow(false));
masm.quotient32(r1.reg, r0.reg, IsUnsigned(false));
masm.bind(&done);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitQuotientU32()
{
// TODO / OPTIMIZE: Fast case if lhs >= 0 and rhs is power of two (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForIntMulDiv(&r0, &r1);
Label done;
checkDivideByZeroI32(r1, r0, &done);
masm.quotient32(r1.reg, r0.reg, IsUnsigned(true));
masm.bind(&done);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitRemainderI32()
{
// TODO / OPTIMIZE: Fast case if lhs >= 0 and rhs is power of two (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForIntMulDiv(&r0, &r1);
Label done;
checkDivideByZeroI32(r1, r0, &done);
checkDivideSignedOverflowI32(r1, r0, &done, ZeroOnOverflow(true));
masm.remainder32(r1.reg, r0.reg, IsUnsigned(false));
masm.bind(&done);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitRemainderU32()
{
// TODO / OPTIMIZE: Fast case if lhs >= 0 and rhs is power of two (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForIntMulDiv(&r0, &r1);
Label done;
checkDivideByZeroI32(r1, r0, &done);
masm.remainder32(r1.reg, r0.reg, IsUnsigned(true));
masm.bind(&done);
freeI32(r1);
pushI32(r0);
}
#ifndef INT_DIV_I64_CALLOUT
void
BaseCompiler::emitQuotientI64()
{
# ifdef JS_PUNBOX64
RegI64 r0, r1;
pop2xI64ForIntDiv(&r0, &r1);
quotientI64(r1, r0, IsUnsigned(false));
freeI64(r1);
pushI64(r0);
# else
MOZ_CRASH("BaseCompiler platform hook: emitQuotientI64");
# endif
}
void
BaseCompiler::emitQuotientU64()
{
# ifdef JS_PUNBOX64
RegI64 r0, r1;
pop2xI64ForIntDiv(&r0, &r1);
quotientI64(r1, r0, IsUnsigned(true));
freeI64(r1);
pushI64(r0);
# else
MOZ_CRASH("BaseCompiler platform hook: emitQuotientU64");
# endif
}
void
BaseCompiler::emitRemainderI64()
{
# ifdef JS_PUNBOX64
RegI64 r0, r1;
pop2xI64ForIntDiv(&r0, &r1);
remainderI64(r1, r0, IsUnsigned(false));
freeI64(r1);
pushI64(r0);
# else
MOZ_CRASH("BaseCompiler platform hook: emitRemainderI64");
# endif
}
void
BaseCompiler::emitRemainderU64()
{
# ifdef JS_PUNBOX64
RegI64 r0, r1;
pop2xI64ForIntDiv(&r0, &r1);
remainderI64(r1, r0, IsUnsigned(true));
freeI64(r1);
pushI64(r0);
# else
MOZ_CRASH("BaseCompiler platform hook: emitRemainderU64");
# endif
}
#endif // INT_DIV_I64_CALLOUT
void
BaseCompiler::emitDivideF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
masm.divFloat32(r1.reg, r0.reg);
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitDivideF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
masm.divDouble(r1.reg, r0.reg);
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitMinI32()
{
emitMinMaxI32(Assembler::LessThan);
}
void
BaseCompiler::emitMaxI32()
{
emitMinMaxI32(Assembler::GreaterThan);
}
void
BaseCompiler::emitMinMaxI32(Assembler::Condition cond)
{
Label done;
RegI32 r0, r1;
pop2xI32(&r0, &r1);
// TODO / OPTIMIZE (bug 1316823): Use conditional move on some platforms?
masm.branch32(cond, r0.reg, r1.reg, &done);
moveI32(r1, r0);
masm.bind(&done);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitMinF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
if (!isCompilingAsmJS()) {
// Convert signaling NaN to quiet NaNs.
//
// TODO / OPTIMIZE (bug 1316824): Don't do this if one of the operands
// is known to be a constant.
ScratchF32 zero(*this);
masm.loadConstantFloat32(0.f, zero);
masm.subFloat32(zero, r0.reg);
masm.subFloat32(zero, r1.reg);
}
masm.minFloat32(r1.reg, r0.reg, HandleNaNSpecially(true));
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitMaxF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
if (!isCompilingAsmJS()) {
// Convert signaling NaN to quiet NaNs.
//
// TODO / OPTIMIZE (bug 1316824): see comment in emitMinF32.
ScratchF32 zero(*this);
masm.loadConstantFloat32(0.f, zero);
masm.subFloat32(zero, r0.reg);
masm.subFloat32(zero, r1.reg);
}
masm.maxFloat32(r1.reg, r0.reg, HandleNaNSpecially(true));
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitMinF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
if (!isCompilingAsmJS()) {
// Convert signaling NaN to quiet NaNs.
//
// TODO / OPTIMIZE (bug 1316824): see comment in emitMinF32.
ScratchF64 zero(*this);
masm.loadConstantDouble(0, zero);
masm.subDouble(zero, r0.reg);
masm.subDouble(zero, r1.reg);
}
masm.minDouble(r1.reg, r0.reg, HandleNaNSpecially(true));
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitMaxF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
if (!isCompilingAsmJS()) {
// Convert signaling NaN to quiet NaNs.
//
// TODO / OPTIMIZE (bug 1316824): see comment in emitMinF32.
ScratchF64 zero(*this);
masm.loadConstantDouble(0, zero);
masm.subDouble(zero, r0.reg);
masm.subDouble(zero, r1.reg);
}
masm.maxDouble(r1.reg, r0.reg, HandleNaNSpecially(true));
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitCopysignF32()
{
RegF32 r0, r1;
pop2xF32(&r0, &r1);
RegI32 i0 = needI32();
RegI32 i1 = needI32();
masm.moveFloat32ToGPR(r0.reg, i0.reg);
masm.moveFloat32ToGPR(r1.reg, i1.reg);
masm.and32(Imm32(INT32_MAX), i0.reg);
masm.and32(Imm32(INT32_MIN), i1.reg);
masm.or32(i1.reg, i0.reg);
masm.moveGPRToFloat32(i0.reg, r0.reg);
freeI32(i0);
freeI32(i1);
freeF32(r1);
pushF32(r0);
}
void
BaseCompiler::emitCopysignF64()
{
RegF64 r0, r1;
pop2xF64(&r0, &r1);
RegI64 x0 = needI64();
RegI64 x1 = needI64();
reinterpretF64AsI64(r0, x0);
reinterpretF64AsI64(r1, x1);
masm.and64(Imm64(INT64_MAX), x0.reg);
masm.and64(Imm64(INT64_MIN), x1.reg);
masm.or64(x1.reg, x0.reg);
reinterpretI64AsF64(x0, r0);
freeI64(x0);
freeI64(x1);
freeF64(r1);
pushF64(r0);
}
void
BaseCompiler::emitOrI32()
{
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.or32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitOrI64()
{
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.or64(r1.reg, r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitAndI32()
{
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.and32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitAndI64()
{
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.and64(r1.reg, r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitXorI32()
{
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.xor32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitXorI64()
{
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.xor64(r1.reg, r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitShlI32()
{
int32_t c;
if (popConstI32(c)) {
RegI32 r = popI32();
masm.lshift32(Imm32(c & 31), r.reg);
pushI32(r);
} else {
RegI32 r0, r1;
pop2xI32ForShiftOrRotate(&r0, &r1);
maskShiftCount32(r1);
masm.lshift32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
}
void
BaseCompiler::emitShlI64()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI64 r0, r1;
pop2xI64ForShiftOrRotate(&r0, &r1);
masm.lshift64(lowPart(r1), r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitShrI32()
{
int32_t c;
if (popConstI32(c)) {
RegI32 r = popI32();
masm.rshift32Arithmetic(Imm32(c & 31), r.reg);
pushI32(r);
} else {
RegI32 r0, r1;
pop2xI32ForShiftOrRotate(&r0, &r1);
maskShiftCount32(r1);
masm.rshift32Arithmetic(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
}
void
BaseCompiler::emitShrI64()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI64 r0, r1;
pop2xI64ForShiftOrRotate(&r0, &r1);
masm.rshift64Arithmetic(lowPart(r1), r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitShrU32()
{
int32_t c;
if (popConstI32(c)) {
RegI32 r = popI32();
masm.rshift32(Imm32(c & 31), r.reg);
pushI32(r);
} else {
RegI32 r0, r1;
pop2xI32ForShiftOrRotate(&r0, &r1);
maskShiftCount32(r1);
masm.rshift32(r1.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
}
void
BaseCompiler::emitShrU64()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI64 r0, r1;
pop2xI64ForShiftOrRotate(&r0, &r1);
masm.rshift64(lowPart(r1), r0.reg);
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitRotrI32()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForShiftOrRotate(&r0, &r1);
masm.rotateRight(r1.reg, r0.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitRotrI64()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI64 r0, r1;
pop2xI64ForShiftOrRotate(&r0, &r1);
masm.rotateRight64(lowPart(r1), r0.reg, r0.reg, maybeHighPart(r1));
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitRotlI32()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI32 r0, r1;
pop2xI32ForShiftOrRotate(&r0, &r1);
masm.rotateLeft(r1.reg, r0.reg, r0.reg);
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitRotlI64()
{
// TODO / OPTIMIZE: Constant rhs (Bug 1316803)
RegI64 r0, r1;
pop2xI64ForShiftOrRotate(&r0, &r1);
masm.rotateLeft64(lowPart(r1), r0.reg, r0.reg, maybeHighPart(r1));
freeI64(r1);
pushI64(r0);
}
void
BaseCompiler::emitEqzI32()
{
// TODO / OPTIMIZE: Boolean evaluation for control (Bug 1286816)
RegI32 r0 = popI32();
masm.cmp32Set(Assembler::Equal, r0.reg, Imm32(0), r0.reg);
pushI32(r0);
}
void
BaseCompiler::emitEqzI64()
{
// TODO / OPTIMIZE: Boolean evaluation for control (Bug 1286816)
// TODO / OPTIMIZE: Avoid the temp register (Bug 1316848)
RegI64 r0 = popI64();
RegI64 r1 = needI64();
setI64(0, r1);
RegI32 i0 = fromI64(r0);
cmp64Set(Assembler::Equal, r0, r1, i0);
freeI64(r1);
freeI64Except(r0, i0);
pushI32(i0);
}
void
BaseCompiler::emitClzI32()
{
RegI32 r0 = popI32();
masm.clz32(r0.reg, r0.reg, IsKnownNotZero(false));
pushI32(r0);
}
void
BaseCompiler::emitClzI64()
{
RegI64 r0 = popI64();
masm.clz64(r0.reg, lowPart(r0));
maybeClearHighPart(r0);
pushI64(r0);
}
void
BaseCompiler::emitCtzI32()
{
RegI32 r0 = popI32();
masm.ctz32(r0.reg, r0.reg, IsKnownNotZero(false));
pushI32(r0);
}
void
BaseCompiler::emitCtzI64()
{
RegI64 r0 = popI64();
masm.ctz64(r0.reg, lowPart(r0));
maybeClearHighPart(r0);
pushI64(r0);
}
void
BaseCompiler::emitPopcntI32()
{
RegI32 r0 = popI32();
if (popcnt32NeedsTemp()) {
RegI32 tmp = needI32();
masm.popcnt32(r0.reg, r0.reg, tmp.reg);
freeI32(tmp);
} else {
masm.popcnt32(r0.reg, r0.reg, invalidI32().reg);
}
pushI32(r0);
}
void
BaseCompiler::emitPopcntI64()
{
RegI64 r0 = popI64();
if (popcnt64NeedsTemp()) {
RegI32 tmp = needI32();
masm.popcnt64(r0.reg, r0.reg, tmp.reg);
freeI32(tmp);
} else {
masm.popcnt64(r0.reg, r0.reg, invalidI32().reg);
}
pushI64(r0);
}
void
BaseCompiler::emitBitNotI32()
{
RegI32 r0 = popI32();
masm.not32(r0.reg);
pushI32(r0);
}
void
BaseCompiler::emitAbsI32()
{
// TODO / OPTIMIZE (bug 1316823): Use conditional move on some platforms?
Label nonnegative;
RegI32 r0 = popI32();
masm.branch32(Assembler::GreaterThanOrEqual, r0.reg, Imm32(0), &nonnegative);
masm.neg32(r0.reg);
masm.bind(&nonnegative);
pushI32(r0);
}
void
BaseCompiler::emitAbsF32()
{
RegF32 r0 = popF32();
masm.absFloat32(r0.reg, r0.reg);
pushF32(r0);
}
void
BaseCompiler::emitAbsF64()
{
RegF64 r0 = popF64();
masm.absDouble(r0.reg, r0.reg);
pushF64(r0);
}
void
BaseCompiler::emitNegateI32()
{
RegI32 r0 = popI32();
masm.neg32(r0.reg);
pushI32(r0);
}
void
BaseCompiler::emitNegateF32()
{
RegF32 r0 = popF32();
masm.negateFloat(r0.reg);
pushF32(r0);
}
void
BaseCompiler::emitNegateF64()
{
RegF64 r0 = popF64();
masm.negateDouble(r0.reg);
pushF64(r0);
}
void
BaseCompiler::emitSqrtF32()
{
RegF32 r0 = popF32();
masm.sqrtFloat32(r0.reg, r0.reg);
pushF32(r0);
}
void
BaseCompiler::emitSqrtF64()
{
RegF64 r0 = popF64();
masm.sqrtDouble(r0.reg, r0.reg);
pushF64(r0);
}
template<bool isUnsigned>
bool
BaseCompiler::emitTruncateF32ToI32()
{
RegF32 r0 = popF32();
RegI32 i0 = needI32();
if (!truncateF32ToI32(r0, i0, isUnsigned))
return false;
freeF32(r0);
pushI32(i0);
return true;
}
template<bool isUnsigned>
bool
BaseCompiler::emitTruncateF64ToI32()
{
RegF64 r0 = popF64();
RegI32 i0 = needI32();
if (!truncateF64ToI32(r0, i0, isUnsigned))
return false;
freeF64(r0);
pushI32(i0);
return true;
}
#ifndef FLOAT_TO_I64_CALLOUT
template<bool isUnsigned>
bool
BaseCompiler::emitTruncateF32ToI64()
{
RegF32 r0 = popF32();
RegI64 x0 = needI64();
if (isUnsigned) {
RegF64 tmp = needF64();
if (!truncateF32ToI64(r0, x0, isUnsigned, tmp))
return false;
freeF64(tmp);
} else {
if (!truncateF32ToI64(r0, x0, isUnsigned, invalidF64()))
return false;
}
freeF32(r0);
pushI64(x0);
return true;
}
template<bool isUnsigned>
bool
BaseCompiler::emitTruncateF64ToI64()
{
RegF64 r0 = popF64();
RegI64 x0 = needI64();
if (isUnsigned) {
RegF64 tmp = needF64();
if (!truncateF64ToI64(r0, x0, isUnsigned, tmp))
return false;
freeF64(tmp);
} else {
if (!truncateF64ToI64(r0, x0, isUnsigned, invalidF64()))
return false;
}
freeF64(r0);
pushI64(x0);
return true;
}
#endif // FLOAT_TO_I64_CALLOUT
void
BaseCompiler::emitWrapI64ToI32()
{
RegI64 r0 = popI64();
RegI32 i0 = fromI64(r0);
wrapI64ToI32(r0, i0);
freeI64Except(r0, i0);
pushI32(i0);
}
void
BaseCompiler::emitExtendI32ToI64()
{
RegI64 x0 = popI32ForSignExtendI64();
RegI32 r0 = RegI32(lowPart(x0));
signExtendI32ToI64(r0, x0);
pushI64(x0);
// Note: no need to free r0, since it is part of x0
}
void
BaseCompiler::emitExtendU32ToI64()
{
RegI32 r0 = popI32();
RegI64 x0 = widenI32(r0);
extendU32ToI64(r0, x0);
pushI64(x0);
// Note: no need to free r0, since it is part of x0
}
void
BaseCompiler::emitReinterpretF32AsI32()
{
RegF32 r0 = popF32();
RegI32 i0 = needI32();
masm.moveFloat32ToGPR(r0.reg, i0.reg);
freeF32(r0);
pushI32(i0);
}
void
BaseCompiler::emitReinterpretF64AsI64()
{
RegF64 r0 = popF64();
RegI64 x0 = needI64();
reinterpretF64AsI64(r0, x0);
freeF64(r0);
pushI64(x0);
}
void
BaseCompiler::emitConvertF64ToF32()
{
RegF64 r0 = popF64();
RegF32 f0 = needF32();
masm.convertDoubleToFloat32(r0.reg, f0.reg);
freeF64(r0);
pushF32(f0);
}
void
BaseCompiler::emitConvertI32ToF32()
{
RegI32 r0 = popI32();
RegF32 f0 = needF32();
masm.convertInt32ToFloat32(r0.reg, f0.reg);
freeI32(r0);
pushF32(f0);
}
void
BaseCompiler::emitConvertU32ToF32()
{
RegI32 r0 = popI32();
RegF32 f0 = needF32();
masm.convertUInt32ToFloat32(r0.reg, f0.reg);
freeI32(r0);
pushF32(f0);
}
#ifndef I64_TO_FLOAT_CALLOUT
void
BaseCompiler::emitConvertI64ToF32()
{
RegI64 r0 = popI64();
RegF32 f0 = needF32();
convertI64ToF32(r0, IsUnsigned(false), f0, RegI32());
freeI64(r0);
pushF32(f0);
}
void
BaseCompiler::emitConvertU64ToF32()
{
RegI64 r0 = popI64();
RegF32 f0 = needF32();
RegI32 temp;
if (convertI64ToFloatNeedsTemp(IsUnsigned(true)))
temp = needI32();
convertI64ToF32(r0, IsUnsigned(true), f0, temp);
if (temp.reg != Register::Invalid())
freeI32(temp);
freeI64(r0);
pushF32(f0);
}
#endif
void
BaseCompiler::emitConvertF32ToF64()
{
RegF32 r0 = popF32();
RegF64 d0 = needF64();
masm.convertFloat32ToDouble(r0.reg, d0.reg);
freeF32(r0);
pushF64(d0);
}
void
BaseCompiler::emitConvertI32ToF64()
{
RegI32 r0 = popI32();
RegF64 d0 = needF64();
masm.convertInt32ToDouble(r0.reg, d0.reg);
freeI32(r0);
pushF64(d0);
}
void
BaseCompiler::emitConvertU32ToF64()
{
RegI32 r0 = popI32();
RegF64 d0 = needF64();
masm.convertUInt32ToDouble(r0.reg, d0.reg);
freeI32(r0);
pushF64(d0);
}
#ifndef I64_TO_FLOAT_CALLOUT
void
BaseCompiler::emitConvertI64ToF64()
{
RegI64 r0 = popI64();
RegF64 d0 = needF64();
convertI64ToF64(r0, IsUnsigned(false), d0, RegI32());
freeI64(r0);
pushF64(d0);
}
void
BaseCompiler::emitConvertU64ToF64()
{
RegI64 r0 = popI64();
RegF64 d0 = needF64();
RegI32 temp;
if (convertI64ToFloatNeedsTemp(IsUnsigned(true)))
temp = needI32();
convertI64ToF64(r0, IsUnsigned(true), d0, temp);
if (temp.reg != Register::Invalid())
freeI32(temp);
freeI64(r0);
pushF64(d0);
}
#endif // I64_TO_FLOAT_CALLOUT
void
BaseCompiler::emitReinterpretI32AsF32()
{
RegI32 r0 = popI32();
RegF32 f0 = needF32();
masm.moveGPRToFloat32(r0.reg, f0.reg);
freeI32(r0);
pushF32(f0);
}
void
BaseCompiler::emitReinterpretI64AsF64()
{
RegI64 r0 = popI64();
RegF64 d0 = needF64();
reinterpretI64AsF64(r0, d0);
freeI64(r0);
pushF64(d0);
}
// For blocks and loops and ifs:
//
// - Sync the value stack before going into the block in order to simplify exit
// from the block: all exits from the block can assume that there are no
// live registers except the one carrying the exit value.
// - The block can accumulate a number of dead values on the stacks, so when
// branching out of the block or falling out at the end be sure to
// pop the appropriate stacks back to where they were on entry, while
// preserving the exit value.
// - A continue branch in a loop is much like an exit branch, but the branch
// value must not be preserved.
// - The exit value is always in a designated join register (type dependent).
bool
BaseCompiler::emitBlock()
{
if (!iter_.readBlock())
return false;
UniquePooledLabel blockEnd(newLabel());
if (!blockEnd)
return false;
if (!deadCode_)
sync(); // Simplifies branching out from block
return pushControl(&blockEnd);
}
void
BaseCompiler::endBlock(ExprType type, bool isFunctionBody)
{
Control& block = controlItem(0);
// Save the value.
AnyReg r;
if (!deadCode_ && !IsVoid(type))
r = popJoinReg();
// Leave the block.
popStackOnBlockExit(block.framePushed);
// Bind after cleanup: branches out will have popped the stack.
if (block.label->used()) {
masm.bind(block.label);
if (deadCode_ && !IsVoid(type))
r = allocJoinReg(type);
deadCode_ = false;
}
MOZ_ASSERT(stk_.length() == block.stackSize);
// Retain the value stored in joinReg by all paths.
if (!deadCode_) {
if (!IsVoid(type))
pushJoinReg(r);
if (isFunctionBody)
doReturn(func_.sig().ret());
}
popControl();
}
bool
BaseCompiler::emitLoop()
{
if (!iter_.readLoop())
return false;
UniquePooledLabel blockCont(newLabel());
if (!blockCont)
return false;
if (!deadCode_)
sync(); // Simplifies branching out from block
if (!pushControl(&blockCont))
return false;
if (!deadCode_) {
masm.bind(controlItem(0).label);
addInterruptCheck();
}
return true;
}
void
BaseCompiler::endLoop(ExprType type)
{
Control& block = controlItem(0);
AnyReg r;
if (!deadCode_ && !IsVoid(type))
r = popJoinReg();
popStackOnBlockExit(block.framePushed);
MOZ_ASSERT(stk_.length() == block.stackSize);
popControl();
// Retain the value stored in joinReg by all paths.
if (!deadCode_ && !IsVoid(type))
pushJoinReg(r);
}
// The bodies of the "then" and "else" arms can be arbitrary sequences
// of expressions, they push control and increment the nesting and can
// even be targeted by jumps. A branch to the "if" block branches to
// the exit of the if, ie, it's like "break". Consider:
//
// (func (result i32)
// (if (i32.const 1)
// (begin (br 1) (unreachable))
// (begin (unreachable)))
// (i32.const 1))
//
// The branch causes neither of the unreachable expressions to be
// evaluated.
bool
BaseCompiler::emitIf()
{
Nothing unused_cond;
if (!iter_.readIf(&unused_cond))
return false;
UniquePooledLabel endLabel(newLabel());
if (!endLabel)
return false;
UniquePooledLabel elseLabel(newLabel());
if (!elseLabel)
return false;
RegI32 rc;
if (!deadCode_) {
rc = popI32();
sync(); // Simplifies branching out from the arms
}
if (!pushControl(&endLabel, &elseLabel))
return false;
if (!deadCode_) {
masm.branch32(Assembler::Equal, rc.reg, Imm32(0), controlItem(0).otherLabel);
freeI32(rc);
}
return true;
}
void
BaseCompiler::endIfThen()
{
Control& ifThen = controlItem(0);
popStackOnBlockExit(ifThen.framePushed);
if (ifThen.otherLabel->used())
masm.bind(ifThen.otherLabel);
if (ifThen.label->used())
masm.bind(ifThen.label);
deadCode_ = ifThen.deadOnArrival;
MOZ_ASSERT(stk_.length() == ifThen.stackSize);
popControl();
}
bool
BaseCompiler::emitElse()
{
ExprType thenType;
Nothing unused_thenValue;
if (!iter_.readElse(&thenType, &unused_thenValue))
return false;
Control& ifThenElse = controlItem(0);
// See comment in endIfThenElse, below.
// Exit the "then" branch.
ifThenElse.deadThenBranch = deadCode_;
AnyReg r;
if (!deadCode_ && !IsVoid(thenType))
r = popJoinReg();
popStackOnBlockExit(ifThenElse.framePushed);
if (!deadCode_)
masm.jump(ifThenElse.label);
if (ifThenElse.otherLabel->used())
masm.bind(ifThenElse.otherLabel);
// Reset to the "else" branch.
MOZ_ASSERT(stk_.length() == ifThenElse.stackSize);
if (!deadCode_ && !IsVoid(thenType))
freeJoinReg(r);
deadCode_ = ifThenElse.deadOnArrival;
return true;
}
void
BaseCompiler::endIfThenElse(ExprType type)
{
Control& ifThenElse = controlItem(0);
// The expression type is not a reliable guide to what we'll find
// on the stack, we could have (if E (i32.const 1) (unreachable))
// in which case the "else" arm is AnyType but the type of the
// full expression is I32. So restore whatever's there, not what
// we want to find there. The "then" arm has the same constraint.
AnyReg r;
if (!deadCode_ && !IsVoid(type))
r = popJoinReg();
popStackOnBlockExit(ifThenElse.framePushed);
if (ifThenElse.label->used())
masm.bind(ifThenElse.label);
if (!ifThenElse.deadOnArrival &&
(!ifThenElse.deadThenBranch || !deadCode_ || ifThenElse.label->bound())) {
if (deadCode_ && !IsVoid(type))
r = allocJoinReg(type);
deadCode_ = false;
}
MOZ_ASSERT(stk_.length() == ifThenElse.stackSize);
popControl();
if (!deadCode_ && !IsVoid(type))
pushJoinReg(r);
}
bool
BaseCompiler::emitEnd()
{
LabelKind kind;
ExprType type;
Nothing unused_value;
if (!iter_.readEnd(&kind, &type, &unused_value))
return false;
switch (kind) {
case LabelKind::Block: endBlock(type, iter_.controlStackEmpty()); break;
case LabelKind::Loop: endLoop(type); break;
case LabelKind::UnreachableThen:
case LabelKind::Then: endIfThen(); break;
case LabelKind::Else: endIfThenElse(type); break;
}
return true;
}
bool
BaseCompiler::emitBr()
{
uint32_t relativeDepth;
ExprType type;
Nothing unused_value;
if (!iter_.readBr(&relativeDepth, &type, &unused_value))
return false;
if (deadCode_)
return true;
Control& target = controlItem(relativeDepth);
// Save any value in the designated join register, where the
// normal block exit code will also leave it.
AnyReg r;
if (!IsVoid(type))
r = popJoinReg();
popStackBeforeBranch(target.framePushed);
masm.jump(target.label);
// The register holding the join value is free for the remainder
// of this block.
if (!IsVoid(type))
freeJoinReg(r);
deadCode_ = true;
popValueStackTo(ctl_.back().stackSize);
return true;
}
bool
BaseCompiler::emitBrIf()
{
uint32_t relativeDepth;
ExprType type;
Nothing unused_value, unused_condition;
if (!iter_.readBrIf(&relativeDepth, &type, &unused_value, &unused_condition))
return false;
if (deadCode_)
return true;
Control& target = controlItem(relativeDepth);
// TODO / OPTIMIZE (Bug 1286816): Optimize boolean evaluation for control by
// allowing a conditional expression to be left on the stack and reified
// here as part of the branch instruction.
// Don't use joinReg for rc
maybeReserveJoinRegI(type);
// Condition value is on top, always I32.
RegI32 rc = popI32();
maybeUnreserveJoinRegI(type);
// Save any value in the designated join register, where the
// normal block exit code will also leave it.
AnyReg r;
if (!IsVoid(type))
r = popJoinReg();
Label notTaken;
masm.branch32(Assembler::Equal, rc.reg, Imm32(0), ¬Taken);
popStackBeforeBranch(target.framePushed);
masm.jump(target.label);
masm.bind(¬Taken);
// This register is free in the remainder of the block.
freeI32(rc);
// br_if returns its value(s).
if (!IsVoid(type))
pushJoinReg(r);
return true;
}
bool
BaseCompiler::emitBrTable()
{
uint32_t tableLength;
ExprType type;
Nothing unused_value, unused_index;
if (!iter_.readBrTable(&tableLength, &type, &unused_value, &unused_index))
return false;
LabelVector stubs;
if (!stubs.reserve(tableLength+1))
return false;
Uint32Vector depths;
if (!depths.reserve(tableLength))
return false;
for (size_t i = 0; i < tableLength; ++i) {
uint32_t depth;
if (!iter_.readBrTableEntry(&type, &unused_value, &depth))
return false;
depths.infallibleAppend(depth);
}
uint32_t defaultDepth;
if (!iter_.readBrTableDefault(&type, &unused_value, &defaultDepth))
return false;
if (deadCode_)
return true;
// Don't use joinReg for rc
maybeReserveJoinRegI(type);
// Table switch value always on top.
RegI32 rc = popI32();
maybeUnreserveJoinRegI(type);
AnyReg r;
if (!IsVoid(type))
r = popJoinReg();
Label dispatchCode;
masm.branch32(Assembler::Below, rc.reg, Imm32(tableLength), &dispatchCode);
// This is the out-of-range stub. rc is dead here but we don't need it.
popStackBeforeBranch(controlItem(defaultDepth).framePushed);
masm.jump(controlItem(defaultDepth).label);
// Emit stubs. rc is dead in all of these but we don't need it.
//
// TODO / OPTIMIZE (Bug 1316804): Branch directly to the case code if we
// can, don't emit an intermediate stub.
for (uint32_t i = 0; i < tableLength; i++) {
PooledLabel* stubLabel = newLabel();
// The labels in the vector are in the TempAllocator and will
// be freed by and by.
if (!stubLabel)
return false;
stubs.infallibleAppend(stubLabel);
masm.bind(stubLabel);
uint32_t k = depths[i];
popStackBeforeBranch(controlItem(k).framePushed);
masm.jump(controlItem(k).label);
}
// Emit table.
Label theTable;
masm.bind(&theTable);
jumpTable(stubs);
// Emit indirect jump. rc is live here.
masm.bind(&dispatchCode);
tableSwitch(&theTable, rc);
deadCode_ = true;
// Clean up.
freeI32(rc);
if (!IsVoid(type))
freeJoinReg(r);
for (uint32_t i = 0; i < tableLength; i++)
freeLabel(stubs[i]);
popValueStackTo(ctl_.back().stackSize);
return true;
}
bool
BaseCompiler::emitDrop()
{
if (!iter_.readDrop())
return false;
if (deadCode_)
return true;
popStackIfMemory();
popValueStackBy(1);
return true;
}
void
BaseCompiler::doReturn(ExprType type)
{
switch (type) {
case ExprType::Void: {
returnCleanup();
break;
}
case ExprType::I32: {
RegI32 rv = popI32(RegI32(ReturnReg));
returnCleanup();
freeI32(rv);
break;
}
case ExprType::I64: {
RegI64 rv = popI64(RegI64(ReturnReg64));
returnCleanup();
freeI64(rv);
break;
}
case ExprType::F64: {
RegF64 rv = popF64(RegF64(ReturnDoubleReg));
returnCleanup();
freeF64(rv);
break;
}
case ExprType::F32: {
RegF32 rv = popF32(RegF32(ReturnFloat32Reg));
returnCleanup();
freeF32(rv);
break;
}
default: {
MOZ_CRASH("Function return type");
}
}
}
bool
BaseCompiler::emitReturn()
{
Nothing unused_value;
if (!iter_.readReturn(&unused_value))
return false;
if (deadCode_)
return true;
doReturn(func_.sig().ret());
deadCode_ = true;
popValueStackTo(ctl_.back().stackSize);
return true;
}
bool
BaseCompiler::emitCallArgs(const ValTypeVector& args, FunctionCall& baselineCall)
{
MOZ_ASSERT(!deadCode_);
startCallArgs(baselineCall, stackArgAreaSize(args));
uint32_t numArgs = args.length();
for (size_t i = 0; i < numArgs; ++i) {
ValType argType = args[i];
Nothing arg_;
if (!iter_.readCallArg(argType, numArgs, i, &arg_))
return false;
Stk& arg = peek(numArgs - 1 - i);
passArg(baselineCall, argType, arg);
}
// Pass the TLS pointer as a hidden argument in WasmTlsReg. Load
// it directly out if its stack slot so we don't interfere with
// the stk_.
if (baselineCall.loadTlsBefore)
loadFromFramePtr(WasmTlsReg, frameOffsetFromSlot(tlsSlot_, MIRType::Pointer));
if (!iter_.readCallArgsEnd(numArgs))
return false;
return true;
}
void
BaseCompiler::pushReturned(const FunctionCall& call, ExprType type)
{
switch (type) {
case ExprType::Void:
MOZ_CRASH("Compiler bug: attempt to push void return");
break;
case ExprType::I32: {
RegI32 rv = captureReturnedI32();
pushI32(rv);
break;
}
case ExprType::I64: {
RegI64 rv = captureReturnedI64();
pushI64(rv);
break;
}
case ExprType::F32: {
RegF32 rv = captureReturnedF32(call);
pushF32(rv);
break;
}
case ExprType::F64: {
RegF64 rv = captureReturnedF64(call);
pushF64(rv);
break;
}
default:
MOZ_CRASH("Function return type");
}
}
// For now, always sync() at the beginning of the call to easily save live
// values.
//
// TODO / OPTIMIZE (Bug 1316806): We may be able to avoid a full sync(), since
// all we want is to save live registers that won't be saved by the callee or
// that we need for outgoing args - we don't need to sync the locals. We can
// just push the necessary registers, it'll be like a lightweight sync.
//
// Even some of the pushing may be unnecessary if the registers will be consumed
// by the call, because then what we want is parallel assignment to the argument
// registers or onto the stack for outgoing arguments. A sync() is just
// simpler.
bool
BaseCompiler::emitCall()
{
uint32_t lineOrBytecode = readCallSiteLineOrBytecode();
uint32_t funcIndex;
if (!iter_.readCall(&funcIndex))
return false;
if (deadCode_)
return true;
sync();
const Sig& sig = *mg_.funcSigs[funcIndex];
bool import = mg_.funcIsImport(funcIndex);
uint32_t numArgs = sig.args().length();
size_t stackSpace = stackConsumed(numArgs);
FunctionCall baselineCall(lineOrBytecode);
beginCall(baselineCall, UseABI::Wasm, import ? InterModule::True : InterModule::False);
if (!emitCallArgs(sig.args(), baselineCall))
return false;
if (!iter_.readCallReturn(sig.ret()))
return false;
if (import)
callImport(mg_.funcImportGlobalDataOffsets[funcIndex], baselineCall);
else
callDefinition(funcIndex, baselineCall);
endCall(baselineCall);
// TODO / OPTIMIZE (bug 1316827): It would be better to merge this
// freeStack() into the one in endCall, if we can.
popValueStackBy(numArgs);
masm.freeStack(stackSpace);
if (!IsVoid(sig.ret()))
pushReturned(baselineCall, sig.ret());
return true;
}
bool
BaseCompiler::emitCallIndirect(bool oldStyle)
{
uint32_t lineOrBytecode = readCallSiteLineOrBytecode();
uint32_t sigIndex;
Nothing callee_;
if (oldStyle) {
if (!iter_.readOldCallIndirect(&sigIndex))
return false;
} else {
if (!iter_.readCallIndirect(&sigIndex, &callee_))
return false;
}
if (deadCode_)
return true;
sync();
const SigWithId& sig = mg_.sigs[sigIndex];
// new style: Stack: ... arg1 .. argn callee
// old style: Stack: ... callee arg1 .. argn
uint32_t numArgs = sig.args().length();
size_t stackSpace = stackConsumed(numArgs + 1);
// The arguments must be at the stack top for emitCallArgs, so pop the
// callee if it is on top. Note this only pops the compiler's stack,
// not the CPU stack.
Stk callee = oldStyle ? peek(numArgs) : stk_.popCopy();
FunctionCall baselineCall(lineOrBytecode);
beginCall(baselineCall, UseABI::Wasm, InterModule::True);
if (!emitCallArgs(sig.args(), baselineCall))
return false;
if (oldStyle) {
if (!iter_.readOldCallIndirectCallee(&callee_))
return false;
}
if (!iter_.readCallReturn(sig.ret()))
return false;
callIndirect(sigIndex, callee, baselineCall);
endCall(baselineCall);
// For new style calls, the callee was popped off the compiler's
// stack above.
popValueStackBy(oldStyle ? numArgs + 1 : numArgs);
// TODO / OPTIMIZE (bug 1316827): It would be better to merge this
// freeStack() into the one in endCall, if we can.
masm.freeStack(stackSpace);
if (!IsVoid(sig.ret()))
pushReturned(baselineCall, sig.ret());
return true;
}
bool
BaseCompiler::emitCommonMathCall(uint32_t lineOrBytecode, SymbolicAddress callee,
ValTypeVector& signature, ExprType retType)
{
sync();
uint32_t numArgs = signature.length();
size_t stackSpace = stackConsumed(numArgs);
FunctionCall baselineCall(lineOrBytecode);
beginCall(baselineCall, UseABI::System, InterModule::False);
if (!emitCallArgs(signature, baselineCall))
return false;
if (!iter_.readCallReturn(retType))
return false;
builtinCall(callee, baselineCall);
endCall(baselineCall);
// TODO / OPTIMIZE (bug 1316827): It would be better to merge this
// freeStack() into the one in endCall, if we can.
popValueStackBy(numArgs);
masm.freeStack(stackSpace);
pushReturned(baselineCall, retType);
return true;
}
bool
BaseCompiler::emitUnaryMathBuiltinCall(SymbolicAddress callee, ValType operandType)
{
uint32_t lineOrBytecode = readCallSiteLineOrBytecode();
if (deadCode_)
return true;
return emitCommonMathCall(lineOrBytecode, callee,
operandType == ValType::F32 ? SigF_ : SigD_,
operandType == ValType::F32 ? ExprType::F32 : ExprType::F64);
}
bool
BaseCompiler::emitBinaryMathBuiltinCall(SymbolicAddress callee, ValType operandType)
{
MOZ_ASSERT(operandType == ValType::F64);
uint32_t lineOrBytecode = 0;
if (callee == SymbolicAddress::ModD) {
// Not actually a call in the binary representation
} else {
lineOrBytecode = readCallSiteLineOrBytecode();
}
if (deadCode_)
return true;
return emitCommonMathCall(lineOrBytecode, callee, SigDD_, ExprType::F64);
}
#ifdef INT_DIV_I64_CALLOUT
bool
BaseCompiler::emitDivOrModI64BuiltinCall(SymbolicAddress callee, ValType operandType)
{
MOZ_ASSERT(operandType == ValType::I64);
if (deadCode_)
return true;
sync();
needI64(abiReturnRegI64);
RegI32 temp = needI32();
RegI64 rhs = popI64();
RegI64 srcDest = popI64ToSpecific(abiReturnRegI64);
Label done;
checkDivideByZeroI64(rhs);
if (callee == SymbolicAddress::DivI64)
checkDivideSignedOverflowI64(rhs, srcDest, &done, ZeroOnOverflow(false));
else if (callee == SymbolicAddress::ModI64)
checkDivideSignedOverflowI64(rhs, srcDest, &done, ZeroOnOverflow(true));
masm.setupUnalignedABICall(temp.reg);
masm.passABIArg(srcDest.reg.high);
masm.passABIArg(srcDest.reg.low);
masm.passABIArg(rhs.reg.high);
masm.passABIArg(rhs.reg.low);
masm.callWithABI(callee);
masm.bind(&done);
freeI32(temp);
freeI64(rhs);
pushI64(srcDest);
return true;
}
#endif // INT_DIV_I64_CALLOUT
#ifdef I64_TO_FLOAT_CALLOUT
bool
BaseCompiler::emitConvertInt64ToFloatingCallout(SymbolicAddress callee, ValType operandType,
ValType resultType)
{
sync();
RegI32 temp = needI32();
RegI64 input = popI64();
FunctionCall call(0);
masm.setupUnalignedABICall(temp.reg);
# ifdef JS_NUNBOX32
masm.passABIArg(input.reg.high);
masm.passABIArg(input.reg.low);
# else
MOZ_CRASH("BaseCompiler platform hook: emitConvertInt64ToFloatingCallout");
# endif
masm.callWithABI(callee, MoveOp::DOUBLE);
freeI32(temp);
freeI64(input);
RegF64 rv = captureReturnedF64(call);
if (resultType == ValType::F32) {
RegF32 rv2 = needF32();
masm.convertDoubleToFloat32(rv.reg, rv2.reg);
freeF64(rv);
pushF32(rv2);
} else {
pushF64(rv);
}
return true;
}
#endif // I64_TO_FLOAT_CALLOUT
#ifdef FLOAT_TO_I64_CALLOUT
// `Callee` always takes a double, so a float32 input must be converted.
bool
BaseCompiler::emitConvertFloatingToInt64Callout(SymbolicAddress callee, ValType operandType,
ValType resultType)
{
RegF64 doubleInput;
if (operandType == ValType::F32) {
doubleInput = needF64();
RegF32 input = popF32();
masm.convertFloat32ToDouble(input.reg, doubleInput.reg);
freeF32(input);
} else {
doubleInput = popF64();
}
// We may need the value after the call for the ool check.
RegF64 otherReg = needF64();
moveF64(doubleInput, otherReg);
pushF64(otherReg);
sync();
RegI32 temp = needI32();
FunctionCall call(0);
masm.setupUnalignedABICall(temp.reg);
masm.passABIArg(doubleInput.reg, MoveOp::DOUBLE);
masm.callWithABI(callee);
freeI32(temp);
freeF64(doubleInput);
RegI64 rv = captureReturnedI64();
RegF64 inputVal = popF64();
bool isUnsigned = callee == SymbolicAddress::TruncateDoubleToUint64;
// The OOL check just succeeds or fails, it does not generate a value.
OutOfLineCode* ool = new (alloc_) OutOfLineTruncateCheckF32OrF64ToI64(AnyReg(inputVal),
isUnsigned,
trapOffset());
ool = addOutOfLineCode(ool);
if (!ool)
return false;
masm.branch64(Assembler::Equal, rv.reg, Imm64(0x8000000000000000), ool->entry());
masm.bind(ool->rejoin());
pushI64(rv);
freeF64(inputVal);
return true;
}
#endif // FLOAT_TO_I64_CALLOUT
bool
BaseCompiler::emitGetLocal()
{
uint32_t slot;
if (!iter_.readGetLocal(locals_, &slot))
return false;
if (deadCode_)
return true;
// Local loads are pushed unresolved, ie, they may be deferred
// until needed, until they may be affected by a store, or until a
// sync. This is intended to reduce register pressure.
switch (locals_[slot]) {
case ValType::I32:
pushLocalI32(slot);
break;
case ValType::I64:
pushLocalI64(slot);
break;
case ValType::F64:
pushLocalF64(slot);
break;
case ValType::F32:
pushLocalF32(slot);
break;
default:
MOZ_CRASH("Local variable type");
}
return true;
}
bool
BaseCompiler::emitSetLocal()
{
uint32_t slot;
Nothing unused_value;
if (!iter_.readSetLocal(locals_, &slot, &unused_value))
return false;
if (deadCode_)
return true;
switch (locals_[slot]) {
case ValType::I32: {
RegI32 rv = popI32();
syncLocal(slot);
storeToFrameI32(rv.reg, frameOffsetFromSlot(slot, MIRType::Int32));
freeI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
syncLocal(slot);
storeToFrameI64(rv.reg, frameOffsetFromSlot(slot, MIRType::Int64));
freeI64(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
syncLocal(slot);
storeToFrameF64(rv.reg, frameOffsetFromSlot(slot, MIRType::Double));
freeF64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
syncLocal(slot);
storeToFrameF32(rv.reg, frameOffsetFromSlot(slot, MIRType::Float32));
freeF32(rv);
break;
}
default:
MOZ_CRASH("Local variable type");
}
return true;
}
bool
BaseCompiler::emitTeeLocal()
{
uint32_t slot;
Nothing unused_value;
if (!iter_.readTeeLocal(locals_, &slot, &unused_value))
return false;
if (deadCode_)
return true;
switch (locals_[slot]) {
case ValType::I32: {
RegI32 rv = popI32();
syncLocal(slot);
storeToFrameI32(rv.reg, frameOffsetFromSlot(slot, MIRType::Int32));
pushI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
syncLocal(slot);
storeToFrameI64(rv.reg, frameOffsetFromSlot(slot, MIRType::Int64));
pushI64(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
syncLocal(slot);
storeToFrameF64(rv.reg, frameOffsetFromSlot(slot, MIRType::Double));
pushF64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
syncLocal(slot);
storeToFrameF32(rv.reg, frameOffsetFromSlot(slot, MIRType::Float32));
pushF32(rv);
break;
}
default:
MOZ_CRASH("Local variable type");
}
return true;
}
bool
BaseCompiler::emitGetGlobal()
{
uint32_t id;
if (!iter_.readGetGlobal(mg_.globals, &id))
return false;
if (deadCode_)
return true;
const GlobalDesc& global = mg_.globals[id];
if (global.isConstant()) {
Val value = global.constantValue();
switch (value.type()) {
case ValType::I32:
pushI32(value.i32());
break;
case ValType::I64:
pushI64(value.i64());
break;
case ValType::F32:
pushF32(value.f32());
break;
case ValType::F64:
pushF64(value.f64());
break;
default:
MOZ_CRASH("Global constant type");
}
return true;
}
switch (global.type()) {
case ValType::I32: {
RegI32 rv = needI32();
loadGlobalVarI32(global.offset(), rv);
pushI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = needI64();
loadGlobalVarI64(global.offset(), rv);
pushI64(rv);
break;
}
case ValType::F32: {
RegF32 rv = needF32();
loadGlobalVarF32(global.offset(), rv);
pushF32(rv);
break;
}
case ValType::F64: {
RegF64 rv = needF64();
loadGlobalVarF64(global.offset(), rv);
pushF64(rv);
break;
}
default:
MOZ_CRASH("Global variable type");
break;
}
return true;
}
bool
BaseCompiler::emitSetGlobal()
{
uint32_t id;
Nothing unused_value;
if (!iter_.readSetGlobal(mg_.globals, &id, &unused_value))
return false;
if (deadCode_)
return true;
const GlobalDesc& global = mg_.globals[id];
switch (global.type()) {
case ValType::I32: {
RegI32 rv = popI32();
storeGlobalVarI32(global.offset(), rv);
freeI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
storeGlobalVarI64(global.offset(), rv);
freeI64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
storeGlobalVarF32(global.offset(), rv);
freeF32(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
storeGlobalVarF64(global.offset(), rv);
freeF64(rv);
break;
}
default:
MOZ_CRASH("Global variable type");
break;
}
return true;
}
bool
BaseCompiler::emitTeeGlobal()
{
uint32_t id;
Nothing unused_value;
if (!iter_.readTeeGlobal(mg_.globals, &id, &unused_value))
return false;
if (deadCode_)
return true;
const GlobalDesc& global = mg_.globals[id];
switch (global.type()) {
case ValType::I32: {
RegI32 rv = popI32();
storeGlobalVarI32(global.offset(), rv);
pushI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
storeGlobalVarI64(global.offset(), rv);
pushI64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
storeGlobalVarF32(global.offset(), rv);
pushF32(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
storeGlobalVarF64(global.offset(), rv);
pushF64(rv);
break;
}
default:
MOZ_CRASH("Global variable type");
break;
}
return true;
}
bool
BaseCompiler::emitLoad(ValType type, Scalar::Type viewType)
{
LinearMemoryAddress<Nothing> addr;
if (!iter_.readLoad(type, Scalar::byteSize(viewType), &addr))
return false;
if (deadCode_)
return true;
// TODO / OPTIMIZE (bug 1316831): Disable bounds checking on constant
// accesses below the minimum heap length.
MemoryAccessDesc access(viewType, addr.align, addr.offset, trapIfNotAsmJS());
size_t temps = loadStoreTemps(access);
RegI32 tmp1 = temps >= 1 ? needI32() : invalidI32();
RegI32 tmp2 = temps >= 2 ? needI32() : invalidI32();
switch (type) {
case ValType::I32: {
RegI32 rp = popI32();
#ifdef JS_CODEGEN_ARM
RegI32 rv = access.isUnaligned() ? needI32() : rp;
#else
RegI32 rv = rp;
#endif
if (!load(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
pushI32(rv);
if (rp != rv)
freeI32(rp);
break;
}
case ValType::I64: {
RegI64 rv;
RegI32 rp;
#ifdef JS_CODEGEN_X86
rv = abiReturnRegI64;
needI64(rv);
rp = popI32();
#else
rp = popI32();
rv = needI64();
#endif
if (!load(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
pushI64(rv);
freeI32(rp);
break;
}
case ValType::F32: {
RegI32 rp = popI32();
RegF32 rv = needF32();
if (!load(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
pushF32(rv);
freeI32(rp);
break;
}
case ValType::F64: {
RegI32 rp = popI32();
RegF64 rv = needF64();
if (!load(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
pushF64(rv);
freeI32(rp);
break;
}
default:
MOZ_CRASH("load type");
break;
}
if (temps >= 1)
freeI32(tmp1);
if (temps >= 2)
freeI32(tmp2);
return true;
}
bool
BaseCompiler::emitStore(ValType resultType, Scalar::Type viewType)
{
LinearMemoryAddress<Nothing> addr;
Nothing unused_value;
if (!iter_.readStore(resultType, Scalar::byteSize(viewType), &addr, &unused_value))
return false;
if (deadCode_)
return true;
// TODO / OPTIMIZE (bug 1316831): Disable bounds checking on constant
// accesses below the minimum heap length.
MemoryAccessDesc access(viewType, addr.align, addr.offset, trapIfNotAsmJS());
size_t temps = loadStoreTemps(access);
RegI32 tmp1 = temps >= 1 ? needI32() : invalidI32();
RegI32 tmp2 = temps >= 2 ? needI32() : invalidI32();
switch (resultType) {
case ValType::I32: {
RegI32 rp, rv;
pop2xI32(&rp, &rv);
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
freeI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
freeI64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
freeF32(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
freeF64(rv);
break;
}
default:
MOZ_CRASH("store type");
break;
}
if (temps >= 1)
freeI32(tmp1);
if (temps >= 2)
freeI32(tmp2);
return true;
}
bool
BaseCompiler::emitTeeStore(ValType resultType, Scalar::Type viewType)
{
LinearMemoryAddress<Nothing> addr;
Nothing unused_value;
if (!iter_.readTeeStore(resultType, Scalar::byteSize(viewType), &addr, &unused_value))
return false;
if (deadCode_)
return true;
// TODO / OPTIMIZE (bug 1316831): Disable bounds checking on constant
// accesses below the minimum heap length.
MemoryAccessDesc access(viewType, addr.align, addr.offset, trapIfNotAsmJS());
size_t temps = loadStoreTemps(access);
RegI32 tmp1 = temps >= 1 ? needI32() : invalidI32();
RegI32 tmp2 = temps >= 2 ? needI32() : invalidI32();
switch (resultType) {
case ValType::I32: {
RegI32 rp, rv;
pop2xI32(&rp, &rv);
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
pushI32(rv);
break;
}
case ValType::I64: {
RegI64 rv = popI64();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
pushI64(rv);
break;
}
case ValType::F32: {
RegF32 rv = popF32();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
pushF32(rv);
break;
}
case ValType::F64: {
RegF64 rv = popF64();
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rv), tmp1, tmp2))
return false;
freeI32(rp);
pushF64(rv);
break;
}
default:
MOZ_CRASH("store type");
break;
}
if (temps >= 1)
freeI32(tmp1);
if (temps >= 2)
freeI32(tmp2);
return true;
}
bool
BaseCompiler::emitSelect()
{
ValType type;
Nothing unused_trueValue;
Nothing unused_falseValue;
Nothing unused_condition;
if (!iter_.readSelect(&type, &unused_trueValue, &unused_falseValue, &unused_condition))
return false;
if (deadCode_)
return true;
// I32 condition on top, then false, then true.
RegI32 rc = popI32();
switch (type) {
case ValType::I32: {
Label done;
RegI32 r0, r1;
pop2xI32(&r0, &r1);
masm.branch32(Assembler::NotEqual, rc.reg, Imm32(0), &done);
moveI32(r1, r0);
masm.bind(&done);
freeI32(r1);
pushI32(r0);
break;
}
case ValType::I64: {
Label done;
RegI64 r0, r1;
pop2xI64(&r0, &r1);
masm.branch32(Assembler::NotEqual, rc.reg, Imm32(0), &done);
moveI64(r1, r0);
masm.bind(&done);
freeI64(r1);
pushI64(r0);
break;
}
case ValType::F32: {
Label done;
RegF32 r0, r1;
pop2xF32(&r0, &r1);
masm.branch32(Assembler::NotEqual, rc.reg, Imm32(0), &done);
moveF32(r1, r0);
masm.bind(&done);
freeF32(r1);
pushF32(r0);
break;
}
case ValType::F64: {
Label done;
RegF64 r0, r1;
pop2xF64(&r0, &r1);
masm.branch32(Assembler::NotEqual, rc.reg, Imm32(0), &done);
moveF64(r1, r0);
masm.bind(&done);
freeF64(r1);
pushF64(r0);
break;
}
default: {
MOZ_CRASH("select type");
}
}
freeI32(rc);
return true;
}
void
BaseCompiler::emitCompareI32(JSOp compareOp, MCompare::CompareType compareType)
{
// TODO / OPTIMIZE (bug 1286816): if we want to generate good code for
// boolean operators for control it is possible to delay generating code
// here by pushing a compare operation on the stack, after all it is
// side-effect free. The popping code for br_if will handle it differently,
// but other popI32() will just force code generation.
//
// TODO / OPTIMIZE (bug 1286816): Comparisons against constants using the
// same popConstant pattern as for add().
MOZ_ASSERT(compareType == MCompare::Compare_Int32 || compareType == MCompare::Compare_UInt32);
RegI32 r0, r1;
pop2xI32(&r0, &r1);
bool u = compareType == MCompare::Compare_UInt32;
switch (compareOp) {
case JSOP_EQ:
masm.cmp32Set(Assembler::Equal, r0.reg, r1.reg, r0.reg);
break;
case JSOP_NE:
masm.cmp32Set(Assembler::NotEqual, r0.reg, r1.reg, r0.reg);
break;
case JSOP_LE:
masm.cmp32Set(u ? Assembler::BelowOrEqual : Assembler::LessThanOrEqual, r0.reg, r1.reg, r0.reg);
break;
case JSOP_LT:
masm.cmp32Set(u ? Assembler::Below : Assembler::LessThan, r0.reg, r1.reg, r0.reg);
break;
case JSOP_GE:
masm.cmp32Set(u ? Assembler::AboveOrEqual : Assembler::GreaterThanOrEqual, r0.reg, r1.reg, r0.reg);
break;
case JSOP_GT:
masm.cmp32Set(u ? Assembler::Above : Assembler::GreaterThan, r0.reg, r1.reg, r0.reg);
break;
default:
MOZ_CRASH("Compiler bug: Unexpected compare opcode");
}
freeI32(r1);
pushI32(r0);
}
void
BaseCompiler::emitCompareI64(JSOp compareOp, MCompare::CompareType compareType)
{
MOZ_ASSERT(compareType == MCompare::Compare_Int64 || compareType == MCompare::Compare_UInt64);
RegI64 r0, r1;
pop2xI64(&r0, &r1);
RegI32 i0(fromI64(r0));
bool u = compareType == MCompare::Compare_UInt64;
switch (compareOp) {
case JSOP_EQ:
cmp64Set(Assembler::Equal, r0, r1, i0);
break;
case JSOP_NE:
cmp64Set(Assembler::NotEqual, r0, r1, i0);
break;
case JSOP_LE:
cmp64Set(u ? Assembler::BelowOrEqual : Assembler::LessThanOrEqual, r0, r1, i0);
break;
case JSOP_LT:
cmp64Set(u ? Assembler::Below : Assembler::LessThan, r0, r1, i0);
break;
case JSOP_GE:
cmp64Set(u ? Assembler::AboveOrEqual : Assembler::GreaterThanOrEqual, r0, r1, i0);
break;
case JSOP_GT:
cmp64Set(u ? Assembler::Above : Assembler::GreaterThan, r0, r1, i0);
break;
default:
MOZ_CRASH("Compiler bug: Unexpected compare opcode");
}
freeI64(r1);
freeI64Except(r0, i0);
pushI32(i0);
}
void
BaseCompiler::emitCompareF32(JSOp compareOp, MCompare::CompareType compareType)
{
MOZ_ASSERT(compareType == MCompare::Compare_Float32);
Label across;
RegF32 r0, r1;
pop2xF32(&r0, &r1);
RegI32 i0 = needI32();
masm.mov(ImmWord(1), i0.reg);
switch (compareOp) {
case JSOP_EQ:
masm.branchFloat(Assembler::DoubleEqual, r0.reg, r1.reg, &across);
break;
case JSOP_NE:
masm.branchFloat(Assembler::DoubleNotEqualOrUnordered, r0.reg, r1.reg, &across);
break;
case JSOP_LE:
masm.branchFloat(Assembler::DoubleLessThanOrEqual, r0.reg, r1.reg, &across);
break;
case JSOP_LT:
masm.branchFloat(Assembler::DoubleLessThan, r0.reg, r1.reg, &across);
break;
case JSOP_GE:
masm.branchFloat(Assembler::DoubleGreaterThanOrEqual, r0.reg, r1.reg, &across);
break;
case JSOP_GT:
masm.branchFloat(Assembler::DoubleGreaterThan, r0.reg, r1.reg, &across);
break;
default:
MOZ_CRASH("Compiler bug: Unexpected compare opcode");
}
masm.mov(ImmWord(0), i0.reg);
masm.bind(&across);
freeF32(r0);
freeF32(r1);
pushI32(i0);
}
void
BaseCompiler::emitCompareF64(JSOp compareOp, MCompare::CompareType compareType)
{
MOZ_ASSERT(compareType == MCompare::Compare_Double);
Label across;
RegF64 r0, r1;
pop2xF64(&r0, &r1);
RegI32 i0 = needI32();
masm.mov(ImmWord(1), i0.reg);
switch (compareOp) {
case JSOP_EQ:
masm.branchDouble(Assembler::DoubleEqual, r0.reg, r1.reg, &across);
break;
case JSOP_NE:
masm.branchDouble(Assembler::DoubleNotEqualOrUnordered, r0.reg, r1.reg, &across);
break;
case JSOP_LE:
masm.branchDouble(Assembler::DoubleLessThanOrEqual, r0.reg, r1.reg, &across);
break;
case JSOP_LT:
masm.branchDouble(Assembler::DoubleLessThan, r0.reg, r1.reg, &across);
break;
case JSOP_GE:
masm.branchDouble(Assembler::DoubleGreaterThanOrEqual, r0.reg, r1.reg, &across);
break;
case JSOP_GT:
masm.branchDouble(Assembler::DoubleGreaterThan, r0.reg, r1.reg, &across);
break;
default:
MOZ_CRASH("Compiler bug: Unexpected compare opcode");
}
masm.mov(ImmWord(0), i0.reg);
masm.bind(&across);
freeF64(r0);
freeF64(r1);
pushI32(i0);
}
bool
BaseCompiler::emitTeeStoreWithCoercion(ValType resultType, Scalar::Type viewType)
{
LinearMemoryAddress<Nothing> addr;
Nothing unused_value;
if (!iter_.readTeeStore(resultType, Scalar::byteSize(viewType), &addr, &unused_value))
return false;
if (deadCode_)
return true;
// TODO / OPTIMIZE (bug 1316831): Disable bounds checking on constant
// accesses below the minimum heap length.
MemoryAccessDesc access(viewType, addr.align, addr.offset, trapIfNotAsmJS());
size_t temps = loadStoreTemps(access);
RegI32 tmp1 = temps >= 1 ? needI32() : invalidI32();
RegI32 tmp2 = temps >= 2 ? needI32() : invalidI32();
if (resultType == ValType::F32 && viewType == Scalar::Float64) {
RegF32 rv = popF32();
RegF64 rw = needF64();
masm.convertFloat32ToDouble(rv.reg, rw.reg);
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rw), tmp1, tmp2))
return false;
pushF32(rv);
freeI32(rp);
freeF64(rw);
}
else if (resultType == ValType::F64 && viewType == Scalar::Float32) {
RegF64 rv = popF64();
RegF32 rw = needF32();
masm.convertDoubleToFloat32(rv.reg, rw.reg);
RegI32 rp = popI32();
if (!store(access, rp, AnyReg(rw), tmp1, tmp2))
return false;
pushF64(rv);
freeI32(rp);
freeF32(rw);
}
else
MOZ_CRASH("unexpected coerced store");
if (temps >= 1)
freeI32(tmp1);
if (temps >= 2)
freeI32(tmp2);
return true;
}
bool
BaseCompiler::emitGrowMemory()
{
uint32_t lineOrBytecode = readCallSiteLineOrBytecode();
Nothing arg;
if (!iter_.readGrowMemory(&arg))
return false;
if (deadCode_)
return true;
sync();
uint32_t numArgs = 1;
size_t stackSpace = stackConsumed(numArgs);
FunctionCall baselineCall(lineOrBytecode);
beginCall(baselineCall, UseABI::System, InterModule::True);
ABIArg instanceArg = reservePointerArgument(baselineCall);
startCallArgs(baselineCall, stackArgAreaSize(SigI_));
passArg(baselineCall, ValType::I32, peek(0));
builtinInstanceMethodCall(SymbolicAddress::GrowMemory, instanceArg, baselineCall);
endCall(baselineCall);
popValueStackBy(numArgs);
masm.freeStack(stackSpace);
pushReturned(baselineCall, ExprType::I32);
return true;
}
bool
BaseCompiler::emitCurrentMemory()
{
uint32_t lineOrBytecode = readCallSiteLineOrBytecode();
if (!iter_.readCurrentMemory())
return false;
if (deadCode_)
return true;
sync();
FunctionCall baselineCall(lineOrBytecode);
beginCall(baselineCall, UseABI::System, InterModule::False);
ABIArg instanceArg = reservePointerArgument(baselineCall);
startCallArgs(baselineCall, stackArgAreaSize(Sig_));
builtinInstanceMethodCall(SymbolicAddress::CurrentMemory, instanceArg, baselineCall);
endCall(baselineCall);
pushReturned(baselineCall, ExprType::I32);
return true;
}
bool
BaseCompiler::emitBody()
{
uint32_t overhead = 0;
for (;;) {
Nothing unused_a, unused_b;
#define emitBinary(doEmit, type) \
iter_.readBinary(type, &unused_a, &unused_b) && (deadCode_ || (doEmit(), true))
#define emitUnary(doEmit, type) \
iter_.readUnary(type, &unused_a) && (deadCode_ || (doEmit(), true))
#define emitComparison(doEmit, operandType, compareOp, compareType) \
iter_.readComparison(operandType, &unused_a, &unused_b) && \
(deadCode_ || (doEmit(compareOp, compareType), true))
#define emitConversion(doEmit, inType, outType) \
iter_.readConversion(inType, outType, &unused_a) && (deadCode_ || (doEmit(), true))
#define emitConversionOOM(doEmit, inType, outType) \
iter_.readConversion(inType, outType, &unused_a) && (deadCode_ || doEmit())
#define emitCalloutConversionOOM(doEmit, symbol, inType, outType) \
iter_.readConversion(inType, outType, &unused_a) && \
(deadCode_ || doEmit(symbol, inType, outType))
#define CHECK(E) if (!(E)) goto done
#define NEXT() continue
#define CHECK_NEXT(E) if (!(E)) goto done; continue
// TODO / EVALUATE (bug 1316845): Not obvious that this attempt at
// reducing overhead is really paying off relative to making the check
// every iteration.
if (overhead == 0) {
// Check every 50 expressions -- a happy medium between
// memory usage and checking overhead.
overhead = 50;
// Checking every 50 expressions should be safe, as the
// baseline JIT does very little allocation per expression.
CHECK(alloc_.ensureBallast());
// The pushiest opcode is LOOP, which pushes two values
// per instance.
CHECK(stk_.reserve(stk_.length() + overhead * 2));
}
overhead--;
if (done())
return true;
uint16_t op;
CHECK(iter_.readOp(&op));
switch (op) {
// Control opcodes
case uint16_t(Op::Nop):
CHECK(iter_.readNop());
NEXT();
case uint16_t(Op::Drop):
CHECK_NEXT(emitDrop());
case uint16_t(Op::Block):
CHECK_NEXT(emitBlock());
case uint16_t(Op::Loop):
CHECK_NEXT(emitLoop());
case uint16_t(Op::If):
CHECK_NEXT(emitIf());
case uint16_t(Op::Else):
CHECK_NEXT(emitElse());
case uint16_t(Op::End):
CHECK_NEXT(emitEnd());
case uint16_t(Op::Br):
CHECK_NEXT(emitBr());
case uint16_t(Op::BrIf):
CHECK_NEXT(emitBrIf());
case uint16_t(Op::BrTable):
CHECK_NEXT(emitBrTable());
case uint16_t(Op::Return):
CHECK_NEXT(emitReturn());
case uint16_t(Op::Unreachable):
CHECK(iter_.readUnreachable());
if (!deadCode_) {
unreachableTrap();
deadCode_ = true;
popValueStackTo(ctl_.back().stackSize);
}
NEXT();
// Calls
case uint16_t(Op::Call):
CHECK_NEXT(emitCall());
case uint16_t(Op::CallIndirect):
CHECK_NEXT(emitCallIndirect(/* oldStyle = */ false));
case uint16_t(Op::OldCallIndirect):
CHECK_NEXT(emitCallIndirect(/* oldStyle = */ true));
// Locals and globals
case uint16_t(Op::GetLocal):
CHECK_NEXT(emitGetLocal());
case uint16_t(Op::SetLocal):
CHECK_NEXT(emitSetLocal());
case uint16_t(Op::TeeLocal):
CHECK_NEXT(emitTeeLocal());
case uint16_t(Op::GetGlobal):
CHECK_NEXT(emitGetGlobal());
case uint16_t(Op::SetGlobal):
CHECK_NEXT(emitSetGlobal());
case uint16_t(Op::TeeGlobal):
CHECK_NEXT(emitTeeGlobal());
// Select
case uint16_t(Op::Select):
CHECK_NEXT(emitSelect());
// I32
case uint16_t(Op::I32Const): {
int32_t i32;
CHECK(iter_.readI32Const(&i32));
if (!deadCode_)
pushI32(i32);
NEXT();
}
case uint16_t(Op::I32Add):
CHECK_NEXT(emitBinary(emitAddI32, ValType::I32));
case uint16_t(Op::I32Sub):
CHECK_NEXT(emitBinary(emitSubtractI32, ValType::I32));
case uint16_t(Op::I32Mul):
CHECK_NEXT(emitBinary(emitMultiplyI32, ValType::I32));
case uint16_t(Op::I32DivS):
CHECK_NEXT(emitBinary(emitQuotientI32, ValType::I32));
case uint16_t(Op::I32DivU):
CHECK_NEXT(emitBinary(emitQuotientU32, ValType::I32));
case uint16_t(Op::I32RemS):
CHECK_NEXT(emitBinary(emitRemainderI32, ValType::I32));
case uint16_t(Op::I32RemU):
CHECK_NEXT(emitBinary(emitRemainderU32, ValType::I32));
case uint16_t(Op::I32Min):
CHECK_NEXT(emitBinary(emitMinI32, ValType::I32));
case uint16_t(Op::I32Max):
CHECK_NEXT(emitBinary(emitMaxI32, ValType::I32));
case uint16_t(Op::I32Eqz):
CHECK_NEXT(emitConversion(emitEqzI32, ValType::I32, ValType::I32));
case uint16_t(Op::I32TruncSF32):
CHECK_NEXT(emitConversionOOM(emitTruncateF32ToI32<false>, ValType::F32, ValType::I32));
case uint16_t(Op::I32TruncUF32):
CHECK_NEXT(emitConversionOOM(emitTruncateF32ToI32<true>, ValType::F32, ValType::I32));
case uint16_t(Op::I32TruncSF64):
CHECK_NEXT(emitConversionOOM(emitTruncateF64ToI32<false>, ValType::F64, ValType::I32));
case uint16_t(Op::I32TruncUF64):
CHECK_NEXT(emitConversionOOM(emitTruncateF64ToI32<true>, ValType::F64, ValType::I32));
case uint16_t(Op::I32WrapI64):
CHECK_NEXT(emitConversion(emitWrapI64ToI32, ValType::I64, ValType::I32));
case uint16_t(Op::I32ReinterpretF32):
CHECK_NEXT(emitConversion(emitReinterpretF32AsI32, ValType::F32, ValType::I32));
case uint16_t(Op::I32Clz):
CHECK_NEXT(emitUnary(emitClzI32, ValType::I32));
case uint16_t(Op::I32Ctz):
CHECK_NEXT(emitUnary(emitCtzI32, ValType::I32));
case uint16_t(Op::I32Popcnt):
CHECK_NEXT(emitUnary(emitPopcntI32, ValType::I32));
case uint16_t(Op::I32Abs):
CHECK_NEXT(emitUnary(emitAbsI32, ValType::I32));
case uint16_t(Op::I32Neg):
CHECK_NEXT(emitUnary(emitNegateI32, ValType::I32));
case uint16_t(Op::I32Or):
CHECK_NEXT(emitBinary(emitOrI32, ValType::I32));
case uint16_t(Op::I32And):
CHECK_NEXT(emitBinary(emitAndI32, ValType::I32));
case uint16_t(Op::I32Xor):
CHECK_NEXT(emitBinary(emitXorI32, ValType::I32));
case uint16_t(Op::I32Shl):
CHECK_NEXT(emitBinary(emitShlI32, ValType::I32));
case uint16_t(Op::I32ShrS):
CHECK_NEXT(emitBinary(emitShrI32, ValType::I32));
case uint16_t(Op::I32ShrU):
CHECK_NEXT(emitBinary(emitShrU32, ValType::I32));
case uint16_t(Op::I32BitNot):
CHECK_NEXT(emitUnary(emitBitNotI32, ValType::I32));
case uint16_t(Op::I32Load8S):
CHECK_NEXT(emitLoad(ValType::I32, Scalar::Int8));
case uint16_t(Op::I32Load8U):
CHECK_NEXT(emitLoad(ValType::I32, Scalar::Uint8));
case uint16_t(Op::I32Load16S):
CHECK_NEXT(emitLoad(ValType::I32, Scalar::Int16));
case uint16_t(Op::I32Load16U):
CHECK_NEXT(emitLoad(ValType::I32, Scalar::Uint16));
case uint16_t(Op::I32Load):
CHECK_NEXT(emitLoad(ValType::I32, Scalar::Int32));
case uint16_t(Op::I32Store8):
CHECK_NEXT(emitStore(ValType::I32, Scalar::Int8));
case uint16_t(Op::I32TeeStore8):
CHECK_NEXT(emitTeeStore(ValType::I32, Scalar::Int8));
case uint16_t(Op::I32Store16):
CHECK_NEXT(emitStore(ValType::I32, Scalar::Int16));
case uint16_t(Op::I32TeeStore16):
CHECK_NEXT(emitTeeStore(ValType::I32, Scalar::Int16));
case uint16_t(Op::I32Store):
CHECK_NEXT(emitStore(ValType::I32, Scalar::Int32));
case uint16_t(Op::I32TeeStore):
CHECK_NEXT(emitTeeStore(ValType::I32, Scalar::Int32));
case uint16_t(Op::I32Rotr):
CHECK_NEXT(emitBinary(emitRotrI32, ValType::I32));
case uint16_t(Op::I32Rotl):
CHECK_NEXT(emitBinary(emitRotlI32, ValType::I32));
// I64
case uint16_t(Op::I64Const): {
int64_t i64;
CHECK(iter_.readI64Const(&i64));
if (!deadCode_)
pushI64(i64);
NEXT();
}
case uint16_t(Op::I64Add):
CHECK_NEXT(emitBinary(emitAddI64, ValType::I64));
case uint16_t(Op::I64Sub):
CHECK_NEXT(emitBinary(emitSubtractI64, ValType::I64));
case uint16_t(Op::I64Mul):
CHECK_NEXT(emitBinary(emitMultiplyI64, ValType::I64));
case uint16_t(Op::I64DivS):
#ifdef INT_DIV_I64_CALLOUT
CHECK_NEXT(emitDivOrModI64BuiltinCall(SymbolicAddress::DivI64, ValType::I64));
#else
CHECK_NEXT(emitBinary(emitQuotientI64, ValType::I64));
#endif
case uint16_t(Op::I64DivU):
#ifdef INT_DIV_I64_CALLOUT
CHECK_NEXT(emitDivOrModI64BuiltinCall(SymbolicAddress::UDivI64, ValType::I64));
#else
CHECK_NEXT(emitBinary(emitQuotientU64, ValType::I64));
#endif
case uint16_t(Op::I64RemS):
#ifdef INT_DIV_I64_CALLOUT
CHECK_NEXT(emitDivOrModI64BuiltinCall(SymbolicAddress::ModI64, ValType::I64));
#else
CHECK_NEXT(emitBinary(emitRemainderI64, ValType::I64));
#endif
case uint16_t(Op::I64RemU):
#ifdef INT_DIV_I64_CALLOUT
CHECK_NEXT(emitDivOrModI64BuiltinCall(SymbolicAddress::UModI64, ValType::I64));
#else
CHECK_NEXT(emitBinary(emitRemainderU64, ValType::I64));
#endif
case uint16_t(Op::I64TruncSF32):
#ifdef FLOAT_TO_I64_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertFloatingToInt64Callout,
SymbolicAddress::TruncateDoubleToInt64,
ValType::F32, ValType::I64));
#else
CHECK_NEXT(emitConversionOOM(emitTruncateF32ToI64<false>, ValType::F32, ValType::I64));
#endif
case uint16_t(Op::I64TruncUF32):
#ifdef FLOAT_TO_I64_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertFloatingToInt64Callout,
SymbolicAddress::TruncateDoubleToUint64,
ValType::F32, ValType::I64));
#else
CHECK_NEXT(emitConversionOOM(emitTruncateF32ToI64<true>, ValType::F32, ValType::I64));
#endif
case uint16_t(Op::I64TruncSF64):
#ifdef FLOAT_TO_I64_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertFloatingToInt64Callout,
SymbolicAddress::TruncateDoubleToInt64,
ValType::F64, ValType::I64));
#else
CHECK_NEXT(emitConversionOOM(emitTruncateF64ToI64<false>, ValType::F64, ValType::I64));
#endif
case uint16_t(Op::I64TruncUF64):
#ifdef FLOAT_TO_I64_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertFloatingToInt64Callout,
SymbolicAddress::TruncateDoubleToUint64,
ValType::F64, ValType::I64));
#else
CHECK_NEXT(emitConversionOOM(emitTruncateF64ToI64<true>, ValType::F64, ValType::I64));
#endif
case uint16_t(Op::I64ExtendSI32):
CHECK_NEXT(emitConversion(emitExtendI32ToI64, ValType::I32, ValType::I64));
case uint16_t(Op::I64ExtendUI32):
CHECK_NEXT(emitConversion(emitExtendU32ToI64, ValType::I32, ValType::I64));
case uint16_t(Op::I64ReinterpretF64):
CHECK_NEXT(emitConversion(emitReinterpretF64AsI64, ValType::F64, ValType::I64));
case uint16_t(Op::I64Or):
CHECK_NEXT(emitBinary(emitOrI64, ValType::I64));
case uint16_t(Op::I64And):
CHECK_NEXT(emitBinary(emitAndI64, ValType::I64));
case uint16_t(Op::I64Xor):
CHECK_NEXT(emitBinary(emitXorI64, ValType::I64));
case uint16_t(Op::I64Shl):
CHECK_NEXT(emitBinary(emitShlI64, ValType::I64));
case uint16_t(Op::I64ShrS):
CHECK_NEXT(emitBinary(emitShrI64, ValType::I64));
case uint16_t(Op::I64ShrU):
CHECK_NEXT(emitBinary(emitShrU64, ValType::I64));
case uint16_t(Op::I64Rotr):
CHECK_NEXT(emitBinary(emitRotrI64, ValType::I64));
case uint16_t(Op::I64Rotl):
CHECK_NEXT(emitBinary(emitRotlI64, ValType::I64));
case uint16_t(Op::I64Clz):
CHECK_NEXT(emitUnary(emitClzI64, ValType::I64));
case uint16_t(Op::I64Ctz):
CHECK_NEXT(emitUnary(emitCtzI64, ValType::I64));
case uint16_t(Op::I64Popcnt):
CHECK_NEXT(emitUnary(emitPopcntI64, ValType::I64));
case uint16_t(Op::I64Eqz):
CHECK_NEXT(emitConversion(emitEqzI64, ValType::I64, ValType::I32));
case uint16_t(Op::I64Load8S):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Int8));
case uint16_t(Op::I64Load16S):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Int16));
case uint16_t(Op::I64Load32S):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Int32));
case uint16_t(Op::I64Load8U):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Uint8));
case uint16_t(Op::I64Load16U):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Uint16));
case uint16_t(Op::I64Load32U):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Uint32));
case uint16_t(Op::I64Load):
CHECK_NEXT(emitLoad(ValType::I64, Scalar::Int64));
case uint16_t(Op::I64Store8):
CHECK_NEXT(emitStore(ValType::I64, Scalar::Int8));
case uint16_t(Op::I64TeeStore8):
CHECK_NEXT(emitTeeStore(ValType::I64, Scalar::Int8));
case uint16_t(Op::I64Store16):
CHECK_NEXT(emitStore(ValType::I64, Scalar::Int16));
case uint16_t(Op::I64TeeStore16):
CHECK_NEXT(emitTeeStore(ValType::I64, Scalar::Int16));
case uint16_t(Op::I64Store32):
CHECK_NEXT(emitStore(ValType::I64, Scalar::Int32));
case uint16_t(Op::I64TeeStore32):
CHECK_NEXT(emitTeeStore(ValType::I64, Scalar::Int32));
case uint16_t(Op::I64Store):
CHECK_NEXT(emitStore(ValType::I64, Scalar::Int64));
case uint16_t(Op::I64TeeStore):
CHECK_NEXT(emitTeeStore(ValType::I64, Scalar::Int64));
// F32
case uint16_t(Op::F32Const): {
RawF32 f32;
CHECK(iter_.readF32Const(&f32));
if (!deadCode_)
pushF32(f32);
NEXT();
}
case uint16_t(Op::F32Add):
CHECK_NEXT(emitBinary(emitAddF32, ValType::F32));
case uint16_t(Op::F32Sub):
CHECK_NEXT(emitBinary(emitSubtractF32, ValType::F32));
case uint16_t(Op::F32Mul):
CHECK_NEXT(emitBinary(emitMultiplyF32, ValType::F32));
case uint16_t(Op::F32Div):
CHECK_NEXT(emitBinary(emitDivideF32, ValType::F32));
case uint16_t(Op::F32Min):
CHECK_NEXT(emitBinary(emitMinF32, ValType::F32));
case uint16_t(Op::F32Max):
CHECK_NEXT(emitBinary(emitMaxF32, ValType::F32));
case uint16_t(Op::F32Neg):
CHECK_NEXT(emitUnary(emitNegateF32, ValType::F32));
case uint16_t(Op::F32Abs):
CHECK_NEXT(emitUnary(emitAbsF32, ValType::F32));
case uint16_t(Op::F32Sqrt):
CHECK_NEXT(emitUnary(emitSqrtF32, ValType::F32));
case uint16_t(Op::F32Ceil):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::CeilF, ValType::F32));
case uint16_t(Op::F32Floor):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::FloorF, ValType::F32));
case uint16_t(Op::F32DemoteF64):
CHECK_NEXT(emitConversion(emitConvertF64ToF32, ValType::F64, ValType::F32));
case uint16_t(Op::F32ConvertSI32):
CHECK_NEXT(emitConversion(emitConvertI32ToF32, ValType::I32, ValType::F32));
case uint16_t(Op::F32ConvertUI32):
CHECK_NEXT(emitConversion(emitConvertU32ToF32, ValType::I32, ValType::F32));
case uint16_t(Op::F32ConvertSI64):
#ifdef I64_TO_FLOAT_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertInt64ToFloatingCallout,
SymbolicAddress::Int64ToFloatingPoint,
ValType::I64, ValType::F32));
#else
CHECK_NEXT(emitConversion(emitConvertI64ToF32, ValType::I64, ValType::F32));
#endif
case uint16_t(Op::F32ConvertUI64):
#ifdef I64_TO_FLOAT_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertInt64ToFloatingCallout,
SymbolicAddress::Uint64ToFloatingPoint,
ValType::I64, ValType::F32));
#else
CHECK_NEXT(emitConversion(emitConvertU64ToF32, ValType::I64, ValType::F32));
#endif
case uint16_t(Op::F32ReinterpretI32):
CHECK_NEXT(emitConversion(emitReinterpretI32AsF32, ValType::I32, ValType::F32));
case uint16_t(Op::F32Load):
CHECK_NEXT(emitLoad(ValType::F32, Scalar::Float32));
case uint16_t(Op::F32Store):
CHECK_NEXT(emitStore(ValType::F32, Scalar::Float32));
case uint16_t(Op::F32TeeStore):
CHECK_NEXT(emitTeeStore(ValType::F32, Scalar::Float32));
case uint16_t(Op::F32TeeStoreF64):
CHECK_NEXT(emitTeeStoreWithCoercion(ValType::F32, Scalar::Float64));
case uint16_t(Op::F32CopySign):
CHECK_NEXT(emitBinary(emitCopysignF32, ValType::F32));
case uint16_t(Op::F32Nearest):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::NearbyIntF, ValType::F32));
case uint16_t(Op::F32Trunc):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::TruncF, ValType::F32));
// F64
case uint16_t(Op::F64Const): {
RawF64 f64;
CHECK(iter_.readF64Const(&f64));
if (!deadCode_)
pushF64(f64);
NEXT();
}
case uint16_t(Op::F64Add):
CHECK_NEXT(emitBinary(emitAddF64, ValType::F64));
case uint16_t(Op::F64Sub):
CHECK_NEXT(emitBinary(emitSubtractF64, ValType::F64));
case uint16_t(Op::F64Mul):
CHECK_NEXT(emitBinary(emitMultiplyF64, ValType::F64));
case uint16_t(Op::F64Div):
CHECK_NEXT(emitBinary(emitDivideF64, ValType::F64));
case uint16_t(Op::F64Mod):
CHECK_NEXT(emitBinaryMathBuiltinCall(SymbolicAddress::ModD, ValType::F64));
case uint16_t(Op::F64Min):
CHECK_NEXT(emitBinary(emitMinF64, ValType::F64));
case uint16_t(Op::F64Max):
CHECK_NEXT(emitBinary(emitMaxF64, ValType::F64));
case uint16_t(Op::F64Neg):
CHECK_NEXT(emitUnary(emitNegateF64, ValType::F64));
case uint16_t(Op::F64Abs):
CHECK_NEXT(emitUnary(emitAbsF64, ValType::F64));
case uint16_t(Op::F64Sqrt):
CHECK_NEXT(emitUnary(emitSqrtF64, ValType::F64));
case uint16_t(Op::F64Ceil):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::CeilD, ValType::F64));
case uint16_t(Op::F64Floor):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::FloorD, ValType::F64));
case uint16_t(Op::F64Sin):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::SinD, ValType::F64));
case uint16_t(Op::F64Cos):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::CosD, ValType::F64));
case uint16_t(Op::F64Tan):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::TanD, ValType::F64));
case uint16_t(Op::F64Asin):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::ASinD, ValType::F64));
case uint16_t(Op::F64Acos):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::ACosD, ValType::F64));
case uint16_t(Op::F64Atan):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::ATanD, ValType::F64));
case uint16_t(Op::F64Exp):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::ExpD, ValType::F64));
case uint16_t(Op::F64Log):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::LogD, ValType::F64));
case uint16_t(Op::F64Pow):
CHECK_NEXT(emitBinaryMathBuiltinCall(SymbolicAddress::PowD, ValType::F64));
case uint16_t(Op::F64Atan2):
CHECK_NEXT(emitBinaryMathBuiltinCall(SymbolicAddress::ATan2D, ValType::F64));
case uint16_t(Op::F64PromoteF32):
CHECK_NEXT(emitConversion(emitConvertF32ToF64, ValType::F32, ValType::F64));
case uint16_t(Op::F64ConvertSI32):
CHECK_NEXT(emitConversion(emitConvertI32ToF64, ValType::I32, ValType::F64));
case uint16_t(Op::F64ConvertUI32):
CHECK_NEXT(emitConversion(emitConvertU32ToF64, ValType::I32, ValType::F64));
case uint16_t(Op::F64ConvertSI64):
#ifdef I64_TO_FLOAT_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertInt64ToFloatingCallout,
SymbolicAddress::Int64ToFloatingPoint,
ValType::I64, ValType::F64));
#else
CHECK_NEXT(emitConversion(emitConvertI64ToF64, ValType::I64, ValType::F64));
#endif
case uint16_t(Op::F64ConvertUI64):
#ifdef I64_TO_FLOAT_CALLOUT
CHECK_NEXT(emitCalloutConversionOOM(emitConvertInt64ToFloatingCallout,
SymbolicAddress::Uint64ToFloatingPoint,
ValType::I64, ValType::F64));
#else
CHECK_NEXT(emitConversion(emitConvertU64ToF64, ValType::I64, ValType::F64));
#endif
case uint16_t(Op::F64Load):
CHECK_NEXT(emitLoad(ValType::F64, Scalar::Float64));
case uint16_t(Op::F64Store):
CHECK_NEXT(emitStore(ValType::F64, Scalar::Float64));
case uint16_t(Op::F64TeeStore):
CHECK_NEXT(emitTeeStore(ValType::F64, Scalar::Float64));
case uint16_t(Op::F64TeeStoreF32):
CHECK_NEXT(emitTeeStoreWithCoercion(ValType::F64, Scalar::Float32));
case uint16_t(Op::F64ReinterpretI64):
CHECK_NEXT(emitConversion(emitReinterpretI64AsF64, ValType::I64, ValType::F64));
case uint16_t(Op::F64CopySign):
CHECK_NEXT(emitBinary(emitCopysignF64, ValType::F64));
case uint16_t(Op::F64Nearest):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::NearbyIntD, ValType::F64));
case uint16_t(Op::F64Trunc):
CHECK_NEXT(emitUnaryMathBuiltinCall(SymbolicAddress::TruncD, ValType::F64));
// Comparisons
case uint16_t(Op::I32Eq):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_EQ, MCompare::Compare_Int32));
case uint16_t(Op::I32Ne):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_NE, MCompare::Compare_Int32));
case uint16_t(Op::I32LtS):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_LT, MCompare::Compare_Int32));
case uint16_t(Op::I32LeS):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_LE, MCompare::Compare_Int32));
case uint16_t(Op::I32GtS):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_GT, MCompare::Compare_Int32));
case uint16_t(Op::I32GeS):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_GE, MCompare::Compare_Int32));
case uint16_t(Op::I32LtU):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_LT, MCompare::Compare_UInt32));
case uint16_t(Op::I32LeU):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_LE, MCompare::Compare_UInt32));
case uint16_t(Op::I32GtU):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_GT, MCompare::Compare_UInt32));
case uint16_t(Op::I32GeU):
CHECK_NEXT(emitComparison(emitCompareI32, ValType::I32, JSOP_GE, MCompare::Compare_UInt32));
case uint16_t(Op::I64Eq):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_EQ, MCompare::Compare_Int64));
case uint16_t(Op::I64Ne):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_NE, MCompare::Compare_Int64));
case uint16_t(Op::I64LtS):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_LT, MCompare::Compare_Int64));
case uint16_t(Op::I64LeS):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_LE, MCompare::Compare_Int64));
case uint16_t(Op::I64GtS):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_GT, MCompare::Compare_Int64));
case uint16_t(Op::I64GeS):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_GE, MCompare::Compare_Int64));
case uint16_t(Op::I64LtU):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_LT, MCompare::Compare_UInt64));
case uint16_t(Op::I64LeU):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_LE, MCompare::Compare_UInt64));
case uint16_t(Op::I64GtU):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_GT, MCompare::Compare_UInt64));
case uint16_t(Op::I64GeU):
CHECK_NEXT(emitComparison(emitCompareI64, ValType::I64, JSOP_GE, MCompare::Compare_UInt64));
case uint16_t(Op::F32Eq):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_EQ, MCompare::Compare_Float32));
case uint16_t(Op::F32Ne):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_NE, MCompare::Compare_Float32));
case uint16_t(Op::F32Lt):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_LT, MCompare::Compare_Float32));
case uint16_t(Op::F32Le):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_LE, MCompare::Compare_Float32));
case uint16_t(Op::F32Gt):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_GT, MCompare::Compare_Float32));
case uint16_t(Op::F32Ge):
CHECK_NEXT(emitComparison(emitCompareF32, ValType::F32, JSOP_GE, MCompare::Compare_Float32));
case uint16_t(Op::F64Eq):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_EQ, MCompare::Compare_Double));
case uint16_t(Op::F64Ne):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_NE, MCompare::Compare_Double));
case uint16_t(Op::F64Lt):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_LT, MCompare::Compare_Double));
case uint16_t(Op::F64Le):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_LE, MCompare::Compare_Double));
case uint16_t(Op::F64Gt):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_GT, MCompare::Compare_Double));
case uint16_t(Op::F64Ge):
CHECK_NEXT(emitComparison(emitCompareF64, ValType::F64, JSOP_GE, MCompare::Compare_Double));
// SIMD
#define CASE(TYPE, OP, SIGN) \
case uint16_t(Op::TYPE##OP): \
MOZ_CRASH("Unimplemented SIMD");
#define I8x16CASE(OP) CASE(I8x16, OP, SimdSign::Signed)
#define I16x8CASE(OP) CASE(I16x8, OP, SimdSign::Signed)
#define I32x4CASE(OP) CASE(I32x4, OP, SimdSign::Signed)
#define F32x4CASE(OP) CASE(F32x4, OP, SimdSign::NotApplicable)
#define B8x16CASE(OP) CASE(B8x16, OP, SimdSign::NotApplicable)
#define B16x8CASE(OP) CASE(B16x8, OP, SimdSign::NotApplicable)
#define B32x4CASE(OP) CASE(B32x4, OP, SimdSign::NotApplicable)
#define ENUMERATE(TYPE, FORALL, DO) \
case uint16_t(Op::TYPE##Constructor): \
FORALL(DO)
ENUMERATE(I8x16, FORALL_INT8X16_ASMJS_OP, I8x16CASE)
ENUMERATE(I16x8, FORALL_INT16X8_ASMJS_OP, I16x8CASE)
ENUMERATE(I32x4, FORALL_INT32X4_ASMJS_OP, I32x4CASE)
ENUMERATE(F32x4, FORALL_FLOAT32X4_ASMJS_OP, F32x4CASE)
ENUMERATE(B8x16, FORALL_BOOL_SIMD_OP, B8x16CASE)
ENUMERATE(B16x8, FORALL_BOOL_SIMD_OP, B16x8CASE)
ENUMERATE(B32x4, FORALL_BOOL_SIMD_OP, B32x4CASE)
#undef CASE
#undef I8x16CASE
#undef I16x8CASE
#undef I32x4CASE
#undef F32x4CASE
#undef B8x16CASE
#undef B16x8CASE
#undef B32x4CASE
#undef ENUMERATE
case uint16_t(Op::I8x16Const):
case uint16_t(Op::I16x8Const):
case uint16_t(Op::I32x4Const):
case uint16_t(Op::F32x4Const):
case uint16_t(Op::B8x16Const):
case uint16_t(Op::B16x8Const):
case uint16_t(Op::B32x4Const):
case uint16_t(Op::I32x4shiftRightByScalarU):
case uint16_t(Op::I8x16addSaturateU):
case uint16_t(Op::I8x16subSaturateU):
case uint16_t(Op::I8x16shiftRightByScalarU):
case uint16_t(Op::I8x16lessThanU):
case uint16_t(Op::I8x16lessThanOrEqualU):
case uint16_t(Op::I8x16greaterThanU):
case uint16_t(Op::I8x16greaterThanOrEqualU):
case uint16_t(Op::I8x16extractLaneU):
case uint16_t(Op::I16x8addSaturateU):
case uint16_t(Op::I16x8subSaturateU):
case uint16_t(Op::I16x8shiftRightByScalarU):
case uint16_t(Op::I16x8lessThanU):
case uint16_t(Op::I16x8lessThanOrEqualU):
case uint16_t(Op::I16x8greaterThanU):
case uint16_t(Op::I16x8greaterThanOrEqualU):
case uint16_t(Op::I16x8extractLaneU):
case uint16_t(Op::I32x4lessThanU):
case uint16_t(Op::I32x4lessThanOrEqualU):
case uint16_t(Op::I32x4greaterThanU):
case uint16_t(Op::I32x4greaterThanOrEqualU):
case uint16_t(Op::I32x4fromFloat32x4U):
MOZ_CRASH("Unimplemented SIMD");
// Atomics
case uint16_t(Op::I32AtomicsLoad):
case uint16_t(Op::I32AtomicsStore):
case uint16_t(Op::I32AtomicsBinOp):
case uint16_t(Op::I32AtomicsCompareExchange):
case uint16_t(Op::I32AtomicsExchange):
MOZ_CRASH("Unimplemented Atomics");
// Memory Related
case uint16_t(Op::GrowMemory):
CHECK_NEXT(emitGrowMemory());
case uint16_t(Op::CurrentMemory):
CHECK_NEXT(emitCurrentMemory());
}
MOZ_CRASH("unexpected wasm opcode");
#undef CHECK
#undef NEXT
#undef CHECK_NEXT
#undef emitBinary
#undef emitUnary
#undef emitComparison
#undef emitConversion
#undef emitConversionOOM
#undef emitCalloutConversionOOM
}
done:
return false;
}
bool
BaseCompiler::emitFunction()
{
// emitBody() will ensure that there is enough memory reserved in the
// vector for infallible allocation to succeed within the compiler, but we
// need a little headroom for the initial pushControl(), which pushes a
// void value onto the value stack.
if (!stk_.reserve(8))
return false;
const Sig& sig = func_.sig();
if (!iter_.readFunctionStart(sig.ret()))
return false;
beginFunction();
UniquePooledLabel functionEnd(newLabel());
if (!pushControl(&functionEnd))
return false;
if (!emitBody())
return false;
if (!iter_.readFunctionEnd())
return false;
if (!endFunction())
return false;
return true;
}
BaseCompiler::BaseCompiler(const ModuleGeneratorData& mg,
Decoder& decoder,
const FuncBytes& func,
const ValTypeVector& locals,
FuncCompileResults& compileResults)
: mg_(mg),
iter_(decoder, func.lineOrBytecode()),
func_(func),
lastReadCallSite_(0),
alloc_(compileResults.alloc()),
locals_(locals),
localSize_(0),
varLow_(0),
varHigh_(0),
maxFramePushed_(0),
deadCode_(false),
prologueTrapOffset_(trapOffset()),
compileResults_(compileResults),
masm(compileResults_.masm()),
availGPR_(GeneralRegisterSet::All()),
availFPU_(FloatRegisterSet::All()),
#ifdef DEBUG
scratchRegisterTaken_(false),
#endif
tlsSlot_(0),
#ifdef JS_CODEGEN_X64
specific_rax(RegI64(Register64(rax))),
specific_rcx(RegI64(Register64(rcx))),
specific_rdx(RegI64(Register64(rdx))),
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
specific_eax(RegI32(eax)),
specific_ecx(RegI32(ecx)),
specific_edx(RegI32(edx)),
#endif
#ifdef JS_CODEGEN_X86
singleByteRegs_(GeneralRegisterSet(Registers::SingleByteRegs)),
abiReturnRegI64(RegI64(Register64(edx, eax))),
#endif
#ifdef JS_CODEGEN_ARM
abiReturnRegI64(ReturnReg64),
#endif
joinRegI32(RegI32(ReturnReg)),
joinRegI64(RegI64(ReturnReg64)),
joinRegF32(RegF32(ReturnFloat32Reg)),
joinRegF64(RegF64(ReturnDoubleReg))
{
// jit/RegisterAllocator.h: RegisterAllocator::RegisterAllocator()
#if defined(JS_CODEGEN_X64)
availGPR_.take(HeapReg);
#elif defined(JS_CODEGEN_ARM)
availGPR_.take(HeapReg);
availGPR_.take(GlobalReg);
availGPR_.take(ScratchRegARM);
#elif defined(JS_CODEGEN_ARM64)
availGPR_.take(HeapReg);
availGPR_.take(HeapLenReg);
availGPR_.take(GlobalReg);
#elif defined(JS_CODEGEN_X86)
availGPR_.take(ScratchRegX86);
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
availGPR_.take(HeapReg);
availGPR_.take(GlobalReg);
#endif
labelPool_.setAllocator(alloc_);
}
bool
BaseCompiler::init()
{
if (!SigDD_.append(ValType::F64) || !SigDD_.append(ValType::F64))
return false;
if (!SigD_.append(ValType::F64))
return false;
if (!SigF_.append(ValType::F32))
return false;
if (!SigI_.append(ValType::I32))
return false;
if (!SigI64I64_.append(ValType::I64) || !SigI64I64_.append(ValType::I64))
return false;
const ValTypeVector& args = func_.sig().args();
// localInfo_ contains an entry for every local in locals_, followed by
// entries for special locals. Currently the only special local is the TLS
// pointer.
tlsSlot_ = locals_.length();
if (!localInfo_.resize(locals_.length() + 1))
return false;
localSize_ = 0;
for (ABIArgIter<const ValTypeVector> i(args); !i.done(); i++) {
Local& l = localInfo_[i.index()];
switch (i.mirType()) {
case MIRType::Int32:
if (i->argInRegister())
l.init(MIRType::Int32, pushLocal(4));
else
l.init(MIRType::Int32, -(i->offsetFromArgBase() + sizeof(Frame)));
break;
case MIRType::Int64:
if (i->argInRegister())
l.init(MIRType::Int64, pushLocal(8));
else
l.init(MIRType::Int64, -(i->offsetFromArgBase() + sizeof(Frame)));
break;
case MIRType::Double:
if (i->argInRegister())
l.init(MIRType::Double, pushLocal(8));
else
l.init(MIRType::Double, -(i->offsetFromArgBase() + sizeof(Frame)));
break;
case MIRType::Float32:
if (i->argInRegister())
l.init(MIRType::Float32, pushLocal(4));
else
l.init(MIRType::Float32, -(i->offsetFromArgBase() + sizeof(Frame)));
break;
default:
MOZ_CRASH("Argument type");
}
}
// Reserve a stack slot for the TLS pointer outside the varLow..varHigh
// range so it isn't zero-filled like the normal locals.
localInfo_[tlsSlot_].init(MIRType::Pointer, pushLocal(sizeof(void*)));
varLow_ = localSize_;
for (size_t i = args.length(); i < locals_.length(); i++) {
Local& l = localInfo_[i];
switch (locals_[i]) {
case ValType::I32:
l.init(MIRType::Int32, pushLocal(4));
break;
case ValType::F32:
l.init(MIRType::Float32, pushLocal(4));
break;
case ValType::F64:
l.init(MIRType::Double, pushLocal(8));
break;
case ValType::I64:
l.init(MIRType::Int64, pushLocal(8));
break;
default:
MOZ_CRASH("Compiler bug: Unexpected local type");
}
}
varHigh_ = localSize_;
localSize_ = AlignBytes(localSize_, 16u);
addInterruptCheck();
return true;
}
void
BaseCompiler::finish()
{
MOZ_ASSERT(done(), "all bytes must be consumed");
MOZ_ASSERT(func_.callSiteLineNums().length() == lastReadCallSite_);
masm.flushBuffer();
}
static LiveRegisterSet
volatileReturnGPR()
{
GeneralRegisterSet rtn;
rtn.addAllocatable(ReturnReg);
return LiveRegisterSet(RegisterSet::VolatileNot(RegisterSet(rtn, FloatRegisterSet())));
}
LiveRegisterSet BaseCompiler::VolatileReturnGPR = volatileReturnGPR();
} // wasm
} // js
bool
js::wasm::BaselineCanCompile(const FunctionGenerator* fg)
{
// On all platforms we require signals for AsmJS/Wasm.
// If we made it this far we must have signals.
MOZ_RELEASE_ASSERT(wasm::HaveSignalHandlers());
#if defined(JS_CODEGEN_ARM)
// Simplifying assumption: require SDIV and UDIV.
//
// I have no good data on ARM populations allowing me to say that
// X% of devices in the market implement SDIV and UDIV. However,
// they are definitely implemented on the Cortex-A7 and Cortex-A15
// and on all ARMv8 systems.
if (!HasIDIV())
return false;
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_ARM)
if (fg->usesAtomics())
return false;
if (fg->usesSimd())
return false;
return true;
#else
return false;
#endif
}
bool
js::wasm::BaselineCompileFunction(IonCompileTask* task)
{
MOZ_ASSERT(task->mode() == IonCompileTask::CompileMode::Baseline);
const FuncBytes& func = task->func();
FuncCompileResults& results = task->results();
Decoder d(func.bytes());
// Build the local types vector.
ValTypeVector locals;
if (!locals.appendAll(func.sig().args()))
return false;
if (!DecodeLocalEntries(d, task->mg().kind, &locals))
return false;
// The MacroAssembler will sometimes access the jitContext.
JitContext jitContext(&results.alloc());
// One-pass baseline compilation.
BaseCompiler f(task->mg(), d, func, locals, results);
if (!f.init())
return false;
if (!f.emitFunction())
return false;
f.finish();
return true;
}
#undef INT_DIV_I64_CALLOUT
#undef I64_TO_FLOAT_CALLOUT
#undef FLOAT_TO_I64_CALLOUT
|