1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* -*- indent-tabs-mode: nil; js-indent-level: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
File Name: 11.5.3.js
ECMA Section: 11.5.3 Applying the % operator
Description:
The binary % operator is said to yield the remainder of its operands from
an implied division; the left operand is the dividend and the right operand
is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the %
operator is not the same as the "remainder" operation defined by IEEE 754.
The IEEE 754 "remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous
to that of the usual integer remainder operator. Instead the ECMAScript
language defines % on floating-point operations to behave in a manner
analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.
The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.
If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathematical quotient of n and d.
Author: christine@netscape.com
Date: 12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
var BUGNUMBER="111202";
startTest();
writeHeaderToLog( SECTION + " Applying the % operator");
// if either operand is NaN, the result is NaN.
new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
// dividend is an infinity
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
// divisor is 0
new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical quotient of n and d.
test();
|