summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/MozSimulator-vixl.cpp
blob: 7447b4d2aeb48003e2a45b0a67eb43bb3650276f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "mozilla/DebugOnly.h"

#include "jit/arm64/vixl/Debugger-vixl.h"
#include "jit/arm64/vixl/Simulator-vixl.h"
#include "jit/IonTypes.h"
#include "threading/LockGuard.h"
#include "vm/Runtime.h"

namespace vixl {


using mozilla::DebugOnly;
using js::jit::ABIFunctionType;

Simulator::Simulator(Decoder* decoder, FILE* stream)
  : stream_(nullptr)
  , print_disasm_(nullptr)
  , instrumentation_(nullptr)
  , stack_(nullptr)
  , stack_limit_(nullptr)
  , decoder_(nullptr)
  , oom_(false)
  , lock_(js::mutexid::Arm64SimulatorLock)
{
    this->init(decoder, stream);
}


Simulator::~Simulator() {
  js_free(stack_);
  stack_ = nullptr;

  // The decoder may outlive the simulator.
  if (print_disasm_) {
    decoder_->RemoveVisitor(print_disasm_);
    js_delete(print_disasm_);
    print_disasm_ = nullptr;
  }

  if (instrumentation_) {
    decoder_->RemoveVisitor(instrumentation_);
    js_delete(instrumentation_);
    instrumentation_ = nullptr;
  }
}


void Simulator::ResetState() {
  // Reset the system registers.
  nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
  fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);

  // Reset registers to 0.
  pc_ = nullptr;
  pc_modified_ = false;
  for (unsigned i = 0; i < kNumberOfRegisters; i++) {
    set_xreg(i, 0xbadbeef);
  }
  // Set FP registers to a value that is a NaN in both 32-bit and 64-bit FP.
  uint64_t nan_bits = UINT64_C(0x7ff0dead7f8beef1);
  VIXL_ASSERT(IsSignallingNaN(rawbits_to_double(nan_bits & kDRegMask)));
  VIXL_ASSERT(IsSignallingNaN(rawbits_to_float(nan_bits & kSRegMask)));
  for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
    set_dreg_bits(i, nan_bits);
  }
  // Returning to address 0 exits the Simulator.
  set_lr(kEndOfSimAddress);
  set_resume_pc(nullptr);
}


void Simulator::init(Decoder* decoder, FILE* stream) {
  // Ensure that shift operations act as the simulator expects.
  VIXL_ASSERT((static_cast<int32_t>(-1) >> 1) == -1);
  VIXL_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF);

  instruction_stats_ = false;

  // Set up the decoder.
  decoder_ = decoder;
  decoder_->AppendVisitor(this);

  stream_ = stream;
  print_disasm_ = js_new<PrintDisassembler>(stream_);
  if (!print_disasm_) {
    oom_ = true;
    return;
  }
  set_coloured_trace(false);
  trace_parameters_ = LOG_NONE;

  ResetState();

  // Allocate and set up the simulator stack.
  stack_ = (byte*)js_malloc(stack_size_);
  if (!stack_) {
    oom_ = true;
    return;
  }
  stack_limit_ = stack_ + stack_protection_size_;
  // Configure the starting stack pointer.
  //  - Find the top of the stack.
  byte * tos = stack_ + stack_size_;
  //  - There's a protection region at both ends of the stack.
  tos -= stack_protection_size_;
  //  - The stack pointer must be 16-byte aligned.
  tos = AlignDown(tos, 16);
  set_sp(tos);

  // Set the sample period to 10, as the VIXL examples and tests are short.
  instrumentation_ = js_new<Instrument>("vixl_stats.csv", 10);
  if (!instrumentation_) {
    oom_ = true;
    return;
  }

  // Print a warning about exclusive-access instructions, but only the first
  // time they are encountered. This warning can be silenced using
  // SilenceExclusiveAccessWarning().
  print_exclusive_access_warning_ = true;

  redirection_ = nullptr;
}


Simulator* Simulator::Current() {
  return js::TlsPerThreadData.get()->simulator();
}


Simulator* Simulator::Create(JSContext* cx) {
  Decoder *decoder = js_new<vixl::Decoder>();
  if (!decoder)
    return nullptr;

  // FIXME: This just leaks the Decoder object for now, which is probably OK.
  // FIXME: We should free it at some point.
  // FIXME: Note that it can't be stored in the SimulatorRuntime due to lifetime conflicts.
  Simulator *sim;
  if (getenv("USE_DEBUGGER") != nullptr)
    sim = js_new<Debugger>(decoder, stdout);
  else
    sim = js_new<Simulator>(decoder, stdout);

  // Check if Simulator:init ran out of memory.
  if (sim && sim->oom()) {
    js_delete(sim);
    return nullptr;
  }

  return sim;
}


void Simulator::Destroy(Simulator* sim) {
  js_delete(sim);
}


void Simulator::ExecuteInstruction() {
  // The program counter should always be aligned.
  VIXL_ASSERT(IsWordAligned(pc_));
  decoder_->Decode(pc_);
  const Instruction* rpc = resume_pc_;
  increment_pc();

  if (MOZ_UNLIKELY(rpc)) {
    JSRuntime::innermostWasmActivation()->setResumePC((void*)pc());
    set_pc(rpc);
    // Just calling set_pc turns the pc_modified_ flag on, which means it doesn't
    // auto-step after executing the next instruction.  Force that to off so it
    // will auto-step after executing the first instruction of the handler.
    pc_modified_ = false;
    resume_pc_ = nullptr;
  }
}


uintptr_t Simulator::stackLimit() const {
  return reinterpret_cast<uintptr_t>(stack_limit_);
}


uintptr_t* Simulator::addressOfStackLimit() {
  return (uintptr_t*)&stack_limit_;
}


bool Simulator::overRecursed(uintptr_t newsp) const {
  if (newsp)
    newsp = xreg(31, Reg31IsStackPointer);
  return newsp <= stackLimit();
}


bool Simulator::overRecursedWithExtra(uint32_t extra) const {
  uintptr_t newsp = xreg(31, Reg31IsStackPointer) - extra;
  return newsp <= stackLimit();
}


void Simulator::set_resume_pc(void* new_resume_pc) {
  resume_pc_ = AddressUntag(reinterpret_cast<Instruction*>(new_resume_pc));
}


int64_t Simulator::call(uint8_t* entry, int argument_count, ...) {
  va_list parameters;
  va_start(parameters, argument_count);

  // First eight arguments passed in registers.
  VIXL_ASSERT(argument_count <= 8);
  // This code should use the type of the called function
  // (with templates, like the callVM machinery), but since the
  // number of called functions is miniscule, their types have been
  // divined from the number of arguments.
  if (argument_count == 8) {
      // EnterJitData::jitcode.
      set_xreg(0, va_arg(parameters, int64_t));
      // EnterJitData::maxArgc.
      set_xreg(1, va_arg(parameters, unsigned));
      // EnterJitData::maxArgv.
      set_xreg(2, va_arg(parameters, int64_t));
      // EnterJitData::osrFrame.
      set_xreg(3, va_arg(parameters, int64_t));
      // EnterJitData::calleeToken.
      set_xreg(4, va_arg(parameters, int64_t));
      // EnterJitData::scopeChain.
      set_xreg(5, va_arg(parameters, int64_t));
      // EnterJitData::osrNumStackValues.
      set_xreg(6, va_arg(parameters, unsigned));
      // Address of EnterJitData::result.
      set_xreg(7, va_arg(parameters, int64_t));
  } else if (argument_count == 2) {
      // EntryArg* args
      set_xreg(0, va_arg(parameters, int64_t));
      // uint8_t* GlobalData
      set_xreg(1, va_arg(parameters, int64_t));
  } else if (argument_count == 1) { // irregexp
      // InputOutputData& data
      set_xreg(0, va_arg(parameters, int64_t));
  } else {
      MOZ_CRASH("Unknown number of arguments");
  }

  va_end(parameters);

  // Call must transition back to native code on exit.
  VIXL_ASSERT(xreg(30) == int64_t(kEndOfSimAddress));

  // Execute the simulation.
  DebugOnly<int64_t> entryStack = xreg(31, Reg31IsStackPointer);
  RunFrom((Instruction*)entry);
  DebugOnly<int64_t> exitStack = xreg(31, Reg31IsStackPointer);
  VIXL_ASSERT(entryStack == exitStack);

  int64_t result = xreg(0);
  if (getenv("USE_DEBUGGER"))
      printf("LEAVE\n");
  return result;
}


// Protects the icache and redirection properties of the simulator.
class AutoLockSimulatorCache : public js::LockGuard<js::Mutex>
{
  friend class Simulator;
  using Base = js::LockGuard<js::Mutex>;

 public:
  explicit AutoLockSimulatorCache(Simulator* sim)
    : Base(sim->lock_)
  {
  }
};


// When the generated code calls a VM function (masm.callWithABI) we need to
// call that function instead of trying to execute it with the simulator
// (because it's x64 code instead of AArch64 code). We do that by redirecting the VM
// call to a svc (Supervisor Call) instruction that is handled by the
// simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection
{
  friend class Simulator;

  Redirection(void* nativeFunction, ABIFunctionType type, Simulator* sim)
    : nativeFunction_(nativeFunction),
    type_(type),
    next_(nullptr)
  {
    next_ = sim->redirection();
    // TODO: Flush ICache?
    sim->setRedirection(this);

    Instruction* instr = (Instruction*)(&svcInstruction_);
    vixl::Assembler::svc(instr, kCallRtRedirected);
  }

 public:
  void* addressOfSvcInstruction() { return &svcInstruction_; }
  void* nativeFunction() const { return nativeFunction_; }
  ABIFunctionType type() const { return type_; }

  static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
    Simulator* sim = Simulator::Current();
    AutoLockSimulatorCache alsr(sim);

    // TODO: Store srt_ in the simulator for this assertion.
    // VIXL_ASSERT_IF(pt->simulator(), pt->simulator()->srt_ == srt);

    Redirection* current = sim->redirection();
    for (; current != nullptr; current = current->next_) {
      if (current->nativeFunction_ == nativeFunction) {
        VIXL_ASSERT(current->type() == type);
        return current;
      }
    }

    js::AutoEnterOOMUnsafeRegion oomUnsafe;
    Redirection* redir = (Redirection*)js_malloc(sizeof(Redirection));
    if (!redir)
        oomUnsafe.crash("Simulator redirection");
    new(redir) Redirection(nativeFunction, type, sim);
    return redir;
  }

  static const Redirection* FromSvcInstruction(const Instruction* svcInstruction) {
    const uint8_t* addrOfSvc = reinterpret_cast<const uint8_t*>(svcInstruction);
    const uint8_t* addrOfRedirection = addrOfSvc - offsetof(Redirection, svcInstruction_);
    return reinterpret_cast<const Redirection*>(addrOfRedirection);
  }

 private:
  void* nativeFunction_;
  uint32_t svcInstruction_;
  ABIFunctionType type_;
  Redirection* next_;
};


void Simulator::setRedirection(Redirection* redirection) {
  redirection_ = redirection;
}


Redirection* Simulator::redirection() const {
  return redirection_;
}


void* Simulator::RedirectNativeFunction(void* nativeFunction, ABIFunctionType type) {
  Redirection* redirection = Redirection::Get(nativeFunction, type);
  return redirection->addressOfSvcInstruction();
}


void Simulator::VisitException(const Instruction* instr) {
  switch (instr->Mask(ExceptionMask)) {
    case BRK: {
      int lowbit  = ImmException_offset;
      int highbit = ImmException_offset + ImmException_width - 1;
      HostBreakpoint(instr->Bits(highbit, lowbit));
      break;
    }
    case HLT:
      switch (instr->ImmException()) {
        case kUnreachableOpcode:
          DoUnreachable(instr);
          return;
        case kTraceOpcode:
          DoTrace(instr);
          return;
        case kLogOpcode:
          DoLog(instr);
          return;
        case kPrintfOpcode:
          DoPrintf(instr);
          return;
        default:
          HostBreakpoint();
          return;
      }
    case SVC:
      // The SVC instruction is hijacked by the JIT as a pseudo-instruction
      // causing the Simulator to execute host-native code for callWithABI.
      switch (instr->ImmException()) {
        case kCallRtRedirected:
          VisitCallRedirection(instr);
          return;
        case kMarkStackPointer:
          spStack_.append(xreg(31, Reg31IsStackPointer));
          return;
        case kCheckStackPointer: {
          int64_t current = xreg(31, Reg31IsStackPointer);
          int64_t expected = spStack_.popCopy();
          VIXL_ASSERT(current == expected);
          return;
        }
        default:
          VIXL_UNIMPLEMENTED();
      }
      break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::setGPR32Result(int32_t result) {
    set_wreg(0, result);
}


void Simulator::setGPR64Result(int64_t result) {
    set_xreg(0, result);
}


void Simulator::setFP32Result(float result) {
    set_sreg(0, result);
}


void Simulator::setFP64Result(double result) {
    set_dreg(0, result);
}


typedef int64_t (*Prototype_General0)();
typedef int64_t (*Prototype_General1)(int64_t arg0);
typedef int64_t (*Prototype_General2)(int64_t arg0, int64_t arg1);
typedef int64_t (*Prototype_General3)(int64_t arg0, int64_t arg1, int64_t arg2);
typedef int64_t (*Prototype_General4)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3);
typedef int64_t (*Prototype_General5)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
                                      int64_t arg4);
typedef int64_t (*Prototype_General6)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
                                      int64_t arg4, int64_t arg5);
typedef int64_t (*Prototype_General7)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
                                      int64_t arg4, int64_t arg5, int64_t arg6);
typedef int64_t (*Prototype_General8)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
                                      int64_t arg4, int64_t arg5, int64_t arg6, int64_t arg7);

typedef int64_t (*Prototype_Int_Double)(double arg0);
typedef int64_t (*Prototype_Int_IntDouble)(int32_t arg0, double arg1);
typedef int64_t (*Prototype_Int_DoubleIntInt)(double arg0, uint64_t arg1, uint64_t arg2);
typedef int64_t (*Prototype_Int_IntDoubleIntInt)(uint64_t arg0, double arg1,
                                                 uint64_t arg2, uint64_t arg3);

typedef float (*Prototype_Float32_Float32)(float arg0);

typedef double (*Prototype_Double_None)();
typedef double (*Prototype_Double_Double)(double arg0);
typedef double (*Prototype_Double_Int)(int32_t arg0);
typedef double (*Prototype_Double_DoubleInt)(double arg0, int64_t arg1);
typedef double (*Prototype_Double_IntDouble)(int64_t arg0, double arg1);
typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1);
typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, double arg2);
typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, double arg1,
                                                            double arg2, double arg3);


// Simulator support for callWithABI().
void
Simulator::VisitCallRedirection(const Instruction* instr)
{
  VIXL_ASSERT(instr->Mask(ExceptionMask) == SVC);
  VIXL_ASSERT(instr->ImmException() == kCallRtRedirected);

  const Redirection* redir = Redirection::FromSvcInstruction(instr);
  uintptr_t nativeFn = reinterpret_cast<uintptr_t>(redir->nativeFunction());

  // Stack must be aligned prior to the call.
  // FIXME: It's actually our job to perform the alignment...
  //VIXL_ASSERT((xreg(31, Reg31IsStackPointer) & (StackAlignment - 1)) == 0);

  // Used to assert that callee-saved registers are preserved.
  DebugOnly<int64_t> x19 = xreg(19);
  DebugOnly<int64_t> x20 = xreg(20);
  DebugOnly<int64_t> x21 = xreg(21);
  DebugOnly<int64_t> x22 = xreg(22);
  DebugOnly<int64_t> x23 = xreg(23);
  DebugOnly<int64_t> x24 = xreg(24);
  DebugOnly<int64_t> x25 = xreg(25);
  DebugOnly<int64_t> x26 = xreg(26);
  DebugOnly<int64_t> x27 = xreg(27);
  DebugOnly<int64_t> x28 = xreg(28);
  DebugOnly<int64_t> x29 = xreg(29);
  DebugOnly<int64_t> savedSP = xreg(31, Reg31IsStackPointer);

  // Remember LR for returning from the "call".
  int64_t savedLR = xreg(30);

  // Allow recursive Simulator calls: returning from the call must stop
  // the simulation and transition back to native Simulator code.
  set_xreg(30, int64_t(kEndOfSimAddress));

  // Store argument register values in local variables for ease of use below.
  int64_t x0 = xreg(0);
  int64_t x1 = xreg(1);
  int64_t x2 = xreg(2);
  int64_t x3 = xreg(3);
  int64_t x4 = xreg(4);
  int64_t x5 = xreg(5);
  int64_t x6 = xreg(6);
  int64_t x7 = xreg(7);
  double d0 = dreg(0);
  double d1 = dreg(1);
  double d2 = dreg(2);
  double d3 = dreg(3);
  float s0 = sreg(0);

  // Dispatch the call and set the return value.
  switch (redir->type()) {
    // Cases with int64_t return type.
    case js::jit::Args_General0: {
      int64_t ret = reinterpret_cast<Prototype_General0>(nativeFn)();
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General1: {
      int64_t ret = reinterpret_cast<Prototype_General1>(nativeFn)(x0);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General2: {
      int64_t ret = reinterpret_cast<Prototype_General2>(nativeFn)(x0, x1);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General3: {
      int64_t ret = reinterpret_cast<Prototype_General3>(nativeFn)(x0, x1, x2);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General4: {
      int64_t ret = reinterpret_cast<Prototype_General4>(nativeFn)(x0, x1, x2, x3);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General5: {
      int64_t ret = reinterpret_cast<Prototype_General5>(nativeFn)(x0, x1, x2, x3, x4);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General6: {
      int64_t ret = reinterpret_cast<Prototype_General6>(nativeFn)(x0, x1, x2, x3, x4, x5);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General7: {
      int64_t ret = reinterpret_cast<Prototype_General7>(nativeFn)(x0, x1, x2, x3, x4, x5, x6);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_General8: {
      int64_t ret = reinterpret_cast<Prototype_General8>(nativeFn)(x0, x1, x2, x3, x4, x5, x6, x7);
      setGPR64Result(ret);
      break;
    }

    // Cases with GPR return type. This can be int32 or int64, but int64 is a safer assumption.
    case js::jit::Args_Int_Double: {
      int64_t ret = reinterpret_cast<Prototype_Int_Double>(nativeFn)(d0);
      setGPR64Result(ret);
      break;
    }
    case js::jit::Args_Int_IntDouble: {
      int64_t ret = reinterpret_cast<Prototype_Int_IntDouble>(nativeFn)(x0, d0);
      setGPR64Result(ret);
      break;
    }

    case js::jit::Args_Int_IntDoubleIntInt: {
      int64_t ret = reinterpret_cast<Prototype_Int_IntDoubleIntInt>(nativeFn)(x0, d0, x1, x2);
      setGPR64Result(ret);
      break;
    }

    case js::jit::Args_Int_DoubleIntInt: {
      int64_t ret = reinterpret_cast<Prototype_Int_DoubleIntInt>(nativeFn)(d0, x0, x1);
      setGPR64Result(ret);
      break;
    }

    // Cases with float return type.
    case js::jit::Args_Float32_Float32: {
      float ret = reinterpret_cast<Prototype_Float32_Float32>(nativeFn)(s0);
      setFP32Result(ret);
      break;
    }

    // Cases with double return type.
    case js::jit::Args_Double_None: {
      double ret = reinterpret_cast<Prototype_Double_None>(nativeFn)();
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_Double: {
      double ret = reinterpret_cast<Prototype_Double_Double>(nativeFn)(d0);
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_Int: {
      double ret = reinterpret_cast<Prototype_Double_Int>(nativeFn)(x0);
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_DoubleInt: {
      double ret = reinterpret_cast<Prototype_Double_DoubleInt>(nativeFn)(d0, x0);
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_DoubleDouble: {
      double ret = reinterpret_cast<Prototype_Double_DoubleDouble>(nativeFn)(d0, d1);
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_DoubleDoubleDouble: {
      double ret = reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(nativeFn)(d0, d1, d2);
      setFP64Result(ret);
      break;
    }
    case js::jit::Args_Double_DoubleDoubleDoubleDouble: {
      double ret = reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>(nativeFn)(d0, d1, d2, d3);
      setFP64Result(ret);
      break;
    }

    case js::jit::Args_Double_IntDouble: {
      double ret = reinterpret_cast<Prototype_Double_IntDouble>(nativeFn)(x0, d0);
      setFP64Result(ret);
      break;
    }

    default:
      MOZ_CRASH("Unknown function type.");
  }

  // TODO: Nuke the volatile registers.

  // Assert that callee-saved registers are unchanged.
  VIXL_ASSERT(xreg(19) == x19);
  VIXL_ASSERT(xreg(20) == x20);
  VIXL_ASSERT(xreg(21) == x21);
  VIXL_ASSERT(xreg(22) == x22);
  VIXL_ASSERT(xreg(23) == x23);
  VIXL_ASSERT(xreg(24) == x24);
  VIXL_ASSERT(xreg(25) == x25);
  VIXL_ASSERT(xreg(26) == x26);
  VIXL_ASSERT(xreg(27) == x27);
  VIXL_ASSERT(xreg(28) == x28);
  VIXL_ASSERT(xreg(29) == x29);

  // Assert that the stack is unchanged.
  VIXL_ASSERT(savedSP == xreg(31, Reg31IsStackPointer));

  // Simulate a return.
  set_lr(savedLR);
  set_pc((Instruction*)savedLR);
  if (getenv("USE_DEBUGGER"))
    printf("SVCRET\n");
}


}  // namespace vixl


vixl::Simulator* js::PerThreadData::simulator() const {
  return runtime_->simulator();
}


vixl::Simulator* JSRuntime::simulator() const {
  return simulator_;
}


uintptr_t* JSRuntime::addressOfSimulatorStackLimit() {
  return simulator_->addressOfStackLimit();
}