1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/string_util.h"
#include "build/build_config.h"
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/singleton.h"
namespace {
// Force the singleton used by Empty[W]String[16] to be a unique type. This
// prevents other code that might accidentally use Singleton<string> from
// getting our internal one.
struct EmptyStrings {
EmptyStrings() {}
const std::string s;
const std::wstring ws;
const string16 s16;
};
// Hack to convert any char-like type to its unsigned counterpart.
// For example, it will convert char, signed char and unsigned char to unsigned
// char.
template<typename T>
struct ToUnsigned {
typedef T Unsigned;
};
template<>
struct ToUnsigned<char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<signed char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<wchar_t> {
#if defined(WCHAR_T_IS_UTF16)
typedef unsigned short Unsigned;
#elif defined(WCHAR_T_IS_UTF32)
typedef uint32_t Unsigned;
#endif
};
template<>
struct ToUnsigned<short> {
typedef unsigned short Unsigned;
};
// Generalized string-to-number conversion.
//
// StringToNumberTraits should provide:
// - a typedef for string_type, the STL string type used as input.
// - a typedef for value_type, the target numeric type.
// - a static function, convert_func, which dispatches to an appropriate
// strtol-like function and returns type value_type.
// - a static function, valid_func, which validates |input| and returns a bool
// indicating whether it is in proper form. This is used to check for
// conditions that convert_func tolerates but should result in
// StringToNumber returning false. For strtol-like funtions, valid_func
// should check for leading whitespace.
template<typename StringToNumberTraits>
bool StringToNumber(const typename StringToNumberTraits::string_type& input,
typename StringToNumberTraits::value_type* output) {
typedef StringToNumberTraits traits;
errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows.
typename traits::string_type::value_type* endptr = NULL;
typename traits::value_type value = traits::convert_func(input.c_str(),
&endptr);
*output = value;
// Cases to return false:
// - If errno is ERANGE, there was an overflow or underflow.
// - If the input string is empty, there was nothing to parse.
// - If endptr does not point to the end of the string, there are either
// characters remaining in the string after a parsed number, or the string
// does not begin with a parseable number. endptr is compared to the
// expected end given the string's stated length to correctly catch cases
// where the string contains embedded NUL characters.
// - valid_func determines that the input is not in preferred form.
return errno == 0 &&
!input.empty() &&
input.c_str() + input.length() == endptr &&
traits::valid_func(input);
}
class StringToLongTraits {
public:
typedef std::string string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtol(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToLongTraits {
public:
typedef string16 string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#if defined(WCHAR_T_IS_UTF16)
return wcstol(str, endptr, kBase);
#elif defined(WCHAR_T_IS_UTF32)
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = strtol(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToInt64Traits {
public:
typedef std::string string_type;
typedef int64_t value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _strtoi64(str, endptr, kBase);
#else // assume OS_POSIX
return strtoll(str, endptr, kBase);
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToInt64Traits {
public:
typedef string16 string_type;
typedef int64_t value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _wcstoi64(str, endptr, kBase);
#else // assume OS_POSIX
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
} // namespace
namespace base {
bool IsWprintfFormatPortable(const wchar_t* format) {
for (const wchar_t* position = format; *position != '\0'; ++position) {
if (*position == '%') {
bool in_specification = true;
bool modifier_l = false;
while (in_specification) {
// Eat up characters until reaching a known specifier.
if (*++position == '\0') {
// The format string ended in the middle of a specification. Call
// it portable because no unportable specifications were found. The
// string is equally broken on all platforms.
return true;
}
if (*position == 'l') {
// 'l' is the only thing that can save the 's' and 'c' specifiers.
modifier_l = true;
} else if (((*position == 's' || *position == 'c') && !modifier_l) ||
*position == 'S' || *position == 'C' || *position == 'F' ||
*position == 'D' || *position == 'O' || *position == 'U') {
// Not portable.
return false;
}
if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
// Portable, keep scanning the rest of the format string.
in_specification = false;
}
}
}
}
return true;
}
} // namespace base
static const wchar_t kWhitespaceWide[] = {
0x0009, // <control-0009> to <control-000D>
0x000A,
0x000B,
0x000C,
0x000D,
0x0020, // Space
0x0085, // <control-0085>
0x00A0, // No-Break Space
0x1680, // Ogham Space Mark
0x180E, // Mongolian Vowel Separator
0x2000, // En Quad to Hair Space
0x2001,
0x2002,
0x2003,
0x2004,
0x2005,
0x2006,
0x2007,
0x2008,
0x2009,
0x200A,
0x200C, // Zero Width Non-Joiner
0x2028, // Line Separator
0x2029, // Paragraph Separator
0x202F, // Narrow No-Break Space
0x205F, // Medium Mathematical Space
0x3000, // Ideographic Space
0
};
static const char kWhitespaceASCII[] = {
0x09, // <control-0009> to <control-000D>
0x0A,
0x0B,
0x0C,
0x0D,
0x20, // Space
0
};
template<typename STR>
TrimPositions TrimStringT(const STR& input,
const typename STR::value_type trim_chars[],
TrimPositions positions,
STR* output) {
// Find the edges of leading/trailing whitespace as desired.
const typename STR::size_type last_char = input.length() - 1;
const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ?
input.find_first_not_of(trim_chars) : 0;
const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ?
input.find_last_not_of(trim_chars) : last_char;
// When the string was all whitespace, report that we stripped off whitespace
// from whichever position the caller was interested in. For empty input, we
// stripped no whitespace, but we still need to clear |output|.
if (input.empty() ||
(first_good_char == STR::npos) || (last_good_char == STR::npos)) {
bool input_was_empty = input.empty(); // in case output == &input
output->clear();
return input_was_empty ? TRIM_NONE : positions;
}
// Trim the whitespace.
*output =
input.substr(first_good_char, last_good_char - first_good_char + 1);
// Return where we trimmed from.
return static_cast<TrimPositions>(
((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
}
TrimPositions TrimWhitespace(const std::wstring& input,
TrimPositions positions,
std::wstring* output) {
return TrimStringT(input, kWhitespaceWide, positions, output);
}
TrimPositions TrimWhitespaceASCII(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimStringT(input, kWhitespaceASCII, positions, output);
}
// This function is only for backward-compatibility.
// To be removed when all callers are updated.
TrimPositions TrimWhitespace(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimWhitespaceASCII(input, positions, output);
}
std::string WideToASCII(const std::wstring& wide) {
DCHECK(IsStringASCII(wide));
return std::string(wide.begin(), wide.end());
}
std::wstring ASCIIToWide(const std::string& ascii) {
DCHECK(IsStringASCII(ascii));
return std::wstring(ascii.begin(), ascii.end());
}
std::string UTF16ToASCII(const string16& utf16) {
DCHECK(IsStringASCII(utf16));
return std::string(utf16.begin(), utf16.end());
}
string16 ASCIIToUTF16(const std::string& ascii) {
DCHECK(IsStringASCII(ascii));
return string16(ascii.begin(), ascii.end());
}
template<class STR>
static bool DoIsStringASCII(const STR& str) {
for (size_t i = 0; i < str.length(); i++) {
typename ToUnsigned<typename STR::value_type>::Unsigned c = str[i];
if (c > 0x7F)
return false;
}
return true;
}
bool IsStringASCII(const std::wstring& str) {
return DoIsStringASCII(str);
}
#if !defined(WCHAR_T_IS_UTF16)
bool IsStringASCII(const string16& str) {
return DoIsStringASCII(str);
}
#endif
bool IsStringASCII(const std::string& str) {
return DoIsStringASCII(str);
}
// Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter
// is the size of the buffer. These return the number of characters in the
// formatted string excluding the NUL terminator. If the buffer is not
// large enough to accommodate the formatted string without truncation, they
// return the number of characters that would be in the fully-formatted string
// (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms).
inline int vsnprintfT(char* buffer,
size_t buf_size,
const char* format,
va_list argptr) {
return base::vsnprintf(buffer, buf_size, format, argptr);
}
inline int vsnprintfT(wchar_t* buffer,
size_t buf_size,
const wchar_t* format,
va_list argptr) {
return base::vswprintf(buffer, buf_size, format, argptr);
}
// Templatized backend for StringPrintF/StringAppendF. This does not finalize
// the va_list, the caller is expected to do that.
template <class StringType>
static void StringAppendVT(StringType* dst,
const typename StringType::value_type* format,
va_list ap) {
// First try with a small fixed size buffer.
// This buffer size should be kept in sync with StringUtilTest.GrowBoundary
// and StringUtilTest.StringPrintfBounds.
typename StringType::value_type stack_buf[1024];
va_list backup_ap;
base_va_copy(backup_ap, ap);
#if !defined(OS_WIN)
errno = 0;
#endif
int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, backup_ap);
va_end(backup_ap);
if (result >= 0 && result < static_cast<int>(arraysize(stack_buf))) {
// It fit.
dst->append(stack_buf, result);
return;
}
// Repeatedly increase buffer size until it fits.
int mem_length = arraysize(stack_buf);
while (true) {
if (result < 0) {
#if !defined(OS_WIN)
// On Windows, vsnprintfT always returns the number of characters in a
// fully-formatted string, so if we reach this point, something else is
// wrong and no amount of buffer-doubling is going to fix it.
if (errno != 0 && errno != EOVERFLOW)
#endif
{
// If an error other than overflow occurred, it's never going to work.
DLOG(WARNING) << "Unable to printf the requested string due to error.";
return;
}
// Try doubling the buffer size.
mem_length *= 2;
} else {
// We need exactly "result + 1" characters.
mem_length = result + 1;
}
if (mem_length > 32 * 1024 * 1024) {
// That should be plenty, don't try anything larger. This protects
// against huge allocations when using vsnprintfT implementations that
// return -1 for reasons other than overflow without setting errno.
DLOG(WARNING) << "Unable to printf the requested string due to size.";
return;
}
std::vector<typename StringType::value_type> mem_buf(mem_length);
// Restore the va_list before we use it again.
base_va_copy(backup_ap, ap);
result = vsnprintfT(&mem_buf[0], mem_length, format, ap);
va_end(backup_ap);
if ((result >= 0) && (result < mem_length)) {
// It fit.
dst->append(&mem_buf[0], result);
return;
}
}
}
namespace {
template <typename STR, typename INT, typename UINT, bool NEG>
struct IntToStringT {
// This is to avoid a compiler warning about unary minus on unsigned type.
// For example, say you had the following code:
// template <typename INT>
// INT abs(INT value) { return value < 0 ? -value : value; }
// Even though if INT is unsigned, it's impossible for value < 0, so the
// unary minus will never be taken, the compiler will still generate a
// warning. We do a little specialization dance...
template <typename INT2, typename UINT2, bool NEG2>
struct ToUnsignedT { };
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, false> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value);
}
};
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, true> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value < 0 ? -value : value);
}
};
// This set of templates is very similar to the above templates, but
// for testing whether an integer is negative.
template <typename INT2, bool NEG2>
struct TestNegT {};
template <typename INT2>
struct TestNegT<INT2, false> {
static bool TestNeg(INT2 value) {
// value is unsigned, and can never be negative.
return false;
}
};
template <typename INT2>
struct TestNegT<INT2, true> {
static bool TestNeg(INT2 value) {
return value < 0;
}
};
static STR IntToString(INT value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const int kOutputBufSize = 3 * sizeof(INT) + 1;
// Allocate the whole string right away, we will right back to front, and
// then return the substr of what we ended up using.
STR outbuf(kOutputBufSize, 0);
bool is_neg = TestNegT<INT, NEG>::TestNeg(value);
// Even though is_neg will never be true when INT is parameterized as
// unsigned, even the presence of the unary operation causes a warning.
UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value);
for (typename STR::iterator it = outbuf.end();;) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>((res % 10) + '0');
res /= 10;
// We're done..
if (res == 0) {
if (is_neg) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>('-');
}
return STR(it, outbuf.end());
}
}
NOTREACHED();
return STR();
}
};
}
std::string IntToString(int value) {
return IntToStringT<std::string, int, unsigned int, true>::
IntToString(value);
}
std::wstring IntToWString(int value) {
return IntToStringT<std::wstring, int, unsigned int, true>::
IntToString(value);
}
std::string UintToString(unsigned int value) {
return IntToStringT<std::string, unsigned int, unsigned int, false>::
IntToString(value);
}
std::wstring UintToWString(unsigned int value) {
return IntToStringT<std::wstring, unsigned int, unsigned int, false>::
IntToString(value);
}
std::string Int64ToString(int64_t value) {
return IntToStringT<std::string, int64_t, uint64_t, true>::
IntToString(value);
}
std::wstring Int64ToWString(int64_t value) {
return IntToStringT<std::wstring, int64_t, uint64_t, true>::
IntToString(value);
}
std::string Uint64ToString(uint64_t value) {
return IntToStringT<std::string, uint64_t, uint64_t, false>::
IntToString(value);
}
std::wstring Uint64ToWString(uint64_t value) {
return IntToStringT<std::wstring, uint64_t, uint64_t, false>::
IntToString(value);
}
// Lower-level routine that takes a va_list and appends to a specified
// string. All other routines are just convenience wrappers around it.
static void StringAppendV(std::string* dst, const char* format, va_list ap) {
StringAppendVT(dst, format, ap);
}
static void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap) {
StringAppendVT(dst, format, ap);
}
std::string StringPrintf(const char* format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
std::wstring StringPrintf(const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
std::wstring result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
const std::string& SStringPrintf(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
const std::wstring& SStringPrintf(std::wstring* dst,
const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
void StringAppendF(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
void StringAppendF(std::wstring* dst, const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
template<typename STR>
static void SplitStringT(const STR& str,
const typename STR::value_type s,
bool trim_whitespace,
std::vector<STR>* r) {
size_t last = 0;
size_t i;
size_t c = str.size();
for (i = 0; i <= c; ++i) {
if (i == c || str[i] == s) {
size_t len = i - last;
STR tmp = str.substr(last, len);
if (trim_whitespace) {
STR t_tmp;
TrimWhitespace(tmp, TRIM_ALL, &t_tmp);
r->push_back(t_tmp);
} else {
r->push_back(tmp);
}
last = i + 1;
}
}
}
void SplitString(const std::wstring& str,
wchar_t s,
std::vector<std::wstring>* r) {
SplitStringT(str, s, true, r);
}
void SplitString(const std::string& str,
char s,
std::vector<std::string>* r) {
SplitStringT(str, s, true, r);
}
// For the various *ToInt conversions, there are no *ToIntTraits classes to use
// because there's no such thing as strtoi. Use *ToLongTraits through a cast
// instead, requiring that long and int are compatible and equal-width. They
// are on our target platforms.
// XXX Sigh.
#if !defined(ARCH_CPU_64_BITS)
bool StringToInt(const std::string& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_strtol_to_int);
return StringToNumber<StringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool StringToInt(const string16& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_wcstol_to_int);
return StringToNumber<String16ToLongTraits>(input,
reinterpret_cast<long*>(output));
}
#else
bool StringToInt(const std::string& input, int* output) {
long tmp;
bool ok = StringToNumber<StringToLongTraits>(input, &tmp);
if (!ok || tmp > kint32max) {
return false;
}
*output = static_cast<int>(tmp);
return true;
}
bool StringToInt(const string16& input, int* output) {
long tmp;
bool ok = StringToNumber<String16ToLongTraits>(input, &tmp);
if (!ok || tmp > kint32max) {
return false;
}
*output = static_cast<int>(tmp);
return true;
}
#endif // !defined(ARCH_CPU_64_BITS)
bool StringToInt64(const std::string& input, int64_t* output) {
return StringToNumber<StringToInt64Traits>(input, output);
}
bool StringToInt64(const string16& input, int64_t* output) {
return StringToNumber<String16ToInt64Traits>(input, output);
}
int StringToInt(const std::string& value) {
int result;
StringToInt(value, &result);
return result;
}
int StringToInt(const string16& value) {
int result;
StringToInt(value, &result);
return result;
}
int64_t StringToInt64(const std::string& value) {
int64_t result;
StringToInt64(value, &result);
return result;
}
int64_t StringToInt64(const string16& value) {
int64_t result;
StringToInt64(value, &result);
return result;
}
// The following code is compatible with the OpenBSD lcpy interface. See:
// http://www.gratisoft.us/todd/papers/strlcpy.html
// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
namespace {
template <typename CHAR>
size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
for (size_t i = 0; i < dst_size; ++i) {
if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
return i;
}
// We were left off at dst_size. We over copied 1 byte. Null terminate.
if (dst_size != 0)
dst[dst_size - 1] = 0;
// Count the rest of the |src|, and return it's length in characters.
while (src[dst_size]) ++dst_size;
return dst_size;
}
} // namespace
size_t base::strlcpy(char* dst, const char* src, size_t dst_size) {
return lcpyT<char>(dst, src, dst_size);
}
size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
return lcpyT<wchar_t>(dst, src, dst_size);
}
|