summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/collationdatawriter.cpp
blob: 596236bc61b0054712f1097a374ac291da85d70f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright (C) 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2013-2015, International Business Machines
* Corporation and others.  All Rights Reserved.
*******************************************************************************
* collationdatawriter.cpp
*
* created on: 2013aug06
* created by: Markus W. Scherer
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_COLLATION

#include "unicode/tblcoll.h"
#include "unicode/udata.h"
#include "unicode/uniset.h"
#include "cmemory.h"
#include "collationdata.h"
#include "collationdatabuilder.h"
#include "collationdatareader.h"
#include "collationdatawriter.h"
#include "collationfastlatin.h"
#include "collationsettings.h"
#include "collationtailoring.h"
#include "uassert.h"
#include "ucmndata.h"

U_NAMESPACE_BEGIN

uint8_t *
RuleBasedCollator::cloneRuleData(int32_t &length, UErrorCode &errorCode) const {
    if(U_FAILURE(errorCode)) { return NULL; }
    LocalMemory<uint8_t> buffer((uint8_t *)uprv_malloc(20000));
    if(buffer.isNull()) {
        errorCode = U_MEMORY_ALLOCATION_ERROR;
        return NULL;
    }
    length = cloneBinary(buffer.getAlias(), 20000, errorCode);
    if(errorCode == U_BUFFER_OVERFLOW_ERROR) {
        if(buffer.allocateInsteadAndCopy(length, 0) == NULL) {
            errorCode = U_MEMORY_ALLOCATION_ERROR;
            return NULL;
        }
        errorCode = U_ZERO_ERROR;
        length = cloneBinary(buffer.getAlias(), length, errorCode);
    }
    if(U_FAILURE(errorCode)) { return NULL; }
    return buffer.orphan();
}

int32_t
RuleBasedCollator::cloneBinary(uint8_t *dest, int32_t capacity, UErrorCode &errorCode) const {
    int32_t indexes[CollationDataReader::IX_TOTAL_SIZE + 1];
    return CollationDataWriter::writeTailoring(
            *tailoring, *settings, indexes, dest, capacity,
            errorCode);
}

static const UDataInfo dataInfo = {
    sizeof(UDataInfo),
    0,

    U_IS_BIG_ENDIAN,
    U_CHARSET_FAMILY,
    U_SIZEOF_UCHAR,
    0,

    { 0x55, 0x43, 0x6f, 0x6c },         // dataFormat="UCol"
    { 5, 0, 0, 0 },                     // formatVersion
    { 6, 3, 0, 0 }                      // dataVersion
};

int32_t
CollationDataWriter::writeBase(const CollationData &data, const CollationSettings &settings,
                               const void *rootElements, int32_t rootElementsLength,
                               int32_t indexes[], uint8_t *dest, int32_t capacity,
                               UErrorCode &errorCode) {
    return write(TRUE, NULL,
                 data, settings,
                 rootElements, rootElementsLength,
                 indexes, dest, capacity, errorCode);
}

int32_t
CollationDataWriter::writeTailoring(const CollationTailoring &t, const CollationSettings &settings,
                                    int32_t indexes[], uint8_t *dest, int32_t capacity,
                                    UErrorCode &errorCode) {
    return write(FALSE, t.version,
                 *t.data, settings,
                 NULL, 0,
                 indexes, dest, capacity, errorCode);
}

int32_t
CollationDataWriter::write(UBool isBase, const UVersionInfo dataVersion,
                           const CollationData &data, const CollationSettings &settings,
                           const void *rootElements, int32_t rootElementsLength,
                           int32_t indexes[], uint8_t *dest, int32_t capacity,
                           UErrorCode &errorCode) {
    if(U_FAILURE(errorCode)) { return 0; }
    if(capacity < 0 || (capacity > 0 && dest == NULL)) {
        errorCode = U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    // Figure out which data items to write before settling on
    // the indexes length and writing offsets.
    // For any data item, we need to write the start and limit offsets,
    // so the indexes length must be at least index-of-start-offset + 2.
    int32_t indexesLength;
    UBool hasMappings;
    UnicodeSet unsafeBackwardSet;
    const CollationData *baseData = data.base;

    int32_t fastLatinVersion;
    if(data.fastLatinTable != NULL) {
        fastLatinVersion = (int32_t)CollationFastLatin::VERSION << 16;
    } else {
        fastLatinVersion = 0;
    }
    int32_t fastLatinTableLength = 0;

    if(isBase) {
        // For the root collator, we write an even number of indexes
        // so that we start with an 8-aligned offset.
        indexesLength = CollationDataReader::IX_TOTAL_SIZE + 1;
        U_ASSERT(settings.reorderCodesLength == 0);
        hasMappings = TRUE;
        unsafeBackwardSet = *data.unsafeBackwardSet;
        fastLatinTableLength = data.fastLatinTableLength;
    } else if(baseData == NULL) {
        hasMappings = FALSE;
        if(settings.reorderCodesLength == 0) {
            // only options
            indexesLength = CollationDataReader::IX_OPTIONS + 1;  // no limit offset here
        } else {
            // only options, reorder codes, and the reorder table
            indexesLength = CollationDataReader::IX_REORDER_TABLE_OFFSET + 2;
        }
    } else {
        hasMappings = TRUE;
        // Tailored mappings, and what else?
        // Check in ascending order of optional tailoring data items.
        indexesLength = CollationDataReader::IX_CE32S_OFFSET + 2;
        if(data.contextsLength != 0) {
            indexesLength = CollationDataReader::IX_CONTEXTS_OFFSET + 2;
        }
        unsafeBackwardSet.addAll(*data.unsafeBackwardSet).removeAll(*baseData->unsafeBackwardSet);
        if(!unsafeBackwardSet.isEmpty()) {
            indexesLength = CollationDataReader::IX_UNSAFE_BWD_OFFSET + 2;
        }
        if(data.fastLatinTable != baseData->fastLatinTable) {
            fastLatinTableLength = data.fastLatinTableLength;
            indexesLength = CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET + 2;
        }
    }

    UVector32 codesAndRanges(errorCode);
    const int32_t *reorderCodes = settings.reorderCodes;
    int32_t reorderCodesLength = settings.reorderCodesLength;
    if(settings.hasReordering() &&
            CollationSettings::reorderTableHasSplitBytes(settings.reorderTable)) {
        // Rebuild the full list of reorder ranges.
        // The list in the settings is truncated for efficiency.
        data.makeReorderRanges(reorderCodes, reorderCodesLength, codesAndRanges, errorCode);
        // Write the codes, then the ranges.
        for(int32_t i = 0; i < reorderCodesLength; ++i) {
            codesAndRanges.insertElementAt(reorderCodes[i], i, errorCode);
        }
        if(U_FAILURE(errorCode)) { return 0; }
        reorderCodes = codesAndRanges.getBuffer();
        reorderCodesLength = codesAndRanges.size();
    }

    int32_t headerSize;
    if(isBase) {
        headerSize = 0;  // udata_create() writes the header
    } else {
        DataHeader header;
        header.dataHeader.magic1 = 0xda;
        header.dataHeader.magic2 = 0x27;
        uprv_memcpy(&header.info, &dataInfo, sizeof(UDataInfo));
        uprv_memcpy(header.info.dataVersion, dataVersion, sizeof(UVersionInfo));
        headerSize = (int32_t)sizeof(header);
        U_ASSERT((headerSize & 3) == 0);  // multiple of 4 bytes
        if(hasMappings && data.cesLength != 0) {
            // Sum of the sizes of the data items which are
            // not automatically multiples of 8 bytes and which are placed before the CEs.
            int32_t sum = headerSize + (indexesLength + reorderCodesLength) * 4;
            if((sum & 7) != 0) {
                // We need to add padding somewhere so that the 64-bit CEs are 8-aligned.
                // We add to the header size here.
                // Alternatively, we could increment the indexesLength
                // or add a few bytes to the reorderTable.
                headerSize += 4;
            }
        }
        header.dataHeader.headerSize = (uint16_t)headerSize;
        if(headerSize <= capacity) {
            uprv_memcpy(dest, &header, sizeof(header));
            // Write 00 bytes so that the padding is not mistaken for a copyright string.
            uprv_memset(dest + sizeof(header), 0, headerSize - (int32_t)sizeof(header));
            dest += headerSize;
            capacity -= headerSize;
        } else {
            dest = NULL;
            capacity = 0;
        }
    }

    indexes[CollationDataReader::IX_INDEXES_LENGTH] = indexesLength;
    U_ASSERT((settings.options & ~0xffff) == 0);
    indexes[CollationDataReader::IX_OPTIONS] =
            data.numericPrimary | fastLatinVersion | settings.options;
    indexes[CollationDataReader::IX_RESERVED2] = 0;
    indexes[CollationDataReader::IX_RESERVED3] = 0;

    // Byte offsets of data items all start from the start of the indexes.
    // We add the headerSize at the very end.
    int32_t totalSize = indexesLength * 4;

    if(hasMappings && (isBase || data.jamoCE32s != baseData->jamoCE32s)) {
        indexes[CollationDataReader::IX_JAMO_CE32S_START] = data.jamoCE32s - data.ce32s;
    } else {
        indexes[CollationDataReader::IX_JAMO_CE32S_START] = -1;
    }

    indexes[CollationDataReader::IX_REORDER_CODES_OFFSET] = totalSize;
    totalSize += reorderCodesLength * 4;

    indexes[CollationDataReader::IX_REORDER_TABLE_OFFSET] = totalSize;
    if(settings.reorderTable != NULL) {
        totalSize += 256;
    }

    indexes[CollationDataReader::IX_TRIE_OFFSET] = totalSize;
    if(hasMappings) {
        UErrorCode errorCode2 = U_ZERO_ERROR;
        int32_t length;
        if(totalSize < capacity) {
            length = utrie2_serialize(data.trie, dest + totalSize,
                                      capacity - totalSize, &errorCode2);
        } else {
            length = utrie2_serialize(data.trie, NULL, 0, &errorCode2);
        }
        if(U_FAILURE(errorCode2) && errorCode2 != U_BUFFER_OVERFLOW_ERROR) {
            errorCode = errorCode2;
            return 0;
        }
        // The trie size should be a multiple of 8 bytes due to the way
        // compactIndex2(UNewTrie2 *trie) currently works.
        U_ASSERT((length & 7) == 0);
        totalSize += length;
    }

    indexes[CollationDataReader::IX_RESERVED8_OFFSET] = totalSize;
    indexes[CollationDataReader::IX_CES_OFFSET] = totalSize;
    if(hasMappings && data.cesLength != 0) {
        U_ASSERT(((headerSize + totalSize) & 7) == 0);
        totalSize += data.cesLength * 8;
    }

    indexes[CollationDataReader::IX_RESERVED10_OFFSET] = totalSize;
    indexes[CollationDataReader::IX_CE32S_OFFSET] = totalSize;
    if(hasMappings) {
        totalSize += data.ce32sLength * 4;
    }

    indexes[CollationDataReader::IX_ROOT_ELEMENTS_OFFSET] = totalSize;
    totalSize += rootElementsLength * 4;

    indexes[CollationDataReader::IX_CONTEXTS_OFFSET] = totalSize;
    if(hasMappings) {
        totalSize += data.contextsLength * 2;
    }

    indexes[CollationDataReader::IX_UNSAFE_BWD_OFFSET] = totalSize;
    if(hasMappings && !unsafeBackwardSet.isEmpty()) {
        UErrorCode errorCode2 = U_ZERO_ERROR;
        int32_t length;
        if(totalSize < capacity) {
            uint16_t *p = reinterpret_cast<uint16_t *>(dest + totalSize);
            length = unsafeBackwardSet.serialize(
                    p, (capacity - totalSize) / 2, errorCode2);
        } else {
            length = unsafeBackwardSet.serialize(NULL, 0, errorCode2);
        }
        if(U_FAILURE(errorCode2) && errorCode2 != U_BUFFER_OVERFLOW_ERROR) {
            errorCode = errorCode2;
            return 0;
        }
        totalSize += length * 2;
    }

    indexes[CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET] = totalSize;
    totalSize += fastLatinTableLength * 2;

    UnicodeString scripts;
    indexes[CollationDataReader::IX_SCRIPTS_OFFSET] = totalSize;
    if(isBase) {
        scripts.append((UChar)data.numScripts);
        scripts.append(reinterpret_cast<const UChar *>(data.scriptsIndex), data.numScripts + 16);
        scripts.append(reinterpret_cast<const UChar *>(data.scriptStarts), data.scriptStartsLength);
        totalSize += scripts.length() * 2;
    }

    indexes[CollationDataReader::IX_COMPRESSIBLE_BYTES_OFFSET] = totalSize;
    if(isBase) {
        totalSize += 256;
    }

    indexes[CollationDataReader::IX_RESERVED18_OFFSET] = totalSize;
    indexes[CollationDataReader::IX_TOTAL_SIZE] = totalSize;

    if(totalSize > capacity) {
        errorCode = U_BUFFER_OVERFLOW_ERROR;
        return headerSize + totalSize;
    }

    uprv_memcpy(dest, indexes, indexesLength * 4);
    copyData(indexes, CollationDataReader::IX_REORDER_CODES_OFFSET, reorderCodes, dest);
    copyData(indexes, CollationDataReader::IX_REORDER_TABLE_OFFSET, settings.reorderTable, dest);
    // The trie has already been serialized into the dest buffer.
    copyData(indexes, CollationDataReader::IX_CES_OFFSET, data.ces, dest);
    copyData(indexes, CollationDataReader::IX_CE32S_OFFSET, data.ce32s, dest);
    copyData(indexes, CollationDataReader::IX_ROOT_ELEMENTS_OFFSET, rootElements, dest);
    copyData(indexes, CollationDataReader::IX_CONTEXTS_OFFSET, data.contexts, dest);
    // The unsafeBackwardSet has already been serialized into the dest buffer.
    copyData(indexes, CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET, data.fastLatinTable, dest);
    copyData(indexes, CollationDataReader::IX_SCRIPTS_OFFSET, scripts.getBuffer(), dest);
    copyData(indexes, CollationDataReader::IX_COMPRESSIBLE_BYTES_OFFSET, data.compressibleBytes, dest);

    return headerSize + totalSize;
}

void
CollationDataWriter::copyData(const int32_t indexes[], int32_t startIndex,
                              const void *src, uint8_t *dest) {
    int32_t start = indexes[startIndex];
    int32_t limit = indexes[startIndex + 1];
    if(start < limit) {
        uprv_memcpy(dest + start, src, limit - start);
    }
}

U_NAMESPACE_END

#endif  // !UCONFIG_NO_COLLATION