summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/rbbitblb.cpp
blob: 2738c7500882aae3519c7a32fd3fe61cc2e5d66b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
// Copyright (C) 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
*   Copyright (c) 2002-2016, International Business Machines
*   Corporation and others.  All Rights Reserved.
**********************************************************************
*/
//
//  rbbitblb.cpp
//


#include "unicode/utypes.h"

#if !UCONFIG_NO_BREAK_ITERATION

#include "unicode/unistr.h"
#include "rbbitblb.h"
#include "rbbirb.h"
#include "rbbisetb.h"
#include "rbbidata.h"
#include "cstring.h"
#include "uassert.h"
#include "cmemory.h"

U_NAMESPACE_BEGIN

RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) :
 fTree(*rootNode) {
    fRB                 = rb;
    fStatus             = fRB->fStatus;
    UErrorCode status   = U_ZERO_ERROR;
    fDStates            = new UVector(status);
    if (U_FAILURE(*fStatus)) {
        return;
    }
    if (U_FAILURE(status)) {
        *fStatus = status;
        return;
    }
    if (fDStates == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;;
    }
}



RBBITableBuilder::~RBBITableBuilder() {
    int i;
    for (i=0; i<fDStates->size(); i++) {
        delete (RBBIStateDescriptor *)fDStates->elementAt(i);
    }
    delete   fDStates;
}


//-----------------------------------------------------------------------------
//
//   RBBITableBuilder::build  -  This is the main function for building the DFA state transtion
//                               table from the RBBI rules parse tree.
//
//-----------------------------------------------------------------------------
void  RBBITableBuilder::build() {

    if (U_FAILURE(*fStatus)) {
        return;
    }

    // If there were no rules, just return.  This situation can easily arise
    //   for the reverse rules.
    if (fTree==NULL) {
        return;
    }

    //
    // Walk through the tree, replacing any references to $variables with a copy of the
    //   parse tree for the substition expression.
    //
    fTree = fTree->flattenVariables();
#ifdef RBBI_DEBUG
    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) {
        RBBIDebugPuts("\nParse tree after flattening variable references.");
        RBBINode::printTree(fTree, TRUE);
    }
#endif

    //
    // If the rules contained any references to {bof} 
    //   add a {bof} <cat> <former root of tree> to the
    //   tree.  Means that all matches must start out with the 
    //   {bof} fake character.
    // 
    if (fRB->fSetBuilder->sawBOF()) {
        RBBINode *bofTop    = new RBBINode(RBBINode::opCat);
        RBBINode *bofLeaf   = new RBBINode(RBBINode::leafChar);
        // Delete and exit if memory allocation failed.
        if (bofTop == NULL || bofLeaf == NULL) {
            *fStatus = U_MEMORY_ALLOCATION_ERROR;
            delete bofTop;
            delete bofLeaf;
            return;
        }
        bofTop->fLeftChild  = bofLeaf;
        bofTop->fRightChild = fTree;
        bofLeaf->fParent    = bofTop;
        bofLeaf->fVal       = 2;      // Reserved value for {bof}.
        fTree               = bofTop;
    }

    //
    // Add a unique right-end marker to the expression.
    //   Appears as a cat-node, left child being the original tree,
    //   right child being the end marker.
    //
    RBBINode *cn = new RBBINode(RBBINode::opCat);
    // Exit if memory allocation failed.
    if (cn == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    cn->fLeftChild = fTree;
    fTree->fParent = cn;
    cn->fRightChild = new RBBINode(RBBINode::endMark);
    // Delete and exit if memory allocation failed.
    if (cn->fRightChild == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
        delete cn;
        return;
    }
    cn->fRightChild->fParent = cn;
    fTree = cn;

    //
    //  Replace all references to UnicodeSets with the tree for the equivalent
    //      expression.
    //
    fTree->flattenSets();
#ifdef RBBI_DEBUG
    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) {
        RBBIDebugPuts("\nParse tree after flattening Unicode Set references.");
        RBBINode::printTree(fTree, TRUE);
    }
#endif


    //
    // calculate the functions nullable, firstpos, lastpos and followpos on
    // nodes in the parse tree.
    //    See the alogrithm description in Aho.
    //    Understanding how this works by looking at the code alone will be
    //       nearly impossible.
    //
    calcNullable(fTree);
    calcFirstPos(fTree);
    calcLastPos(fTree);
    calcFollowPos(fTree);
    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) {
        RBBIDebugPuts("\n");
        printPosSets(fTree);
    }

    //
    //  For "chained" rules, modify the followPos sets
    //
    if (fRB->fChainRules) {
        calcChainedFollowPos(fTree);
    }

    //
    //  BOF (start of input) test fixup.
    //
    if (fRB->fSetBuilder->sawBOF()) {
        bofFixup();
    }

    //
    // Build the DFA state transition tables.
    //
    buildStateTable();
    flagAcceptingStates();
    flagLookAheadStates();
    flagTaggedStates();

    //
    // Update the global table of rule status {tag} values
    // The rule builder has a global vector of status values that are common
    //    for all tables.  Merge the ones from this table into the global set.
    //
    mergeRuleStatusVals();

    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();};
}



//-----------------------------------------------------------------------------
//
//   calcNullable.    Impossible to explain succinctly.  See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcNullable(RBBINode *n) {
    if (n == NULL) {
        return;
    }
    if (n->fType == RBBINode::setRef ||
        n->fType == RBBINode::endMark ) {
        // These are non-empty leaf node types.
        n->fNullable = FALSE;
        return;
    }

    if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
        // Lookahead marker node.  It's a leaf, so no recursion on children.
        // It's nullable because it does not match any literal text from the input stream.
        n->fNullable = TRUE;
        return;
    }


    // The node is not a leaf.
    //  Calculate nullable on its children.
    calcNullable(n->fLeftChild);
    calcNullable(n->fRightChild);

    // Apply functions from table 3.40 in Aho
    if (n->fType == RBBINode::opOr) {
        n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
    }
    else if (n->fType == RBBINode::opCat) {
        n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
    }
    else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
        n->fNullable = TRUE;
    }
    else {
        n->fNullable = FALSE;
    }
}




//-----------------------------------------------------------------------------
//
//   calcFirstPos.    Impossible to explain succinctly.  See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFirstPos(RBBINode *n) {
    if (n == NULL) {
        return;
    }
    if (n->fType == RBBINode::leafChar  ||
        n->fType == RBBINode::endMark   ||
        n->fType == RBBINode::lookAhead ||
        n->fType == RBBINode::tag) {
        // These are non-empty leaf node types.
        // Note: In order to maintain the sort invariant on the set,
        // this function should only be called on a node whose set is
        // empty to start with.
        n->fFirstPosSet->addElement(n, *fStatus);
        return;
    }

    // The node is not a leaf.
    //  Calculate firstPos on its children.
    calcFirstPos(n->fLeftChild);
    calcFirstPos(n->fRightChild);

    // Apply functions from table 3.40 in Aho
    if (n->fType == RBBINode::opOr) {
        setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
        setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
    }
    else if (n->fType == RBBINode::opCat) {
        setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
        if (n->fLeftChild->fNullable) {
            setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
        }
    }
    else if (n->fType == RBBINode::opStar ||
             n->fType == RBBINode::opQuestion ||
             n->fType == RBBINode::opPlus) {
        setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
    }
}



//-----------------------------------------------------------------------------
//
//   calcLastPos.    Impossible to explain succinctly.  See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcLastPos(RBBINode *n) {
    if (n == NULL) {
        return;
    }
    if (n->fType == RBBINode::leafChar  ||
        n->fType == RBBINode::endMark   ||
        n->fType == RBBINode::lookAhead ||
        n->fType == RBBINode::tag) {
        // These are non-empty leaf node types.
        // Note: In order to maintain the sort invariant on the set,
        // this function should only be called on a node whose set is
        // empty to start with.
        n->fLastPosSet->addElement(n, *fStatus);
        return;
    }

    // The node is not a leaf.
    //  Calculate lastPos on its children.
    calcLastPos(n->fLeftChild);
    calcLastPos(n->fRightChild);

    // Apply functions from table 3.40 in Aho
    if (n->fType == RBBINode::opOr) {
        setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
        setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
    }
    else if (n->fType == RBBINode::opCat) {
        setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
        if (n->fRightChild->fNullable) {
            setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
        }
    }
    else if (n->fType == RBBINode::opStar     ||
             n->fType == RBBINode::opQuestion ||
             n->fType == RBBINode::opPlus) {
        setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
    }
}



//-----------------------------------------------------------------------------
//
//   calcFollowPos.    Impossible to explain succinctly.  See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFollowPos(RBBINode *n) {
    if (n == NULL ||
        n->fType == RBBINode::leafChar ||
        n->fType == RBBINode::endMark) {
        return;
    }

    calcFollowPos(n->fLeftChild);
    calcFollowPos(n->fRightChild);

    // Aho rule #1
    if (n->fType == RBBINode::opCat) {
        RBBINode *i;   // is 'i' in Aho's description
        uint32_t     ix;

        UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;

        for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
            i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
            setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
        }
    }

    // Aho rule #2
    if (n->fType == RBBINode::opStar ||
        n->fType == RBBINode::opPlus) {
        RBBINode   *i;  // again, n and i are the names from Aho's description.
        uint32_t    ix;

        for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
            i = (RBBINode *)n->fLastPosSet->elementAt(ix);
            setAdd(i->fFollowPos, n->fFirstPosSet);
        }
    }



}

//-----------------------------------------------------------------------------
//
//    addRuleRootNodes    Recursively walk a parse tree, adding all nodes flagged
//                        as roots of a rule to a destination vector.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) {
    if (node == NULL || U_FAILURE(*fStatus)) {
        return;
    }
    if (node->fRuleRoot) {
        dest->addElement(node, *fStatus);
        // Note: rules cannot nest. If we found a rule start node,
        //       no child node can also be a start node.
        return;
    }
    addRuleRootNodes(dest, node->fLeftChild);
    addRuleRootNodes(dest, node->fRightChild);
}

//-----------------------------------------------------------------------------
//
//   calcChainedFollowPos.    Modify the previously calculated followPos sets
//                            to implement rule chaining.  NOT described by Aho
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) {

    UVector         endMarkerNodes(*fStatus);
    UVector         leafNodes(*fStatus);
    int32_t         i;

    if (U_FAILURE(*fStatus)) {
        return;
    }

    // get a list of all endmarker nodes.
    tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);

    // get a list all leaf nodes
    tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus);
    if (U_FAILURE(*fStatus)) {
        return;
    }

    // Collect all leaf nodes that can start matches for rules
    // with inbound chaining enabled, which is the union of the 
    // firstPosition sets from each of the rule root nodes.
    
    UVector ruleRootNodes(*fStatus);
    addRuleRootNodes(&ruleRootNodes, tree);

    UVector matchStartNodes(*fStatus);
    for (int i=0; i<ruleRootNodes.size(); ++i) {
        RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(i));
        if (node->fChainIn) {
            setAdd(&matchStartNodes, node->fFirstPosSet);
        }
    }
    if (U_FAILURE(*fStatus)) {
        return;
    }

    int32_t  endNodeIx;
    int32_t  startNodeIx;

    for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) {
        RBBINode *tNode   = (RBBINode *)leafNodes.elementAt(endNodeIx);
        RBBINode *endNode = NULL;

        // Identify leaf nodes that correspond to overall rule match positions.
        //   These include an endMarkerNode in their followPos sets.
        for (i=0; i<endMarkerNodes.size(); i++) {
            if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) {
                endNode = tNode;
                break;
            }
        }
        if (endNode == NULL) {
            // node wasn't an end node.  Try again with the next.
            continue;
        }

        // We've got a node that can end a match.

        // Line Break Specific hack:  If this node's val correspond to the $CM char class,
        //                            don't chain from it.
        // TODO:  Add rule syntax for this behavior, get specifics out of here and
        //        into the rule file.
        if (fRB->fLBCMNoChain) {
            UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal);
            if (c != -1) {
                // c == -1 occurs with sets containing only the {eof} marker string.
                ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK);
                if (cLBProp == U_LB_COMBINING_MARK) {
                    continue;
                }
            }
        }


        // Now iterate over the nodes that can start a match, looking for ones
        //   with the same char class as our ending node.
        RBBINode *startNode;
        for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) {
            startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx);
            if (startNode->fType != RBBINode::leafChar) {
                continue;
            }

            if (endNode->fVal == startNode->fVal) {
                // The end val (character class) of one possible match is the
                //   same as the start of another.

                // Add all nodes from the followPos of the start node to the
                //  followPos set of the end node, which will have the effect of
                //  letting matches transition from a match state at endNode
                //  to the second char of a match starting with startNode.
                setAdd(endNode->fFollowPos, startNode->fFollowPos);
            }
        }
    }
}


//-----------------------------------------------------------------------------
//
//   bofFixup.    Fixup for state tables that include {bof} beginning of input testing.
//                Do an swizzle similar to chaining, modifying the followPos set of
//                the bofNode to include the followPos nodes from other {bot} nodes
//                scattered through the tree.
//
//                This function has much in common with calcChainedFollowPos().
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::bofFixup() {

    if (U_FAILURE(*fStatus)) {
        return;
    }

    //   The parse tree looks like this ...
    //         fTree root  --->       <cat>
    //                               /     \       .
    //                            <cat>   <#end node>
    //                           /     \  .
    //                     <bofNode>   rest
    //                               of tree
    //
    //    We will be adding things to the followPos set of the <bofNode>
    //
    RBBINode  *bofNode = fTree->fLeftChild->fLeftChild;
    U_ASSERT(bofNode->fType == RBBINode::leafChar);
    U_ASSERT(bofNode->fVal == 2);

    // Get all nodes that can be the start a match of the user-written rules
    //  (excluding the fake bofNode)
    //  We want the nodes that can start a match in the
    //     part labeled "rest of tree"
    // 
    UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet;

    RBBINode *startNode;
    int       startNodeIx;
    for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
        startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
        if (startNode->fType != RBBINode::leafChar) {
            continue;
        }

        if (startNode->fVal == bofNode->fVal) {
            //  We found a leaf node corresponding to a {bof} that was
            //    explicitly written into a rule.
            //  Add everything from the followPos set of this node to the
            //    followPos set of the fake bofNode at the start of the tree.
            //  
            setAdd(bofNode->fFollowPos, startNode->fFollowPos);
        }
    }
}

//-----------------------------------------------------------------------------
//
//   buildStateTable()    Determine the set of runtime DFA states and the
//                        transition tables for these states, by the algorithm
//                        of fig. 3.44 in Aho.
//
//                        Most of the comments are quotes of Aho's psuedo-code.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::buildStateTable() {
    if (U_FAILURE(*fStatus)) {
        return;
    }
    RBBIStateDescriptor *failState;
    // Set it to NULL to avoid uninitialized warning
    RBBIStateDescriptor *initialState = NULL; 
    //
    // Add a dummy state 0 - the stop state.  Not from Aho.
    int      lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
    failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
    if (failState == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
        goto ExitBuildSTdeleteall;
    }
    failState->fPositions = new UVector(*fStatus);
    if (failState->fPositions == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
    }
    if (failState->fPositions == NULL || U_FAILURE(*fStatus)) {
        goto ExitBuildSTdeleteall;
    }
    fDStates->addElement(failState, *fStatus);
    if (U_FAILURE(*fStatus)) {
        goto ExitBuildSTdeleteall;
    }

    // initially, the only unmarked state in Dstates is firstpos(root),
    //       where toot is the root of the syntax tree for (r)#;
    initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
    if (initialState == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
    }
    if (U_FAILURE(*fStatus)) {
        goto ExitBuildSTdeleteall;
    }
    initialState->fPositions = new UVector(*fStatus);
    if (initialState->fPositions == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
    }
    if (U_FAILURE(*fStatus)) {
        goto ExitBuildSTdeleteall;
    }
    setAdd(initialState->fPositions, fTree->fFirstPosSet);
    fDStates->addElement(initialState, *fStatus);
    if (U_FAILURE(*fStatus)) {
        goto ExitBuildSTdeleteall;
    }

    // while there is an unmarked state T in Dstates do begin
    for (;;) {
        RBBIStateDescriptor *T = NULL;
        int32_t              tx;
        for (tx=1; tx<fDStates->size(); tx++) {
            RBBIStateDescriptor *temp;
            temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
            if (temp->fMarked == FALSE) {
                T = temp;
                break;
            }
        }
        if (T == NULL) {
            break;
        }

        // mark T;
        T->fMarked = TRUE;

        // for each input symbol a do begin
        int32_t  a;
        for (a = 1; a<=lastInputSymbol; a++) {
            // let U be the set of positions that are in followpos(p)
            //    for some position p in T
            //    such that the symbol at position p is a;
            UVector    *U = NULL;
            RBBINode   *p;
            int32_t     px;
            for (px=0; px<T->fPositions->size(); px++) {
                p = (RBBINode *)T->fPositions->elementAt(px);
                if ((p->fType == RBBINode::leafChar) &&  (p->fVal == a)) {
                    if (U == NULL) {
                        U = new UVector(*fStatus);
                        if (U == NULL) {
                        	*fStatus = U_MEMORY_ALLOCATION_ERROR;
                        	goto ExitBuildSTdeleteall;
                        }
                    }
                    setAdd(U, p->fFollowPos);
                }
            }

            // if U is not empty and not in DStates then
            int32_t  ux = 0;
            UBool    UinDstates = FALSE;
            if (U != NULL) {
                U_ASSERT(U->size() > 0);
                int  ix;
                for (ix=0; ix<fDStates->size(); ix++) {
                    RBBIStateDescriptor *temp2;
                    temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
                    if (setEquals(U, temp2->fPositions)) {
                        delete U;
                        U  = temp2->fPositions;
                        ux = ix;
                        UinDstates = TRUE;
                        break;
                    }
                }

                // Add U as an unmarked state to Dstates
                if (!UinDstates)
                {
                    RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
                    if (newState == NULL) {
                    	*fStatus = U_MEMORY_ALLOCATION_ERROR;
                    }
                    if (U_FAILURE(*fStatus)) {
                        goto ExitBuildSTdeleteall;
                    }
                    newState->fPositions = U;
                    fDStates->addElement(newState, *fStatus);
                    if (U_FAILURE(*fStatus)) {
                        return;
                    }
                    ux = fDStates->size()-1;
                }

                // Dtran[T, a] := U;
                T->fDtran->setElementAt(ux, a);
            }
        }
    }
    return;
    // delete local pointers only if error occured.
ExitBuildSTdeleteall:
    delete initialState;
    delete failState;
}



//-----------------------------------------------------------------------------
//
//   flagAcceptingStates    Identify accepting states.
//                          First get a list of all of the end marker nodes.
//                          Then, for each state s,
//                              if s contains one of the end marker nodes in its list of tree positions then
//                                  s is an accepting state.
//
//-----------------------------------------------------------------------------
void     RBBITableBuilder::flagAcceptingStates() {
    if (U_FAILURE(*fStatus)) {
        return;
    }
    UVector     endMarkerNodes(*fStatus);
    RBBINode    *endMarker;
    int32_t     i;
    int32_t     n;

    if (U_FAILURE(*fStatus)) {
        return;
    }

    fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
    if (U_FAILURE(*fStatus)) {
        return;
    }

    for (i=0; i<endMarkerNodes.size(); i++) {
        endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
        for (n=0; n<fDStates->size(); n++) {
            RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
            if (sd->fPositions->indexOf(endMarker) >= 0) {
                // Any non-zero value for fAccepting means this is an accepting node.
                // The value is what will be returned to the user as the break status.
                // If no other value was specified, force it to -1.

                if (sd->fAccepting==0) {
                    // State hasn't been marked as accepting yet.  Do it now.
                    sd->fAccepting = endMarker->fVal;
                    if (sd->fAccepting == 0) {
                        sd->fAccepting = -1;
                    }
                }
                if (sd->fAccepting==-1 && endMarker->fVal != 0) {
                    // Both lookahead and non-lookahead accepting for this state.
                    // Favor the look-ahead.  Expedient for line break.
                    // TODO:  need a more elegant resolution for conflicting rules.
                    sd->fAccepting = endMarker->fVal;
                }
                // implicit else:
                // if sd->fAccepting already had a value other than 0 or -1, leave it be.

                // If the end marker node is from a look-ahead rule, set
                //   the fLookAhead field or this state also.
                if (endMarker->fLookAheadEnd) {
                    // TODO:  don't change value if already set?
                    // TODO:  allow for more than one active look-ahead rule in engine.
                    //        Make value here an index to a side array in engine?
                    sd->fLookAhead = sd->fAccepting;
                }
            }
        }
    }
}


//-----------------------------------------------------------------------------
//
//    flagLookAheadStates   Very similar to flagAcceptingStates, above.
//
//-----------------------------------------------------------------------------
void     RBBITableBuilder::flagLookAheadStates() {
    if (U_FAILURE(*fStatus)) {
        return;
    }
    UVector     lookAheadNodes(*fStatus);
    RBBINode    *lookAheadNode;
    int32_t     i;
    int32_t     n;

    fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
    if (U_FAILURE(*fStatus)) {
        return;
    }
    for (i=0; i<lookAheadNodes.size(); i++) {
        lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);

        for (n=0; n<fDStates->size(); n++) {
            RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
            if (sd->fPositions->indexOf(lookAheadNode) >= 0) {
                sd->fLookAhead = lookAheadNode->fVal;
            }
        }
    }
}




//-----------------------------------------------------------------------------
//
//    flagTaggedStates
//
//-----------------------------------------------------------------------------
void     RBBITableBuilder::flagTaggedStates() {
    if (U_FAILURE(*fStatus)) {
        return;
    }
    UVector     tagNodes(*fStatus);
    RBBINode    *tagNode;
    int32_t     i;
    int32_t     n;

    if (U_FAILURE(*fStatus)) {
        return;
    }
    fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
    if (U_FAILURE(*fStatus)) {
        return;
    }
    for (i=0; i<tagNodes.size(); i++) {                   // For each tag node t (all of 'em)
        tagNode = (RBBINode *)tagNodes.elementAt(i);

        for (n=0; n<fDStates->size(); n++) {              //    For each state  s (row in the state table)
            RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
            if (sd->fPositions->indexOf(tagNode) >= 0) {  //       if  s include the tag node t
                sortedAdd(&sd->fTagVals, tagNode->fVal);
            }
        }
    }
}




//-----------------------------------------------------------------------------
//
//  mergeRuleStatusVals
//
//      Update the global table of rule status {tag} values
//      The rule builder has a global vector of status values that are common
//      for all tables.  Merge the ones from this table into the global set.
//
//-----------------------------------------------------------------------------
void  RBBITableBuilder::mergeRuleStatusVals() {
    //
    //  The basic outline of what happens here is this...
    //
    //    for each state in this state table
    //       if the status tag list for this state is in the global statuses list
    //           record where and
    //           continue with the next state
    //       else
    //           add the tag list for this state to the global list.
    //
    int i;
    int n;

    // Pre-set a single tag of {0} into the table.
    //   We will need this as a default, for rule sets with no explicit tagging.
    if (fRB->fRuleStatusVals->size() == 0) {
        fRB->fRuleStatusVals->addElement(1, *fStatus);  // Num of statuses in group
        fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus);  //   and our single status of zero
    }

    //    For each state
    for (n=0; n<fDStates->size(); n++) {
        RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
        UVector *thisStatesTagValues = sd->fTagVals;
        if (thisStatesTagValues == NULL) {
            // No tag values are explicitly associated with this state.
            //   Set the default tag value.
            sd->fTagsIdx = 0;
            continue;
        }

        // There are tag(s) associated with this state.
        //   fTagsIdx will be the index into the global tag list for this state's tag values.
        //   Initial value of -1 flags that we haven't got it set yet.
        sd->fTagsIdx = -1;
        int32_t  thisTagGroupStart = 0;   // indexes into the global rule status vals list
        int32_t  nextTagGroupStart = 0;

        // Loop runs once per group of tags in the global list
        while (nextTagGroupStart < fRB->fRuleStatusVals->size()) {
            thisTagGroupStart = nextTagGroupStart;
            nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1;
            if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) {
                // The number of tags for this state is different from
                //    the number of tags in this group from the global list.
                //    Continue with the next group from the global list.
                continue;
            }
            // The lengths match, go ahead and compare the actual tag values
            //    between this state and the group from the global list.
            for (i=0; i<thisStatesTagValues->size(); i++) {
                if (thisStatesTagValues->elementAti(i) !=
                    fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) {
                    // Mismatch.
                    break;
                }
            }

            if (i == thisStatesTagValues->size()) {
                // We found a set of tag values in the global list that match
                //   those for this state.  Use them.
                sd->fTagsIdx = thisTagGroupStart;
                break;
            }
        }

        if (sd->fTagsIdx == -1) {
            // No suitable entry in the global tag list already.  Add one
            sd->fTagsIdx = fRB->fRuleStatusVals->size();
            fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus);
            for (i=0; i<thisStatesTagValues->size(); i++) {
                fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus);
            }
        }
    }
}







//-----------------------------------------------------------------------------
//
//  sortedAdd  Add a value to a vector of sorted values (ints).
//             Do not replicate entries; if the value is already there, do not
//                add a second one.
//             Lazily create the vector if it does not already exist.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) {
    int32_t i;

    if (*vector == NULL) {
        *vector = new UVector(*fStatus);
    }
    if (*vector == NULL || U_FAILURE(*fStatus)) {
        return;
    }
    UVector *vec = *vector;
    int32_t  vSize = vec->size();
    for (i=0; i<vSize; i++) {
        int32_t valAtI = vec->elementAti(i);
        if (valAtI == val) {
            // The value is already in the vector.  Don't add it again.
            return;
        }
        if (valAtI > val) {
            break;
        }
    }
    vec->insertElementAt(val, i, *fStatus);
}



//-----------------------------------------------------------------------------
//
//  setAdd     Set operation on UVector
//             dest = dest union source
//             Elements may only appear once and must be sorted.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
    int32_t destOriginalSize = dest->size();
    int32_t sourceSize       = source->size();
    int32_t di           = 0;
    MaybeStackArray<void *, 16> destArray, sourceArray;  // Handle small cases without malloc
    void **destPtr, **sourcePtr;
    void **destLim, **sourceLim;

    if (destOriginalSize > destArray.getCapacity()) {
        if (destArray.resize(destOriginalSize) == NULL) {
            return;
        }
    }
    destPtr = destArray.getAlias();
    destLim = destPtr + destOriginalSize;  // destArray.getArrayLimit()?

    if (sourceSize > sourceArray.getCapacity()) {
        if (sourceArray.resize(sourceSize) == NULL) {
            return;
        }
    }
    sourcePtr = sourceArray.getAlias();
    sourceLim = sourcePtr + sourceSize;  // sourceArray.getArrayLimit()?

    // Avoid multiple "get element" calls by getting the contents into arrays
    (void) dest->toArray(destPtr);
    (void) source->toArray(sourcePtr);

    dest->setSize(sourceSize+destOriginalSize, *fStatus);

    while (sourcePtr < sourceLim && destPtr < destLim) {
        if (*destPtr == *sourcePtr) {
            dest->setElementAt(*sourcePtr++, di++);
            destPtr++;
        }
        // This check is required for machines with segmented memory, like i5/OS.
        // Direct pointer comparison is not recommended.
        else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) {
            dest->setElementAt(*destPtr++, di++);
        }
        else { /* *sourcePtr < *destPtr */
            dest->setElementAt(*sourcePtr++, di++);
        }
    }

    // At most one of these two cleanup loops will execute
    while (destPtr < destLim) {
        dest->setElementAt(*destPtr++, di++);
    }
    while (sourcePtr < sourceLim) {
        dest->setElementAt(*sourcePtr++, di++);
    }

    dest->setSize(di, *fStatus);
}



//-----------------------------------------------------------------------------
//
//  setEqual    Set operation on UVector.
//              Compare for equality.
//              Elements must be sorted.
//
//-----------------------------------------------------------------------------
UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
    return a->equals(*b);
}


//-----------------------------------------------------------------------------
//
//  printPosSets   Debug function.  Dump Nullable, firstpos, lastpos and followpos
//                 for each node in the tree.
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printPosSets(RBBINode *n) {
    if (n==NULL) {
        return;
    }
    printf("\n");
    RBBINode::printNodeHeader();
    RBBINode::printNode(n);
    RBBIDebugPrintf("         Nullable:  %s\n", n->fNullable?"TRUE":"FALSE");

    RBBIDebugPrintf("         firstpos:  ");
    printSet(n->fFirstPosSet);

    RBBIDebugPrintf("         lastpos:   ");
    printSet(n->fLastPosSet);

    RBBIDebugPrintf("         followpos: ");
    printSet(n->fFollowPos);

    printPosSets(n->fLeftChild);
    printPosSets(n->fRightChild);
}
#endif



//-----------------------------------------------------------------------------
//
//   getTableSize()    Calculate the size of the runtime form of this
//                     state transition table.
//
//-----------------------------------------------------------------------------
int32_t  RBBITableBuilder::getTableSize() const {
    int32_t    size = 0;
    int32_t    numRows;
    int32_t    numCols;
    int32_t    rowSize;

    if (fTree == NULL) {
        return 0;
    }

    size    = sizeof(RBBIStateTable) - 4;    // The header, with no rows to the table.

    numRows = fDStates->size();
    numCols = fRB->fSetBuilder->getNumCharCategories();

    //  Note  The declaration of RBBIStateTableRow is for a table of two columns.
    //        Therefore we subtract two from numCols when determining
    //        how much storage to add to a row for the total columns.
    rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
    size   += numRows * rowSize;
    return size;
}



//-----------------------------------------------------------------------------
//
//   exportTable()    export the state transition table in the format required
//                    by the runtime engine.  getTableSize() bytes of memory
//                    must be available at the output address "where".
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::exportTable(void *where) {
    RBBIStateTable    *table = (RBBIStateTable *)where;
    uint32_t           state;
    int                col;

    if (U_FAILURE(*fStatus) || fTree == NULL) {
        return;
    }

    if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff ||
        fDStates->size() > 0x7fff) {
        *fStatus = U_BRK_INTERNAL_ERROR;
        return;
    }

    table->fRowLen    = sizeof(RBBIStateTableRow) +
                            sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2);
    table->fNumStates = fDStates->size();
    table->fFlags     = 0;
    if (fRB->fLookAheadHardBreak) {
        table->fFlags  |= RBBI_LOOKAHEAD_HARD_BREAK;
    }
    if (fRB->fSetBuilder->sawBOF()) {
        table->fFlags  |= RBBI_BOF_REQUIRED;
    }
    table->fReserved  = 0;

    for (state=0; state<table->fNumStates; state++) {
        RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
        RBBIStateTableRow   *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
        U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767);
        U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767);
        row->fAccepting = (int16_t)sd->fAccepting;
        row->fLookAhead = (int16_t)sd->fLookAhead;
        row->fTagIdx    = (int16_t)sd->fTagsIdx;
        for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) {
            row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col);
        }
    }
}



//-----------------------------------------------------------------------------
//
//   printSet    Debug function.   Print the contents of a UVector
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printSet(UVector *s) {
    int32_t  i;
    for (i=0; i<s->size(); i++) {
        const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i));
        RBBIDebugPrintf("%5d", v==NULL? -1 : v->fSerialNum);
    }
    RBBIDebugPrintf("\n");
}
#endif


//-----------------------------------------------------------------------------
//
//   printStates    Debug Function.  Dump the fully constructed state transition table.
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printStates() {
    int     c;    // input "character"
    int     n;    // state number

    RBBIDebugPrintf("state |           i n p u t     s y m b o l s \n");
    RBBIDebugPrintf("      | Acc  LA    Tag");
    for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
        RBBIDebugPrintf(" %2d", c);
    }
    RBBIDebugPrintf("\n");
    RBBIDebugPrintf("      |---------------");
    for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
        RBBIDebugPrintf("---");
    }
    RBBIDebugPrintf("\n");

    for (n=0; n<fDStates->size(); n++) {
        RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
        RBBIDebugPrintf("  %3d | " , n);
        RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx);
        for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
            RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c));
        }
        RBBIDebugPrintf("\n");
    }
    RBBIDebugPrintf("\n\n");
}
#endif



//-----------------------------------------------------------------------------
//
//   printRuleStatusTable    Debug Function.  Dump the common rule status table
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printRuleStatusTable() {
    int32_t  thisRecord = 0;
    int32_t  nextRecord = 0;
    int      i;
    UVector  *tbl = fRB->fRuleStatusVals;

    RBBIDebugPrintf("index |  tags \n");
    RBBIDebugPrintf("-------------------\n");

    while (nextRecord < tbl->size()) {
        thisRecord = nextRecord;
        nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1;
        RBBIDebugPrintf("%4d   ", thisRecord);
        for (i=thisRecord+1; i<nextRecord; i++) {
            RBBIDebugPrintf("  %5d", tbl->elementAti(i));
        }
        RBBIDebugPrintf("\n");
    }
    RBBIDebugPrintf("\n\n");
}
#endif


//-----------------------------------------------------------------------------
//
//   RBBIStateDescriptor     Methods.  This is a very struct-like class
//                           Most access is directly to the fields.
//
//-----------------------------------------------------------------------------

RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
    fMarked    = FALSE;
    fAccepting = 0;
    fLookAhead = 0;
    fTagsIdx   = 0;
    fTagVals   = NULL;
    fPositions = NULL;
    fDtran     = NULL;

    fDtran     = new UVector(lastInputSymbol+1, *fStatus);
    if (U_FAILURE(*fStatus)) {
        return;
    }
    if (fDtran == NULL) {
        *fStatus = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    fDtran->setSize(lastInputSymbol+1, *fStatus);    // fDtran needs to be pre-sized.
                                           //   It is indexed by input symbols, and will
                                           //   hold  the next state number for each
                                           //   symbol.
}


RBBIStateDescriptor::~RBBIStateDescriptor() {
    delete       fPositions;
    delete       fDtran;
    delete       fTagVals;
    fPositions = NULL;
    fDtran     = NULL;
    fTagVals   = NULL;
}

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_BREAK_ITERATION */