summaryrefslogtreecommitdiffstats
path: root/image/decoders/EXIF.cpp
blob: 8197c886c3d0c8612d36489f9a4b06208f448107 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "EXIF.h"

#include "mozilla/EndianUtils.h"

namespace mozilla {
namespace image {

// Section references in this file refer to the EXIF v2.3 standard, also known
// as CIPA DC-008-Translation-2010.

// See Section 4.6.4, Table 4.
// Typesafe enums are intentionally not used here since we're comparing to raw
// integers produced by parsing.
enum EXIFTag
{
  OrientationTag = 0x112,
};

// See Section 4.6.2.
enum EXIFType
{
  ByteType       = 1,
  ASCIIType      = 2,
  ShortType      = 3,
  LongType       = 4,
  RationalType   = 5,
  UndefinedType  = 7,
  SignedLongType = 9,
  SignedRational = 10,
};

static const char* EXIFHeader = "Exif\0\0";
static const uint32_t EXIFHeaderLength = 6;

/////////////////////////////////////////////////////////////
// Parse EXIF data, typically found in a JPEG's APP1 segment.
/////////////////////////////////////////////////////////////
EXIFData
EXIFParser::ParseEXIF(const uint8_t* aData, const uint32_t aLength)
{
  if (!Initialize(aData, aLength)) {
    return EXIFData();
  }

  if (!ParseEXIFHeader()) {
    return EXIFData();
  }

  uint32_t offsetIFD;
  if (!ParseTIFFHeader(offsetIFD)) {
    return EXIFData();
  }

  JumpTo(offsetIFD);

  Orientation orientation;
  if (!ParseIFD0(orientation)) {
    return EXIFData();
  }

  // We only care about orientation at this point, so we don't bother with the
  // other IFDs. If we got this far we're done.
  return EXIFData(orientation);
}

/////////////////////////////////////////////////////////
// Parse the EXIF header. (Section 4.7.2, Figure 30)
/////////////////////////////////////////////////////////
bool
EXIFParser::ParseEXIFHeader()
{
  return MatchString(EXIFHeader, EXIFHeaderLength);
}

/////////////////////////////////////////////////////////
// Parse the TIFF header. (Section 4.5.2, Table 1)
/////////////////////////////////////////////////////////
bool
EXIFParser::ParseTIFFHeader(uint32_t& aIFD0OffsetOut)
{
  // Determine byte order.
  if (MatchString("MM\0*", 4)) {
    mByteOrder = ByteOrder::BigEndian;
  } else if (MatchString("II*\0", 4)) {
    mByteOrder = ByteOrder::LittleEndian;
  } else {
    return false;
  }

  // Determine offset of the 0th IFD. (It shouldn't be greater than 64k, which
  // is the maximum size of the entry APP1 segment.)
  uint32_t ifd0Offset;
  if (!ReadUInt32(ifd0Offset) || ifd0Offset > 64 * 1024) {
    return false;
  }

  // The IFD offset is relative to the beginning of the TIFF header, which
  // begins after the EXIF header, so we need to increase the offset
  // appropriately.
  aIFD0OffsetOut = ifd0Offset + EXIFHeaderLength;
  return true;
}

/////////////////////////////////////////////////////////
// Parse the entries in IFD0. (Section 4.6.2)
/////////////////////////////////////////////////////////
bool
EXIFParser::ParseIFD0(Orientation& aOrientationOut)
{
  uint16_t entryCount;
  if (!ReadUInt16(entryCount)) {
    return false;
  }

  for (uint16_t entry = 0 ; entry < entryCount ; ++entry) {
    // Read the fields of the entry.
    uint16_t tag;
    if (!ReadUInt16(tag)) {
      return false;
    }

    // Right now, we only care about orientation, so we immediately skip to the
    // next entry if we find anything else.
    if (tag != OrientationTag) {
      Advance(10);
      continue;
    }

    uint16_t type;
    if (!ReadUInt16(type)) {
      return false;
    }

    uint32_t count;
    if (!ReadUInt32(count)) {
      return false;
    }

    // We should have an orientation value here; go ahead and parse it.
    if (!ParseOrientation(type, count, aOrientationOut)) {
      return false;
    }

    // Since the orientation is all we care about, we're done.
    return true;
  }

  // We didn't find an orientation field in the IFD. That's OK; we assume the
  // default orientation in that case.
  aOrientationOut = Orientation();
  return true;
}

bool
EXIFParser::ParseOrientation(uint16_t aType, uint32_t aCount, Orientation& aOut)
{
  // Sanity check the type and count.
  if (aType != ShortType || aCount != 1) {
    return false;
  }

  uint16_t value;
  if (!ReadUInt16(value)) {
    return false;
  }

  switch (value) {
    case 1: aOut = Orientation(Angle::D0,   Flip::Unflipped);  break;
    case 2: aOut = Orientation(Angle::D0,   Flip::Horizontal); break;
    case 3: aOut = Orientation(Angle::D180, Flip::Unflipped);  break;
    case 4: aOut = Orientation(Angle::D180, Flip::Horizontal); break;
    case 5: aOut = Orientation(Angle::D90,  Flip::Horizontal); break;
    case 6: aOut = Orientation(Angle::D90,  Flip::Unflipped);  break;
    case 7: aOut = Orientation(Angle::D270, Flip::Horizontal); break;
    case 8: aOut = Orientation(Angle::D270, Flip::Unflipped);  break;
    default: return false;
  }

  // This is a 32-bit field, but the orientation value only occupies the first
  // 16 bits. We need to advance another 16 bits to consume the entire field.
  Advance(2);
  return true;
}

bool
EXIFParser::Initialize(const uint8_t* aData, const uint32_t aLength)
{
  if (aData == nullptr) {
    return false;
  }

  // An APP1 segment larger than 64k violates the JPEG standard.
  if (aLength > 64 * 1024) {
    return false;
  }

  mStart = mCurrent = aData;
  mLength = mRemainingLength = aLength;
  mByteOrder = ByteOrder::Unknown;
  return true;
}

void
EXIFParser::Advance(const uint32_t aDistance)
{
  if (mRemainingLength >= aDistance) {
    mCurrent += aDistance;
    mRemainingLength -= aDistance;
  } else {
    mCurrent = mStart;
    mRemainingLength = 0;
  }
}

void
EXIFParser::JumpTo(const uint32_t aOffset)
{
  if (mLength >= aOffset) {
    mCurrent = mStart + aOffset;
    mRemainingLength = mLength - aOffset;
  } else {
    mCurrent = mStart;
    mRemainingLength = 0;
  }
}

bool
EXIFParser::MatchString(const char* aString, const uint32_t aLength)
{
  if (mRemainingLength < aLength) {
    return false;
  }

  for (uint32_t i = 0 ; i < aLength ; ++i) {
    if (mCurrent[i] != aString[i]) {
      return false;
    }
  }

  Advance(aLength);
  return true;
}

bool
EXIFParser::MatchUInt16(const uint16_t aValue)
{
  if (mRemainingLength < 2) {
    return false;
  }

  bool matched;
  switch (mByteOrder) {
    case ByteOrder::LittleEndian:
      matched = LittleEndian::readUint16(mCurrent) == aValue;
      break;
    case ByteOrder::BigEndian:
      matched = BigEndian::readUint16(mCurrent) == aValue;
      break;
    default:
      NS_NOTREACHED("Should know the byte order by now");
      matched = false;
  }

  if (matched) {
    Advance(2);
  }

  return matched;
}

bool
EXIFParser::ReadUInt16(uint16_t& aValue)
{
  if (mRemainingLength < 2) {
    return false;
  }

  bool matched = true;
  switch (mByteOrder) {
    case ByteOrder::LittleEndian:
      aValue = LittleEndian::readUint16(mCurrent);
      break;
    case ByteOrder::BigEndian:
      aValue = BigEndian::readUint16(mCurrent);
      break;
    default:
      NS_NOTREACHED("Should know the byte order by now");
      matched = false;
  }

  if (matched) {
    Advance(2);
  }

  return matched;
}

bool
EXIFParser::ReadUInt32(uint32_t& aValue)
{
  if (mRemainingLength < 4) {
    return false;
  }

  bool matched = true;
  switch (mByteOrder) {
    case ByteOrder::LittleEndian:
      aValue = LittleEndian::readUint32(mCurrent);
      break;
    case ByteOrder::BigEndian:
      aValue = BigEndian::readUint32(mCurrent);
      break;
    default:
      NS_NOTREACHED("Should know the byte order by now");
      matched = false;
  }

  if (matched) {
    Advance(4);
  }

  return matched;
}

} // namespace image
} // namespace mozilla