summaryrefslogtreecommitdiffstats
path: root/gfx/thebes/gfxMatrix.h
blob: 9282a22dbb3398c26d48eede9c78eb9422b084f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GFX_MATRIX_H
#define GFX_MATRIX_H

#include "gfxPoint.h"
#include "gfxTypes.h"
#include "gfxRect.h"
#include "mozilla/Attributes.h"
#include "mozilla/gfx/MatrixFwd.h"

// XX - I don't think this class should use gfxFloat at all,
// but should use 'double' and be called gfxDoubleMatrix;
// we can then typedef that to gfxMatrix where we typedef
// double to be gfxFloat.

/**
 * A matrix that represents an affine transformation. Projective
 * transformations are not supported. This matrix looks like:
 *
 * / a  b  0 \
 * | c  d  0 |
 * \ tx ty 1 /
 *
 * So, transforming a point (x, y) results in:
 *
 *           / a  b  0 \   / a * x + c * y + tx \ T
 * (x y 1) * | c  d  0 | = | b * x + d * y + ty |
 *           \ tx ty 1 /   \         1          /
 *
 */
class gfxMatrix {
public:
    double _11; double _12;
    double _21; double _22;
    double _31; double _32;

    /**
     * Initializes this matrix as the identity matrix.
     */
    gfxMatrix() { Reset(); }

    /**
     * Initializes the matrix from individual components. See the class
     * description for the layout of the matrix.
     */
    gfxMatrix(gfxFloat a, gfxFloat b, gfxFloat c, gfxFloat d, gfxFloat tx, gfxFloat ty) :
        _11(a),  _12(b),
        _21(c),  _22(d),
        _31(tx), _32(ty) { }

    MOZ_ALWAYS_INLINE gfxMatrix Copy() const {
        return gfxMatrix(*this);
    }

    friend std::ostream& operator<<(std::ostream& stream, const gfxMatrix& m) {
      if (m.IsIdentity()) {
        return stream << "[identity]";
      }

      return stream << "["
             << m._11 << " " << m._12
             << m._21 << " " << m._22
             << m._31 << " " << m._32
             << "]";
    }

    /**
     * Post-multiplies m onto the matrix.
     */
    const gfxMatrix& operator *= (const gfxMatrix& m);

    /**
     * Multiplies *this with m and returns the result.
     */
    gfxMatrix operator * (const gfxMatrix& m) const {
        return gfxMatrix(*this) *= m;
    }

    /**
     * Multiplies *this with aMatrix and returns the result.
     */
    mozilla::gfx::Matrix4x4 operator * (const mozilla::gfx::Matrix4x4& aMatrix) const;

    /* Returns true if the other matrix is fuzzy-equal to this matrix.
     * Note that this isn't a cheap comparison!
     */
    bool operator==(const gfxMatrix& other) const
    {
      return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) &&
             FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) &&
             FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32);
    }

    bool operator!=(const gfxMatrix& other) const
    {
      return !(*this == other);
    }

    // matrix operations
    /**
     * Resets this matrix to the identity matrix.
     */
    const gfxMatrix& Reset();

    bool IsIdentity() const {
       return _11 == 1.0 && _12 == 0.0 &&
              _21 == 0.0 && _22 == 1.0 &&
              _31 == 0.0 && _32 == 0.0;
    }

    /**
     * Inverts this matrix, if possible. Otherwise, the matrix is left
     * unchanged.
     *
     * XXX should this do something with the return value of
     * cairo_matrix_invert?
     */
    bool Invert();

    /**
     * Check if matrix is singular (no inverse exists).
     */
    bool IsSingular() const {
        // if the determinant (ad - bc) is zero it's singular
        return (_11 * _22) == (_12 * _21);
    }

    /**
     * Scales this matrix. The scale is pre-multiplied onto this matrix,
     * i.e. the scaling takes place before the other transformations.
     */
    gfxMatrix& Scale(gfxFloat x, gfxFloat y);

    /**
     * Translates this matrix. The translation is pre-multiplied onto this matrix,
     * i.e. the translation takes place before the other transformations.
     */
    gfxMatrix& Translate(const gfxPoint& pt);

    gfxMatrix& Translate(gfxFloat x, gfxFloat y) {
      return Translate(gfxPoint(x, y));
    }

    /**
     * Rotates this matrix. The rotation is pre-multiplied onto this matrix,
     * i.e. the translation takes place after the other transformations.
     *
     * @param radians Angle in radians.
     */
    gfxMatrix& Rotate(gfxFloat radians);

    /**
     * Multiplies the current matrix with m.
     * This is a pre-multiplication, i.e. the transformations of m are
     * applied _before_ the existing transformations.
     */
    gfxMatrix& PreMultiply(const gfxMatrix& m);

    static gfxMatrix Translation(gfxFloat aX, gfxFloat aY)
    {
        return gfxMatrix(1.0, 0.0, 0.0, 1.0, aX, aY);
    }

    static gfxMatrix Translation(gfxPoint aPoint)
    {
        return Translation(aPoint.x, aPoint.y);
    }

    static gfxMatrix Rotation(gfxFloat aAngle);

    static gfxMatrix Scaling(gfxFloat aX, gfxFloat aY)
    {
        return gfxMatrix(aX, 0.0, 0.0, aY, 0.0, 0.0);
    }

    /**
     * Transforms a point according to this matrix.
     */
    gfxPoint Transform(const gfxPoint& point) const;


    /**
     * Transform a distance according to this matrix. This does not apply
     * any translation components.
     */
    gfxSize Transform(const gfxSize& size) const;

    /**
     * Transforms both the point and distance according to this matrix.
     */
    gfxRect Transform(const gfxRect& rect) const;

    gfxRect TransformBounds(const gfxRect& rect) const;

    /**
     * Returns the translation component of this matrix.
     */
    gfxPoint GetTranslation() const {
        return gfxPoint(_31, _32);
    }

    /**
     * Returns true if the matrix is anything other than a straight
     * translation by integers.
     */
    bool HasNonIntegerTranslation() const {
        return HasNonTranslation() ||
            !FuzzyEqual(_31, floor(_31 + 0.5)) ||
            !FuzzyEqual(_32, floor(_32 + 0.5));
    }

    /**
     * Returns true if the matrix has any transform other
     * than a straight translation
     */
    bool HasNonTranslation() const {
        return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
               !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
    }

    /**
     * Returns true if the matrix only has an integer translation.
     */
    bool HasOnlyIntegerTranslation() const {
        return !HasNonIntegerTranslation();
    }

    /**
     * Returns true if the matrix has any transform other
     * than a translation or a -1 y scale (y axis flip)
     */
    bool HasNonTranslationOrFlip() const {
        return !FuzzyEqual(_11, 1.0) ||
               (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
               !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
    }

    /**
     * Returns true if the matrix has any transform other
     * than a translation or scale; this is, if there is
     * no rotation.
     */
    bool HasNonAxisAlignedTransform() const {
        return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
    }

    /**
     * Computes the determinant of this matrix.
     */
    double Determinant() const {
        return _11*_22 - _12*_21;
    }

    /* Computes the scale factors of this matrix; that is,
     * the amounts each basis vector is scaled by.
     * The xMajor parameter indicates if the larger scale is
     * to be assumed to be in the X direction or not.
     */
    gfxSize ScaleFactors(bool xMajor) const {
        double det = Determinant();

        if (det == 0.0)
            return gfxSize(0.0, 0.0);

        gfxSize sz = xMajor ? gfxSize(1.0, 0.0) : gfxSize(0.0, 1.0);
        sz = Transform(sz);

        double major = sqrt(sz.width * sz.width + sz.height * sz.height);
        double minor = 0.0;

        // ignore mirroring
        if (det < 0.0)
            det = - det;

        if (major)
            minor = det / major;

        if (xMajor)
            return gfxSize(major, minor);

        return gfxSize(minor, major);
    }

    /**
     * Snap matrix components that are close to integers
     * to integers. In particular, components that are integral when
     * converted to single precision are set to those integers.
     */
    gfxMatrix& NudgeToIntegers(void);

    /**
     * Returns true if matrix is multiple of 90 degrees rotation with flipping,
     * scaling and translation.
     */
    bool PreservesAxisAlignedRectangles() const {
        return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0))
            || (FuzzyEqual(_21, 0.0) && FuzzyEqual(_12, 0.0)));
    }

private:
    static bool FuzzyEqual(gfxFloat aV1, gfxFloat aV2) {
        return fabs(aV2 - aV1) < 1e-6;
    }
};

#endif /* GFX_MATRIX_H */