1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ValidateLimitations.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/InitializeParseContext.h"
#include "compiler/translator/ParseContext.h"
#include "angle_gl.h"
namespace
{
// Traverses a node to check if it represents a constant index expression.
// Definition:
// constant-index-expressions are a superset of constant-expressions.
// Constant-index-expressions can include loop indices as defined in
// GLSL ES 1.0 spec, Appendix A, section 4.
// The following are constant-index-expressions:
// - Constant expressions
// - Loop indices as defined in section 4
// - Expressions composed of both of the above
class ValidateConstIndexExpr : public TIntermTraverser
{
public:
ValidateConstIndexExpr(TLoopStack& stack)
: TIntermTraverser(true, false, false),
mValid(true),
mLoopStack(stack)
{
}
// Returns true if the parsed node represents a constant index expression.
bool isValid() const { return mValid; }
void visitSymbol(TIntermSymbol *symbol) override
{
// Only constants and loop indices are allowed in a
// constant index expression.
if (mValid)
{
mValid = (symbol->getQualifier() == EvqConst) ||
(mLoopStack.findLoop(symbol));
}
}
private:
bool mValid;
TLoopStack& mLoopStack;
};
} // namespace anonymous
ValidateLimitations::ValidateLimitations(sh::GLenum shaderType, TInfoSinkBase *sink)
: TIntermTraverser(true, false, false),
mShaderType(shaderType),
mSink(sink),
mNumErrors(0),
mValidateIndexing(true),
mValidateInnerLoops(true)
{
}
// static
bool ValidateLimitations::IsLimitedForLoop(TIntermLoop *loop)
{
// The shader type doesn't matter in this case.
ValidateLimitations validate(GL_FRAGMENT_SHADER, nullptr);
validate.mValidateIndexing = false;
validate.mValidateInnerLoops = false;
if (!validate.validateLoopType(loop))
return false;
if (!validate.validateForLoopHeader(loop))
return false;
TIntermNode *body = loop->getBody();
if (body != nullptr)
{
validate.mLoopStack.push(loop);
body->traverse(&validate);
validate.mLoopStack.pop();
}
return (validate.mNumErrors == 0);
}
bool ValidateLimitations::visitBinary(Visit, TIntermBinary *node)
{
// Check if loop index is modified in the loop body.
validateOperation(node, node->getLeft());
// Check indexing.
switch (node->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
if (mValidateIndexing)
validateIndexing(node);
break;
default:
break;
}
return true;
}
bool ValidateLimitations::visitUnary(Visit, TIntermUnary *node)
{
// Check if loop index is modified in the loop body.
validateOperation(node, node->getOperand());
return true;
}
bool ValidateLimitations::visitAggregate(Visit, TIntermAggregate *node)
{
switch (node->getOp()) {
case EOpFunctionCall:
validateFunctionCall(node);
break;
default:
break;
}
return true;
}
bool ValidateLimitations::visitLoop(Visit, TIntermLoop *node)
{
if (!mValidateInnerLoops)
return true;
if (!validateLoopType(node))
return false;
if (!validateForLoopHeader(node))
return false;
TIntermNode *body = node->getBody();
if (body != NULL)
{
mLoopStack.push(node);
body->traverse(this);
mLoopStack.pop();
}
// The loop is fully processed - no need to visit children.
return false;
}
void ValidateLimitations::error(TSourceLoc loc,
const char *reason, const char *token)
{
if (mSink)
{
mSink->prefix(EPrefixError);
mSink->location(loc);
(*mSink) << "'" << token << "' : " << reason << "\n";
}
++mNumErrors;
}
bool ValidateLimitations::withinLoopBody() const
{
return !mLoopStack.empty();
}
bool ValidateLimitations::isLoopIndex(TIntermSymbol *symbol)
{
return mLoopStack.findLoop(symbol) != NULL;
}
bool ValidateLimitations::validateLoopType(TIntermLoop *node)
{
TLoopType type = node->getType();
if (type == ELoopFor)
return true;
// Reject while and do-while loops.
error(node->getLine(),
"This type of loop is not allowed",
type == ELoopWhile ? "while" : "do");
return false;
}
bool ValidateLimitations::validateForLoopHeader(TIntermLoop *node)
{
ASSERT(node->getType() == ELoopFor);
//
// The for statement has the form:
// for ( init-declaration ; condition ; expression ) statement
//
int indexSymbolId = validateForLoopInit(node);
if (indexSymbolId < 0)
return false;
if (!validateForLoopCond(node, indexSymbolId))
return false;
if (!validateForLoopExpr(node, indexSymbolId))
return false;
return true;
}
int ValidateLimitations::validateForLoopInit(TIntermLoop *node)
{
TIntermNode *init = node->getInit();
if (init == NULL)
{
error(node->getLine(), "Missing init declaration", "for");
return -1;
}
//
// init-declaration has the form:
// type-specifier identifier = constant-expression
//
TIntermAggregate *decl = init->getAsAggregate();
if ((decl == NULL) || (decl->getOp() != EOpDeclaration))
{
error(init->getLine(), "Invalid init declaration", "for");
return -1;
}
// To keep things simple do not allow declaration list.
TIntermSequence *declSeq = decl->getSequence();
if (declSeq->size() != 1)
{
error(decl->getLine(), "Invalid init declaration", "for");
return -1;
}
TIntermBinary *declInit = (*declSeq)[0]->getAsBinaryNode();
if ((declInit == NULL) || (declInit->getOp() != EOpInitialize))
{
error(decl->getLine(), "Invalid init declaration", "for");
return -1;
}
TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();
if (symbol == NULL)
{
error(declInit->getLine(), "Invalid init declaration", "for");
return -1;
}
// The loop index has type int or float.
TBasicType type = symbol->getBasicType();
if ((type != EbtInt) && (type != EbtUInt) && (type != EbtFloat)) {
error(symbol->getLine(),
"Invalid type for loop index", getBasicString(type));
return -1;
}
// The loop index is initialized with constant expression.
if (!isConstExpr(declInit->getRight()))
{
error(declInit->getLine(),
"Loop index cannot be initialized with non-constant expression",
symbol->getSymbol().c_str());
return -1;
}
return symbol->getId();
}
bool ValidateLimitations::validateForLoopCond(TIntermLoop *node,
int indexSymbolId)
{
TIntermNode *cond = node->getCondition();
if (cond == NULL)
{
error(node->getLine(), "Missing condition", "for");
return false;
}
//
// condition has the form:
// loop_index relational_operator constant_expression
//
TIntermBinary *binOp = cond->getAsBinaryNode();
if (binOp == NULL)
{
error(node->getLine(), "Invalid condition", "for");
return false;
}
// Loop index should be to the left of relational operator.
TIntermSymbol *symbol = binOp->getLeft()->getAsSymbolNode();
if (symbol == NULL)
{
error(binOp->getLine(), "Invalid condition", "for");
return false;
}
if (symbol->getId() != indexSymbolId)
{
error(symbol->getLine(),
"Expected loop index", symbol->getSymbol().c_str());
return false;
}
// Relational operator is one of: > >= < <= == or !=.
switch (binOp->getOp())
{
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
break;
default:
error(binOp->getLine(),
"Invalid relational operator",
GetOperatorString(binOp->getOp()));
break;
}
// Loop index must be compared with a constant.
if (!isConstExpr(binOp->getRight()))
{
error(binOp->getLine(),
"Loop index cannot be compared with non-constant expression",
symbol->getSymbol().c_str());
return false;
}
return true;
}
bool ValidateLimitations::validateForLoopExpr(TIntermLoop *node,
int indexSymbolId)
{
TIntermNode *expr = node->getExpression();
if (expr == NULL)
{
error(node->getLine(), "Missing expression", "for");
return false;
}
// for expression has one of the following forms:
// loop_index++
// loop_index--
// loop_index += constant_expression
// loop_index -= constant_expression
// ++loop_index
// --loop_index
// The last two forms are not specified in the spec, but I am assuming
// its an oversight.
TIntermUnary *unOp = expr->getAsUnaryNode();
TIntermBinary *binOp = unOp ? NULL : expr->getAsBinaryNode();
TOperator op = EOpNull;
TIntermSymbol *symbol = NULL;
if (unOp != NULL)
{
op = unOp->getOp();
symbol = unOp->getOperand()->getAsSymbolNode();
}
else if (binOp != NULL)
{
op = binOp->getOp();
symbol = binOp->getLeft()->getAsSymbolNode();
}
// The operand must be loop index.
if (symbol == NULL)
{
error(expr->getLine(), "Invalid expression", "for");
return false;
}
if (symbol->getId() != indexSymbolId)
{
error(symbol->getLine(),
"Expected loop index", symbol->getSymbol().c_str());
return false;
}
// The operator is one of: ++ -- += -=.
switch (op)
{
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
ASSERT((unOp != NULL) && (binOp == NULL));
break;
case EOpAddAssign:
case EOpSubAssign:
ASSERT((unOp == NULL) && (binOp != NULL));
break;
default:
error(expr->getLine(), "Invalid operator", GetOperatorString(op));
return false;
}
// Loop index must be incremented/decremented with a constant.
if (binOp != NULL)
{
if (!isConstExpr(binOp->getRight()))
{
error(binOp->getLine(),
"Loop index cannot be modified by non-constant expression",
symbol->getSymbol().c_str());
return false;
}
}
return true;
}
bool ValidateLimitations::validateFunctionCall(TIntermAggregate *node)
{
ASSERT(node->getOp() == EOpFunctionCall);
// If not within loop body, there is nothing to check.
if (!withinLoopBody())
return true;
// List of param indices for which loop indices are used as argument.
typedef std::vector<size_t> ParamIndex;
ParamIndex pIndex;
TIntermSequence *params = node->getSequence();
for (TIntermSequence::size_type i = 0; i < params->size(); ++i)
{
TIntermSymbol *symbol = (*params)[i]->getAsSymbolNode();
if (symbol && isLoopIndex(symbol))
pIndex.push_back(i);
}
// If none of the loop indices are used as arguments,
// there is nothing to check.
if (pIndex.empty())
return true;
bool valid = true;
TSymbolTable& symbolTable = GetGlobalParseContext()->symbolTable;
TSymbol* symbol = symbolTable.find(node->getName(), GetGlobalParseContext()->getShaderVersion());
ASSERT(symbol && symbol->isFunction());
TFunction *function = static_cast<TFunction *>(symbol);
for (ParamIndex::const_iterator i = pIndex.begin();
i != pIndex.end(); ++i)
{
const TConstParameter ¶m = function->getParam(*i);
TQualifier qual = param.type->getQualifier();
if ((qual == EvqOut) || (qual == EvqInOut))
{
error((*params)[*i]->getLine(),
"Loop index cannot be used as argument to a function out or inout parameter",
(*params)[*i]->getAsSymbolNode()->getSymbol().c_str());
valid = false;
}
}
return valid;
}
bool ValidateLimitations::validateOperation(TIntermOperator *node,
TIntermNode* operand)
{
// Check if loop index is modified in the loop body.
if (!withinLoopBody() || !node->isAssignment())
return true;
TIntermSymbol *symbol = operand->getAsSymbolNode();
if (symbol && isLoopIndex(symbol))
{
error(node->getLine(),
"Loop index cannot be statically assigned to within the body of the loop",
symbol->getSymbol().c_str());
}
return true;
}
bool ValidateLimitations::isConstExpr(TIntermNode *node)
{
ASSERT(node != nullptr);
return node->getAsConstantUnion() != nullptr && node->getAsTyped()->getQualifier() == EvqConst;
}
bool ValidateLimitations::isConstIndexExpr(TIntermNode *node)
{
ASSERT(node != NULL);
ValidateConstIndexExpr validate(mLoopStack);
node->traverse(&validate);
return validate.isValid();
}
bool ValidateLimitations::validateIndexing(TIntermBinary *node)
{
ASSERT((node->getOp() == EOpIndexDirect) ||
(node->getOp() == EOpIndexIndirect));
bool valid = true;
TIntermTyped *index = node->getRight();
// The index expession must be a constant-index-expression unless
// the operand is a uniform in a vertex shader.
TIntermTyped *operand = node->getLeft();
bool skip = (mShaderType == GL_VERTEX_SHADER) &&
(operand->getQualifier() == EvqUniform);
if (!skip && !isConstIndexExpr(index))
{
error(index->getLine(), "Index expression must be constant", "[]");
valid = false;
}
return valid;
}
|