1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil_unittest:
// Unit tests for the utils defined in mathutil.h
//
#include "mathutil.h"
#include <gtest/gtest.h>
using namespace gl;
namespace
{
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions.
// For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackSnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values,
// result should be clamped to [-1, 1].
TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions.
// For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackUnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
float expected = input[i][0] < 0.0f ? 0.0f : input[i][0];
EXPECT_NEAR(expected, outputVal1, floatFaultTolerance);
expected = input[i][1] < 0.0f ? 0.0f : input[i][1];
EXPECT_NEAR(expected, outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values,
// result should be clamped to [0, 1].
TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packHalf2x16 and unpackHalf2x16 functions.
// For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackHalf2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f },
};
const float floatFaultTolerance = 0.0005f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of gl::isNaN function.
TEST(MathUtilTest, isNaN)
{
EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isNaN(0.0f));
EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23)));
}
// Test the correctness of gl::isInf function.
TEST(MathUtilTest, isInf)
{
EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23)));
EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isInf(0.0f));
EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu)));
}
TEST(MathUtilTest, CountLeadingZeros)
{
for (unsigned int i = 0; i < 32u; ++i)
{
uint32_t iLeadingZeros = 1u << (31u - i);
EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros));
}
EXPECT_EQ(32u, CountLeadingZeros(0));
}
// Some basic tests. Tests that rounding up zero produces zero.
TEST(MathUtilTest, BasicRoundUp)
{
EXPECT_EQ(0u, rx::roundUp(0u, 4u));
EXPECT_EQ(4u, rx::roundUp(1u, 4u));
EXPECT_EQ(4u, rx::roundUp(4u, 4u));
}
// Test that rounding up zero produces zero for checked ints.
TEST(MathUtilTest, CheckedRoundUpZero)
{
auto checkedValue = rx::CheckedRoundUp(0u, 4u);
ASSERT_TRUE(checkedValue.IsValid());
ASSERT_EQ(0u, checkedValue.ValueOrDie());
}
// Test out-of-bounds with CheckedRoundUp
TEST(MathUtilTest, CheckedRoundUpInvalid)
{
// The answer to this query is out of bounds.
auto limit = std::numeric_limits<unsigned int>::max();
auto checkedValue = rx::CheckedRoundUp(limit, limit - 1);
ASSERT_FALSE(checkedValue.IsValid());
// Our implementation can't handle this query, despite the parameters being in range.
auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit);
ASSERT_FALSE(checkedLimit.IsValid());
}
} // anonymous namespace
|