1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PannerNode.h"
#include "AlignmentUtils.h"
#include "AudioDestinationNode.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "AudioListener.h"
#include "PanningUtils.h"
#include "AudioBufferSourceNode.h"
#include "PlayingRefChangeHandler.h"
#include "blink/HRTFPanner.h"
#include "blink/HRTFDatabaseLoader.h"
#include "nsAutoPtr.h"
using WebCore::HRTFDatabaseLoader;
using WebCore::HRTFPanner;
namespace mozilla {
namespace dom {
using namespace std;
NS_IMPL_CYCLE_COLLECTION_CLASS(PannerNode)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN_INHERITED(PannerNode, AudioNode)
if (tmp->Context()) {
tmp->Context()->UnregisterPannerNode(tmp);
}
NS_IMPL_CYCLE_COLLECTION_UNLINK(mPositionX, mPositionY, mPositionZ, mOrientationX, mOrientationY, mOrientationZ)
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN_INHERITED(PannerNode, AudioNode)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mPositionX, mPositionY, mPositionZ, mOrientationX, mOrientationY, mOrientationZ)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(PannerNode)
NS_INTERFACE_MAP_END_INHERITING(AudioNode)
NS_IMPL_ADDREF_INHERITED(PannerNode, AudioNode)
NS_IMPL_RELEASE_INHERITED(PannerNode, AudioNode)
class PannerNodeEngine final : public AudioNodeEngine
{
public:
explicit PannerNodeEngine(AudioNode* aNode, AudioDestinationNode* aDestination)
: AudioNodeEngine(aNode)
, mDestination(aDestination->Stream())
// Please keep these default values consistent with PannerNode::PannerNode below.
, mPanningModelFunction(&PannerNodeEngine::EqualPowerPanningFunction)
, mDistanceModelFunction(&PannerNodeEngine::InverseGainFunction)
, mPositionX(0.)
, mPositionY(0.)
, mPositionZ(0.)
, mOrientationX(1.)
, mOrientationY(0.)
, mOrientationZ(0.)
, mVelocity()
, mRefDistance(1.)
, mMaxDistance(10000.)
, mRolloffFactor(1.)
, mConeInnerAngle(360.)
, mConeOuterAngle(360.)
, mConeOuterGain(0.)
// These will be initialized when a PannerNode is created, so just initialize them
// to some dummy values here.
, mListenerDopplerFactor(0.)
, mListenerSpeedOfSound(0.)
, mLeftOverData(INT_MIN)
{
}
void RecvTimelineEvent(uint32_t aIndex, AudioTimelineEvent& aEvent) override
{
MOZ_ASSERT(mDestination);
WebAudioUtils::ConvertAudioTimelineEventToTicks(aEvent,
mDestination);
switch (aIndex) {
case PannerNode::POSITIONX:
mPositionX.InsertEvent<int64_t>(aEvent);
break;
case PannerNode::POSITIONY:
mPositionY.InsertEvent<int64_t>(aEvent);
break;
case PannerNode::POSITIONZ:
mPositionZ.InsertEvent<int64_t>(aEvent);
break;
case PannerNode::ORIENTATIONX:
mOrientationX.InsertEvent<int64_t>(aEvent);
break;
case PannerNode::ORIENTATIONY:
mOrientationY.InsertEvent<int64_t>(aEvent);
break;
case PannerNode::ORIENTATIONZ:
mOrientationZ.InsertEvent<int64_t>(aEvent);
break;
default:
NS_ERROR("Bad PannerNode TimelineParameter");
}
}
void CreateHRTFPanner()
{
MOZ_ASSERT(NS_IsMainThread());
if (mHRTFPanner) {
return;
}
// HRTFDatabaseLoader needs to be fetched on the main thread.
already_AddRefed<HRTFDatabaseLoader> loader =
HRTFDatabaseLoader::createAndLoadAsynchronouslyIfNecessary(NodeMainThread()->Context()->SampleRate());
mHRTFPanner = new HRTFPanner(NodeMainThread()->Context()->SampleRate(), Move(loader));
}
void SetInt32Parameter(uint32_t aIndex, int32_t aParam) override
{
switch (aIndex) {
case PannerNode::PANNING_MODEL:
switch (PanningModelType(aParam)) {
case PanningModelType::Equalpower:
mPanningModelFunction = &PannerNodeEngine::EqualPowerPanningFunction;
break;
case PanningModelType::HRTF:
mPanningModelFunction = &PannerNodeEngine::HRTFPanningFunction;
break;
default:
NS_NOTREACHED("We should never see the alternate names here");
break;
}
break;
case PannerNode::DISTANCE_MODEL:
switch (DistanceModelType(aParam)) {
case DistanceModelType::Inverse:
mDistanceModelFunction = &PannerNodeEngine::InverseGainFunction;
break;
case DistanceModelType::Linear:
mDistanceModelFunction = &PannerNodeEngine::LinearGainFunction;
break;
case DistanceModelType::Exponential:
mDistanceModelFunction = &PannerNodeEngine::ExponentialGainFunction;
break;
default:
NS_NOTREACHED("We should never see the alternate names here");
break;
}
break;
default:
NS_ERROR("Bad PannerNodeEngine Int32Parameter");
}
}
void SetThreeDPointParameter(uint32_t aIndex, const ThreeDPoint& aParam) override
{
switch (aIndex) {
case PannerNode::LISTENER_POSITION: mListenerPosition = aParam; break;
case PannerNode::LISTENER_FRONT_VECTOR: mListenerFrontVector = aParam; break;
case PannerNode::LISTENER_RIGHT_VECTOR: mListenerRightVector = aParam; break;
case PannerNode::LISTENER_VELOCITY: mListenerVelocity = aParam; break;
case PannerNode::POSITION:
mPositionX.SetValue(aParam.x);
mPositionY.SetValue(aParam.y);
mPositionZ.SetValue(aParam.z);
break;
case PannerNode::ORIENTATION:
mOrientationX.SetValue(aParam.x);
mOrientationY.SetValue(aParam.y);
mOrientationZ.SetValue(aParam.z);
break;
case PannerNode::VELOCITY: mVelocity = aParam; break;
default:
NS_ERROR("Bad PannerNodeEngine ThreeDPointParameter");
}
}
void SetDoubleParameter(uint32_t aIndex, double aParam) override
{
switch (aIndex) {
case PannerNode::LISTENER_DOPPLER_FACTOR: mListenerDopplerFactor = aParam; break;
case PannerNode::LISTENER_SPEED_OF_SOUND: mListenerSpeedOfSound = aParam; break;
case PannerNode::REF_DISTANCE: mRefDistance = aParam; break;
case PannerNode::MAX_DISTANCE: mMaxDistance = aParam; break;
case PannerNode::ROLLOFF_FACTOR: mRolloffFactor = aParam; break;
case PannerNode::CONE_INNER_ANGLE: mConeInnerAngle = aParam; break;
case PannerNode::CONE_OUTER_ANGLE: mConeOuterAngle = aParam; break;
case PannerNode::CONE_OUTER_GAIN: mConeOuterGain = aParam; break;
default:
NS_ERROR("Bad PannerNodeEngine DoubleParameter");
}
}
void ProcessBlock(AudioNodeStream* aStream,
GraphTime aFrom,
const AudioBlock& aInput,
AudioBlock* aOutput,
bool *aFinished) override
{
if (aInput.IsNull()) {
// mLeftOverData != INT_MIN means that the panning model was HRTF and a
// tail-time reference was added. Even if the model is now equalpower,
// the reference will need to be removed.
if (mLeftOverData > 0 &&
mPanningModelFunction == &PannerNodeEngine::HRTFPanningFunction) {
mLeftOverData -= WEBAUDIO_BLOCK_SIZE;
} else {
if (mLeftOverData != INT_MIN) {
mLeftOverData = INT_MIN;
aStream->ScheduleCheckForInactive();
mHRTFPanner->reset();
RefPtr<PlayingRefChangeHandler> refchanged =
new PlayingRefChangeHandler(aStream, PlayingRefChangeHandler::RELEASE);
aStream->Graph()->
DispatchToMainThreadAfterStreamStateUpdate(refchanged.forget());
}
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
} else if (mPanningModelFunction == &PannerNodeEngine::HRTFPanningFunction) {
if (mLeftOverData == INT_MIN) {
RefPtr<PlayingRefChangeHandler> refchanged =
new PlayingRefChangeHandler(aStream, PlayingRefChangeHandler::ADDREF);
aStream->Graph()->
DispatchToMainThreadAfterStreamStateUpdate(refchanged.forget());
}
mLeftOverData = mHRTFPanner->maxTailFrames();
}
StreamTime tick = mDestination->GraphTimeToStreamTime(aFrom);
(this->*mPanningModelFunction)(aInput, aOutput, tick);
}
bool IsActive() const override
{
return mLeftOverData != INT_MIN;
}
void ComputeAzimuthAndElevation(const ThreeDPoint& position, float& aAzimuth, float& aElevation);
float ComputeConeGain(const ThreeDPoint& position, const ThreeDPoint& orientation);
// Compute how much the distance contributes to the gain reduction.
double ComputeDistanceGain(const ThreeDPoint& position);
void EqualPowerPanningFunction(const AudioBlock& aInput, AudioBlock* aOutput, StreamTime tick);
void HRTFPanningFunction(const AudioBlock& aInput, AudioBlock* aOutput, StreamTime tick);
float LinearGainFunction(double aDistance);
float InverseGainFunction(double aDistance);
float ExponentialGainFunction(double aDistance);
ThreeDPoint ConvertAudioParamTimelineTo3DP(AudioParamTimeline& aX, AudioParamTimeline& aY, AudioParamTimeline& aZ, StreamTime& tick);
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override
{
size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
if (mHRTFPanner) {
amount += mHRTFPanner->sizeOfIncludingThis(aMallocSizeOf);
}
return amount;
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
AudioNodeStream* mDestination;
// This member is set on the main thread, but is not accessed on the rendering
// thread untile mPanningModelFunction has changed, and this happens strictly
// later, via a MediaStreamGraph ControlMessage.
nsAutoPtr<HRTFPanner> mHRTFPanner;
typedef void (PannerNodeEngine::*PanningModelFunction)(const AudioBlock& aInput, AudioBlock* aOutput, StreamTime tick);
PanningModelFunction mPanningModelFunction;
typedef float (PannerNodeEngine::*DistanceModelFunction)(double aDistance);
DistanceModelFunction mDistanceModelFunction;
AudioParamTimeline mPositionX;
AudioParamTimeline mPositionY;
AudioParamTimeline mPositionZ;
AudioParamTimeline mOrientationX;
AudioParamTimeline mOrientationY;
AudioParamTimeline mOrientationZ;
ThreeDPoint mVelocity;
double mRefDistance;
double mMaxDistance;
double mRolloffFactor;
double mConeInnerAngle;
double mConeOuterAngle;
double mConeOuterGain;
ThreeDPoint mListenerPosition;
ThreeDPoint mListenerFrontVector;
ThreeDPoint mListenerRightVector;
ThreeDPoint mListenerVelocity;
double mListenerDopplerFactor;
double mListenerSpeedOfSound;
int mLeftOverData;
};
PannerNode::PannerNode(AudioContext* aContext)
: AudioNode(aContext,
2,
ChannelCountMode::Clamped_max,
ChannelInterpretation::Speakers)
// Please keep these default values consistent with PannerNodeEngine::PannerNodeEngine above.
, mPanningModel(PanningModelType::Equalpower)
, mDistanceModel(DistanceModelType::Inverse)
, mPositionX(new AudioParam(this, PannerNode::POSITIONX, 0., this->NodeType()))
, mPositionY(new AudioParam(this, PannerNode::POSITIONY, 0., this->NodeType()))
, mPositionZ(new AudioParam(this, PannerNode::POSITIONZ, 0., this->NodeType()))
, mOrientationX(new AudioParam(this, PannerNode::ORIENTATIONX, 1., this->NodeType()))
, mOrientationY(new AudioParam(this, PannerNode::ORIENTATIONY, 0., this->NodeType()))
, mOrientationZ(new AudioParam(this, PannerNode::ORIENTATIONZ, 0., this->NodeType()))
, mVelocity()
, mRefDistance(1.)
, mMaxDistance(10000.)
, mRolloffFactor(1.)
, mConeInnerAngle(360.)
, mConeOuterAngle(360.)
, mConeOuterGain(0.)
{
mStream = AudioNodeStream::Create(aContext,
new PannerNodeEngine(this, aContext->Destination()),
AudioNodeStream::NO_STREAM_FLAGS,
aContext->Graph());
// We should register once we have set up our stream and engine.
Context()->Listener()->RegisterPannerNode(this);
}
PannerNode::~PannerNode()
{
if (Context()) {
Context()->UnregisterPannerNode(this);
}
}
void PannerNode::SetPanningModel(PanningModelType aPanningModel)
{
mPanningModel = aPanningModel;
if (mPanningModel == PanningModelType::HRTF) {
// We can set the engine's `mHRTFPanner` member here from the main thread,
// because the engine will not touch it from the MediaStreamGraph
// thread until the PANNING_MODEL message sent below is received.
static_cast<PannerNodeEngine*>(mStream->Engine())->CreateHRTFPanner();
}
SendInt32ParameterToStream(PANNING_MODEL, int32_t(mPanningModel));
}
size_t
PannerNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
amount += mSources.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t
PannerNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
JSObject*
PannerNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
return PannerNodeBinding::Wrap(aCx, this, aGivenProto);
}
void PannerNode::DestroyMediaStream()
{
if (Context()) {
Context()->UnregisterPannerNode(this);
}
AudioNode::DestroyMediaStream();
}
// Those three functions are described in the spec.
float
PannerNodeEngine::LinearGainFunction(double aDistance)
{
return 1 - mRolloffFactor * (std::max(std::min(aDistance, mMaxDistance), mRefDistance) - mRefDistance) / (mMaxDistance - mRefDistance);
}
float
PannerNodeEngine::InverseGainFunction(double aDistance)
{
return mRefDistance / (mRefDistance + mRolloffFactor * (std::max(aDistance, mRefDistance) - mRefDistance));
}
float
PannerNodeEngine::ExponentialGainFunction(double aDistance)
{
return pow(std::max(aDistance, mRefDistance) / mRefDistance, -mRolloffFactor);
}
void
PannerNodeEngine::HRTFPanningFunction(const AudioBlock& aInput,
AudioBlock* aOutput,
StreamTime tick)
{
// The output of this node is always stereo, no matter what the inputs are.
aOutput->AllocateChannels(2);
float azimuth, elevation;
ThreeDPoint position = ConvertAudioParamTimelineTo3DP(mPositionX, mPositionY, mPositionZ, tick);
ThreeDPoint orientation = ConvertAudioParamTimelineTo3DP(mOrientationX, mOrientationY, mOrientationZ, tick);
if (!orientation.IsZero()) {
orientation.Normalize();
}
ComputeAzimuthAndElevation(position, azimuth, elevation);
AudioBlock input = aInput;
// Gain is applied before the delay and convolution of the HRTF.
input.mVolume *= ComputeConeGain(position, orientation) * ComputeDistanceGain(position);
mHRTFPanner->pan(azimuth, elevation, &input, aOutput);
}
ThreeDPoint
PannerNodeEngine::ConvertAudioParamTimelineTo3DP(AudioParamTimeline& aX, AudioParamTimeline& aY, AudioParamTimeline& aZ, StreamTime &tick)
{
return ThreeDPoint(aX.GetValueAtTime(tick),
aY.GetValueAtTime(tick),
aZ.GetValueAtTime(tick));
}
void
PannerNodeEngine::EqualPowerPanningFunction(const AudioBlock& aInput,
AudioBlock* aOutput,
StreamTime tick)
{
float azimuth, elevation, gainL, gainR, normalizedAzimuth, distanceGain, coneGain;
int inputChannels = aInput.ChannelCount();
// Optimize the case where the position and orientation is constant for this
// processing block: we can just apply a constant gain on the left and right
// channel
if (mPositionX.HasSimpleValue() &&
mPositionY.HasSimpleValue() &&
mPositionZ.HasSimpleValue() &&
mOrientationX.HasSimpleValue() &&
mOrientationY.HasSimpleValue() &&
mOrientationZ.HasSimpleValue()) {
ThreeDPoint position = ConvertAudioParamTimelineTo3DP(mPositionX, mPositionY, mPositionZ, tick);
ThreeDPoint orientation = ConvertAudioParamTimelineTo3DP(mOrientationX, mOrientationY, mOrientationZ, tick);
if (!orientation.IsZero()) {
orientation.Normalize();
}
// If both the listener are in the same spot, and no cone gain is specified,
// this node is noop.
if (mListenerPosition == position &&
mConeInnerAngle == 360 &&
mConeOuterAngle == 360) {
*aOutput = aInput;
return;
}
// The output of this node is always stereo, no matter what the inputs are.
aOutput->AllocateChannels(2);
ComputeAzimuthAndElevation(position, azimuth, elevation);
coneGain = ComputeConeGain(position, orientation);
// The following algorithm is described in the spec.
// Clamp azimuth in the [-90, 90] range.
azimuth = min(180.f, max(-180.f, azimuth));
// Wrap around
if (azimuth < -90.f) {
azimuth = -180.f - azimuth;
} else if (azimuth > 90) {
azimuth = 180.f - azimuth;
}
// Normalize the value in the [0, 1] range.
if (inputChannels == 1) {
normalizedAzimuth = (azimuth + 90.f) / 180.f;
} else {
if (azimuth <= 0) {
normalizedAzimuth = (azimuth + 90.f) / 90.f;
} else {
normalizedAzimuth = azimuth / 90.f;
}
}
distanceGain = ComputeDistanceGain(position);
// Actually compute the left and right gain.
gainL = cos(0.5 * M_PI * normalizedAzimuth);
gainR = sin(0.5 * M_PI * normalizedAzimuth);
// Compute the output.
ApplyStereoPanning(aInput, aOutput, gainL, gainR, azimuth <= 0);
aOutput->mVolume = aInput.mVolume * distanceGain * coneGain;
} else {
float positionX[WEBAUDIO_BLOCK_SIZE];
float positionY[WEBAUDIO_BLOCK_SIZE];
float positionZ[WEBAUDIO_BLOCK_SIZE];
float orientationX[WEBAUDIO_BLOCK_SIZE];
float orientationY[WEBAUDIO_BLOCK_SIZE];
float orientationZ[WEBAUDIO_BLOCK_SIZE];
// The output of this node is always stereo, no matter what the inputs are.
aOutput->AllocateChannels(2);
if (!mPositionX.HasSimpleValue()) {
mPositionX.GetValuesAtTime(tick, positionX, WEBAUDIO_BLOCK_SIZE);
} else {
positionX[0] = mPositionX.GetValueAtTime(tick);
}
if (!mPositionY.HasSimpleValue()) {
mPositionY.GetValuesAtTime(tick, positionY, WEBAUDIO_BLOCK_SIZE);
} else {
positionY[0] = mPositionY.GetValueAtTime(tick);
}
if (!mPositionZ.HasSimpleValue()) {
mPositionZ.GetValuesAtTime(tick, positionZ, WEBAUDIO_BLOCK_SIZE);
} else {
positionZ[0] = mPositionZ.GetValueAtTime(tick);
}
if (!mOrientationX.HasSimpleValue()) {
mOrientationX.GetValuesAtTime(tick, orientationX, WEBAUDIO_BLOCK_SIZE);
} else {
orientationX[0] = mOrientationX.GetValueAtTime(tick);
}
if (!mOrientationY.HasSimpleValue()) {
mOrientationY.GetValuesAtTime(tick, orientationY, WEBAUDIO_BLOCK_SIZE);
} else {
orientationY[0] = mOrientationY.GetValueAtTime(tick);
}
if (!mOrientationZ.HasSimpleValue()) {
mOrientationZ.GetValuesAtTime(tick, orientationZ, WEBAUDIO_BLOCK_SIZE);
} else {
orientationZ[0] = mOrientationZ.GetValueAtTime(tick);
}
float computedGain[2*WEBAUDIO_BLOCK_SIZE + 4];
bool onLeft[WEBAUDIO_BLOCK_SIZE];
float* alignedComputedGain = ALIGNED16(computedGain);
ASSERT_ALIGNED16(alignedComputedGain);
for (size_t counter = 0; counter < WEBAUDIO_BLOCK_SIZE; ++counter) {
ThreeDPoint position(mPositionX.HasSimpleValue() ? positionX[0] : positionX[counter],
mPositionY.HasSimpleValue() ? positionY[0] : positionY[counter],
mPositionZ.HasSimpleValue() ? positionZ[0] : positionZ[counter]);
ThreeDPoint orientation(mOrientationX.HasSimpleValue() ? orientationX[0] : orientationX[counter],
mOrientationY.HasSimpleValue() ? orientationY[0] : orientationY[counter],
mOrientationZ.HasSimpleValue() ? orientationZ[0] : orientationZ[counter]);
if (!orientation.IsZero()) {
orientation.Normalize();
}
ComputeAzimuthAndElevation(position, azimuth, elevation);
coneGain = ComputeConeGain(position, orientation);
// The following algorithm is described in the spec.
// Clamp azimuth in the [-90, 90] range.
azimuth = min(180.f, max(-180.f, azimuth));
// Wrap around
if (azimuth < -90.f) {
azimuth = -180.f - azimuth;
} else if (azimuth > 90) {
azimuth = 180.f - azimuth;
}
// Normalize the value in the [0, 1] range.
if (inputChannels == 1) {
normalizedAzimuth = (azimuth + 90.f) / 180.f;
} else {
if (azimuth <= 0) {
normalizedAzimuth = (azimuth + 90.f) / 90.f;
} else {
normalizedAzimuth = azimuth / 90.f;
}
}
distanceGain = ComputeDistanceGain(position);
// Actually compute the left and right gain.
float gainL = cos(0.5 * M_PI * normalizedAzimuth) * aInput.mVolume * distanceGain * coneGain;
float gainR = sin(0.5 * M_PI * normalizedAzimuth) * aInput.mVolume * distanceGain * coneGain;
alignedComputedGain[counter] = gainL;
alignedComputedGain[WEBAUDIO_BLOCK_SIZE + counter] = gainR;
onLeft[counter] = azimuth <= 0;
}
// Apply the gain to the output buffer
ApplyStereoPanning(aInput, aOutput, alignedComputedGain, &alignedComputedGain[WEBAUDIO_BLOCK_SIZE], onLeft);
}
}
// This algorithm is specified in the webaudio spec.
void
PannerNodeEngine::ComputeAzimuthAndElevation(const ThreeDPoint& position, float& aAzimuth, float& aElevation)
{
ThreeDPoint sourceListener = position - mListenerPosition;
if (sourceListener.IsZero()) {
aAzimuth = 0.0;
aElevation = 0.0;
return;
}
sourceListener.Normalize();
// Project the source-listener vector on the x-z plane.
const ThreeDPoint& listenerFront = mListenerFrontVector;
const ThreeDPoint& listenerRight = mListenerRightVector;
ThreeDPoint up = listenerRight.CrossProduct(listenerFront);
double upProjection = sourceListener.DotProduct(up);
aElevation = 90 - 180 * acos(upProjection) / M_PI;
if (aElevation > 90) {
aElevation = 180 - aElevation;
} else if (aElevation < -90) {
aElevation = -180 - aElevation;
}
ThreeDPoint projectedSource = sourceListener - up * upProjection;
if (projectedSource.IsZero()) {
// source - listener direction is up or down.
aAzimuth = 0.0;
return;
}
projectedSource.Normalize();
// Actually compute the angle, and convert to degrees
double projection = projectedSource.DotProduct(listenerRight);
aAzimuth = 180 * acos(projection) / M_PI;
// Compute whether the source is in front or behind the listener.
double frontBack = projectedSource.DotProduct(listenerFront);
if (frontBack < 0) {
aAzimuth = 360 - aAzimuth;
}
// Rotate the azimuth so it is relative to the listener front vector instead
// of the right vector.
if ((aAzimuth >= 0) && (aAzimuth <= 270)) {
aAzimuth = 90 - aAzimuth;
} else {
aAzimuth = 450 - aAzimuth;
}
}
// This algorithm is described in the WebAudio spec.
float
PannerNodeEngine::ComputeConeGain(const ThreeDPoint& position,
const ThreeDPoint& orientation)
{
// Omnidirectional source
if (orientation.IsZero() || ((mConeInnerAngle == 360) && (mConeOuterAngle == 360))) {
return 1;
}
// Normalized source-listener vector
ThreeDPoint sourceToListener = mListenerPosition - position;
sourceToListener.Normalize();
// Angle between the source orientation vector and the source-listener vector
double dotProduct = sourceToListener.DotProduct(orientation);
double angle = 180 * acos(dotProduct) / M_PI;
double absAngle = fabs(angle);
// Divide by 2 here since API is entire angle (not half-angle)
double absInnerAngle = fabs(mConeInnerAngle) / 2;
double absOuterAngle = fabs(mConeOuterAngle) / 2;
double gain = 1;
if (absAngle <= absInnerAngle) {
// No attenuation
gain = 1;
} else if (absAngle >= absOuterAngle) {
// Max attenuation
gain = mConeOuterGain;
} else {
// Between inner and outer cones
// inner -> outer, x goes from 0 -> 1
double x = (absAngle - absInnerAngle) / (absOuterAngle - absInnerAngle);
gain = (1 - x) + mConeOuterGain * x;
}
return gain;
}
double
PannerNodeEngine::ComputeDistanceGain(const ThreeDPoint& position)
{
ThreeDPoint distanceVec = position - mListenerPosition;
float distance = sqrt(distanceVec.DotProduct(distanceVec));
return std::max(0.0f, (this->*mDistanceModelFunction)(distance));
}
float
PannerNode::ComputeDopplerShift()
{
double dopplerShift = 1.0; // Initialize to default value
AudioListener* listener = Context()->Listener();
if (listener->DopplerFactor() > 0) {
// Don't bother if both source and listener have no velocity.
if (!mVelocity.IsZero() || !listener->Velocity().IsZero()) {
// Calculate the source to listener vector.
ThreeDPoint sourceToListener = ConvertAudioParamTo3DP(mPositionX, mPositionY, mPositionZ) - listener->Velocity();
double sourceListenerMagnitude = sourceToListener.Magnitude();
double listenerProjection = sourceToListener.DotProduct(listener->Velocity()) / sourceListenerMagnitude;
double sourceProjection = sourceToListener.DotProduct(mVelocity) / sourceListenerMagnitude;
listenerProjection = -listenerProjection;
sourceProjection = -sourceProjection;
double scaledSpeedOfSound = listener->SpeedOfSound() / listener->DopplerFactor();
listenerProjection = min(listenerProjection, scaledSpeedOfSound);
sourceProjection = min(sourceProjection, scaledSpeedOfSound);
dopplerShift = ((listener->SpeedOfSound() - listener->DopplerFactor() * listenerProjection) / (listener->SpeedOfSound() - listener->DopplerFactor() * sourceProjection));
WebAudioUtils::FixNaN(dopplerShift); // Avoid illegal values
// Limit the pitch shifting to 4 octaves up and 3 octaves down.
dopplerShift = min(dopplerShift, 16.);
dopplerShift = max(dopplerShift, 0.125);
}
}
return dopplerShift;
}
void
PannerNode::FindConnectedSources()
{
mSources.Clear();
std::set<AudioNode*> cycleSet;
FindConnectedSources(this, mSources, cycleSet);
}
void
PannerNode::FindConnectedSources(AudioNode* aNode,
nsTArray<AudioBufferSourceNode*>& aSources,
std::set<AudioNode*>& aNodesSeen)
{
if (!aNode) {
return;
}
const nsTArray<InputNode>& inputNodes = aNode->InputNodes();
for(unsigned i = 0; i < inputNodes.Length(); i++) {
// Return if we find a node that we have seen already.
if (aNodesSeen.find(inputNodes[i].mInputNode) != aNodesSeen.end()) {
return;
}
aNodesSeen.insert(inputNodes[i].mInputNode);
// Recurse
FindConnectedSources(inputNodes[i].mInputNode, aSources, aNodesSeen);
// Check if this node is an AudioBufferSourceNode that still have a stream,
// which means it has not finished playing.
AudioBufferSourceNode* node = inputNodes[i].mInputNode->AsAudioBufferSourceNode();
if (node && node->GetStream()) {
aSources.AppendElement(node);
}
}
}
void
PannerNode::SendDopplerToSourcesIfNeeded()
{
// Don't bother sending the doppler shift if both the source and the listener
// are not moving, because the doppler shift is going to be 1.0.
if (!(Context()->Listener()->Velocity().IsZero() && mVelocity.IsZero())) {
for(uint32_t i = 0; i < mSources.Length(); i++) {
mSources[i]->SendDopplerShiftToStream(ComputeDopplerShift());
}
}
}
} // namespace dom
} // namespace mozilla
|