1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioEventTimeline.h"
#include "mozilla/ErrorResult.h"
static float LinearInterpolate(double t0, float v0, double t1, float v1, double t)
{
return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));
}
static float ExponentialInterpolate(double t0, float v0, double t1, float v1, double t)
{
return v0 * powf(v1 / v0, (t - t0) / (t1 - t0));
}
static float ExponentialApproach(double t0, double v0, float v1, double timeConstant, double t)
{
if (!mozilla::dom::WebAudioUtils::FuzzyEqual(timeConstant, 0.0)) {
return v1 + (v0 - v1) * expf(-(t - t0) / timeConstant);
} else {
return v1;
}
}
static float ExtractValueFromCurve(double startTime, float* aCurve, uint32_t aCurveLength, double duration, double t)
{
if (t >= startTime + duration) {
// After the duration, return the last curve value
return aCurve[aCurveLength - 1];
}
double ratio = std::max((t - startTime) / duration, 0.0);
if (ratio >= 1.0) {
return aCurve[aCurveLength - 1];
}
uint32_t current = uint32_t(floor((aCurveLength - 1) * ratio));
uint32_t next = current + 1;
double step = duration / double(aCurveLength - 1);
if (next < aCurveLength) {
double t0 = current * step;
double t1 = next * step;
return LinearInterpolate(t0, aCurve[current], t1, aCurve[next], t - startTime);
} else {
return aCurve[current];
}
}
namespace mozilla {
namespace dom {
// This method computes the AudioParam value at a given time based on the event timeline
template<class TimeType> void
AudioEventTimeline::GetValuesAtTimeHelper(TimeType aTime, float* aBuffer,
const size_t aSize)
{
MOZ_ASSERT(aBuffer);
MOZ_ASSERT(aSize);
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> TimeType {
return aEvent.template Time<TimeType>();
};
size_t eventIndex = 0;
const AudioTimelineEvent* previous = nullptr;
// Let's remove old events except the last one: we need it to calculate some curves.
CleanupEventsOlderThan(aTime);
for (size_t bufferIndex = 0; bufferIndex < aSize; ++bufferIndex, ++aTime) {
bool timeMatchesEventIndex = false;
const AudioTimelineEvent* next;
for (; ; ++eventIndex) {
if (eventIndex >= mEvents.Length()) {
next = nullptr;
break;
}
next = &mEvents[eventIndex];
if (aTime < TimeOf(*next)) {
break;
}
#ifdef DEBUG
MOZ_ASSERT(next->mType == AudioTimelineEvent::SetValueAtTime ||
next->mType == AudioTimelineEvent::SetTarget ||
next->mType == AudioTimelineEvent::LinearRamp ||
next->mType == AudioTimelineEvent::ExponentialRamp ||
next->mType == AudioTimelineEvent::SetValueCurve);
#endif
if (TimesEqual(aTime, TimeOf(*next))) {
mLastComputedValue = mComputedValue;
// Find the last event with the same time
while (eventIndex < mEvents.Length() - 1 &&
TimesEqual(aTime, TimeOf(mEvents[eventIndex + 1]))) {
mLastComputedValue = GetValueAtTimeOfEvent<TimeType>(&mEvents[eventIndex]);
++eventIndex;
}
timeMatchesEventIndex = true;
break;
}
previous = next;
}
if (timeMatchesEventIndex) {
// The time matches one of the events exactly.
MOZ_ASSERT(TimesEqual(aTime, TimeOf(mEvents[eventIndex])));
mComputedValue = GetValueAtTimeOfEvent<TimeType>(&mEvents[eventIndex]);
} else {
mComputedValue = GetValuesAtTimeHelperInternal(aTime, previous, next);
}
aBuffer[bufferIndex] = mComputedValue;
}
}
template void
AudioEventTimeline::GetValuesAtTimeHelper(double aTime, float* aBuffer,
const size_t aSize);
template void
AudioEventTimeline::GetValuesAtTimeHelper(int64_t aTime, float* aBuffer,
const size_t aSize);
template<class TimeType> float
AudioEventTimeline::GetValueAtTimeOfEvent(const AudioTimelineEvent* aNext)
{
TimeType time = aNext->template Time<TimeType>();
switch (aNext->mType) {
case AudioTimelineEvent::SetTarget:
// SetTarget nodes can be handled no matter what their next node is
// (if they have one).
// Follow the curve, without regard to the next event, starting at
// the last value of the last event.
return ExponentialApproach(time,
mLastComputedValue, aNext->mValue,
aNext->mTimeConstant, time);
break;
case AudioTimelineEvent::SetValueCurve:
// SetValueCurve events can be handled no matter what their event
// node is (if they have one)
return ExtractValueFromCurve(time,
aNext->mCurve,
aNext->mCurveLength,
aNext->mDuration, time);
break;
default:
// For other event types
return aNext->mValue;
}
}
template<class TimeType> float
AudioEventTimeline::GetValuesAtTimeHelperInternal(TimeType aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext)
{
// If the requested time is before all of the existing events
if (!aPrevious) {
return mValue;
}
auto TimeOf = [](const AudioTimelineEvent* aEvent) -> TimeType {
return aEvent->template Time<TimeType>();
};
// SetTarget nodes can be handled no matter what their next node is (if
// they have one)
if (aPrevious->mType == AudioTimelineEvent::SetTarget) {
return ExponentialApproach(TimeOf(aPrevious),
mLastComputedValue, aPrevious->mValue,
aPrevious->mTimeConstant, aTime);
}
// SetValueCurve events can be handled no matter what their next node is
// (if they have one)
if (aPrevious->mType == AudioTimelineEvent::SetValueCurve) {
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
}
// If the requested time is after all of the existing events
if (!aNext) {
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
// The value will be constant after the last event
return aPrevious->mValue;
case AudioTimelineEvent::SetValueCurve:
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
MOZ_ASSERT(false, "unreached");
}
// Finally, handle the case where we have both a previous and a next event
// First, handle the case where our range ends up in a ramp event
switch (aNext->mType) {
case AudioTimelineEvent::LinearRamp:
return LinearInterpolate(TimeOf(aPrevious),
aPrevious->mValue,
TimeOf(aNext),
aNext->mValue, aTime);
case AudioTimelineEvent::ExponentialRamp:
return ExponentialInterpolate(TimeOf(aPrevious),
aPrevious->mValue,
TimeOf(aNext),
aNext->mValue, aTime);
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::SetValueCurve:
break;
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
// Now handle all other cases
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
// If the next event type is neither linear or exponential ramp, the
// value is constant.
return aPrevious->mValue;
case AudioTimelineEvent::SetValueCurve:
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
MOZ_ASSERT(false, "unreached");
return 0.0f;
}
template float
AudioEventTimeline::GetValuesAtTimeHelperInternal(double aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext);
template float
AudioEventTimeline::GetValuesAtTimeHelperInternal(int64_t aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext);
const AudioTimelineEvent*
AudioEventTimeline::GetPreviousEvent(double aTime) const
{
const AudioTimelineEvent* previous = nullptr;
const AudioTimelineEvent* next = nullptr;
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> double {
return aEvent.template Time<double>();
};
bool bailOut = false;
for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) {
switch (mEvents[i].mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
case AudioTimelineEvent::SetValueCurve:
if (aTime == TimeOf(mEvents[i])) {
// Find the last event with the same time
do {
++i;
} while (i < mEvents.Length() &&
aTime == TimeOf(mEvents[i]));
return &mEvents[i - 1];
}
previous = next;
next = &mEvents[i];
if (aTime < TimeOf(mEvents[i])) {
bailOut = true;
}
break;
default:
MOZ_ASSERT(false, "unreached");
}
}
// Handle the case where the time is past all of the events
if (!bailOut) {
previous = next;
}
return previous;
}
} // namespace dom
} // namespace mozilla
|