diff options
Diffstat (limited to 'third_party/aom/test/hiprec_convolve_test_util.cc')
-rw-r--r-- | third_party/aom/test/hiprec_convolve_test_util.cc | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/third_party/aom/test/hiprec_convolve_test_util.cc b/third_party/aom/test/hiprec_convolve_test_util.cc new file mode 100644 index 000000000..2672bcec3 --- /dev/null +++ b/third_party/aom/test/hiprec_convolve_test_util.cc @@ -0,0 +1,331 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "test/hiprec_convolve_test_util.h" + +#include "av1/common/restoration.h" + +using ::testing::make_tuple; +using ::testing::tuple; + +namespace libaom_test { + +// Generate a random pair of filter kernels, using the ranges +// of possible values from the loop-restoration experiment +static void generate_kernels(ACMRandom *rnd, InterpKernel hkernel, + InterpKernel vkernel) { + hkernel[0] = hkernel[6] = + WIENER_FILT_TAP0_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); + hkernel[1] = hkernel[5] = + WIENER_FILT_TAP1_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); + hkernel[2] = hkernel[4] = + WIENER_FILT_TAP2_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); + hkernel[3] = -(hkernel[0] + hkernel[1] + hkernel[2]); + hkernel[7] = 0; + + vkernel[0] = vkernel[6] = + WIENER_FILT_TAP0_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); + vkernel[1] = vkernel[5] = + WIENER_FILT_TAP1_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); + vkernel[2] = vkernel[4] = + WIENER_FILT_TAP2_MINV + + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); + vkernel[3] = -(vkernel[0] + vkernel[1] + vkernel[2]); + vkernel[7] = 0; +} + +namespace AV1HiprecConvolve { + +::testing::internal::ParamGenerator<HiprecConvolveParam> BuildParams( + hiprec_convolve_func filter) { + const HiprecConvolveParam params[] = { + make_tuple(8, 8, 50000, filter), make_tuple(8, 4, 50000, filter), + make_tuple(64, 24, 1000, filter), make_tuple(64, 64, 1000, filter), + make_tuple(64, 56, 1000, filter), make_tuple(32, 8, 10000, filter), + make_tuple(32, 28, 10000, filter), make_tuple(32, 32, 10000, filter), + make_tuple(16, 34, 10000, filter), make_tuple(32, 34, 10000, filter), + make_tuple(64, 34, 1000, filter), make_tuple(8, 17, 10000, filter), + make_tuple(16, 17, 10000, filter), make_tuple(32, 17, 10000, filter) + }; + return ::testing::ValuesIn(params); +} + +AV1HiprecConvolveTest::~AV1HiprecConvolveTest() {} +void AV1HiprecConvolveTest::SetUp() { + rnd_.Reset(ACMRandom::DeterministicSeed()); +} + +void AV1HiprecConvolveTest::TearDown() { libaom_test::ClearSystemState(); } + +void AV1HiprecConvolveTest::RunCheckOutput(hiprec_convolve_func test_impl) { + const int w = 128, h = 128; + const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); + const int num_iters = GET_PARAM(2); + int i, j; + const ConvolveParams conv_params = get_conv_params_wiener(8); + + uint8_t *input_ = new uint8_t[h * w]; + uint8_t *input = input_; + + // The AVX2 convolve functions always write rows with widths that are + // multiples of 16. So to avoid a buffer overflow, we may need to pad + // rows to a multiple of 16. + int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; + uint8_t *output = new uint8_t[output_n]; + uint8_t *output2 = new uint8_t[output_n]; + + // Generate random filter kernels + DECLARE_ALIGNED(16, InterpKernel, hkernel); + DECLARE_ALIGNED(16, InterpKernel, vkernel); + + generate_kernels(&rnd_, hkernel, vkernel); + + for (i = 0; i < h; ++i) + for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); + + for (i = 0; i < num_iters; ++i) { + // Choose random locations within the source block + int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); + int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); + av1_wiener_convolve_add_src_c(input + offset_r * w + offset_c, w, output, + out_w, hkernel, 16, vkernel, 16, out_w, out_h, + &conv_params); + test_impl(input + offset_r * w + offset_c, w, output2, out_w, hkernel, 16, + vkernel, 16, out_w, out_h, &conv_params); + + for (j = 0; j < out_w * out_h; ++j) + ASSERT_EQ(output[j], output2[j]) + << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " + << (j / out_w) << ") on iteration " << i; + } + delete[] input_; + delete[] output; + delete[] output2; +} + +void AV1HiprecConvolveTest::RunSpeedTest(hiprec_convolve_func test_impl) { + const int w = 128, h = 128; + const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); + const int num_iters = GET_PARAM(2) / 500; + int i, j, k; + const ConvolveParams conv_params = get_conv_params_wiener(8); + + uint8_t *input_ = new uint8_t[h * w]; + uint8_t *input = input_; + + // The AVX2 convolve functions always write rows with widths that are + // multiples of 16. So to avoid a buffer overflow, we may need to pad + // rows to a multiple of 16. + int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; + uint8_t *output = new uint8_t[output_n]; + uint8_t *output2 = new uint8_t[output_n]; + + // Generate random filter kernels + DECLARE_ALIGNED(16, InterpKernel, hkernel); + DECLARE_ALIGNED(16, InterpKernel, vkernel); + + generate_kernels(&rnd_, hkernel, vkernel); + + for (i = 0; i < h; ++i) + for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); + + aom_usec_timer ref_timer; + aom_usec_timer_start(&ref_timer); + for (i = 0; i < num_iters; ++i) { + for (j = 3; j < h - out_h - 4; j++) { + for (k = 3; k < w - out_w - 4; k++) { + av1_wiener_convolve_add_src_c(input + j * w + k, w, output, out_w, + hkernel, 16, vkernel, 16, out_w, out_h, + &conv_params); + } + } + } + aom_usec_timer_mark(&ref_timer); + const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); + + aom_usec_timer tst_timer; + aom_usec_timer_start(&tst_timer); + for (i = 0; i < num_iters; ++i) { + for (j = 3; j < h - out_h - 4; j++) { + for (k = 3; k < w - out_w - 4; k++) { + test_impl(input + j * w + k, w, output2, out_w, hkernel, 16, vkernel, + 16, out_w, out_h, &conv_params); + } + } + } + aom_usec_timer_mark(&tst_timer); + const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); + + std::cout << "[ ] C time = " << ref_time / 1000 + << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; + + EXPECT_GT(ref_time, tst_time) + << "Error: AV1HiprecConvolveTest.SpeedTest, SIMD slower than C.\n" + << "C time: " << ref_time << " us\n" + << "SIMD time: " << tst_time << " us\n"; + + delete[] input_; + delete[] output; + delete[] output2; +} +} // namespace AV1HiprecConvolve + +namespace AV1HighbdHiprecConvolve { + +::testing::internal::ParamGenerator<HighbdHiprecConvolveParam> BuildParams( + highbd_hiprec_convolve_func filter) { + const HighbdHiprecConvolveParam params[] = { + make_tuple(8, 8, 50000, 8, filter), make_tuple(64, 64, 1000, 8, filter), + make_tuple(32, 8, 10000, 8, filter), make_tuple(8, 8, 50000, 10, filter), + make_tuple(64, 64, 1000, 10, filter), make_tuple(32, 8, 10000, 10, filter), + make_tuple(8, 8, 50000, 12, filter), make_tuple(64, 64, 1000, 12, filter), + make_tuple(32, 8, 10000, 12, filter), + }; + return ::testing::ValuesIn(params); +} + +AV1HighbdHiprecConvolveTest::~AV1HighbdHiprecConvolveTest() {} +void AV1HighbdHiprecConvolveTest::SetUp() { + rnd_.Reset(ACMRandom::DeterministicSeed()); +} + +void AV1HighbdHiprecConvolveTest::TearDown() { + libaom_test::ClearSystemState(); +} + +void AV1HighbdHiprecConvolveTest::RunCheckOutput( + highbd_hiprec_convolve_func test_impl) { + const int w = 128, h = 128; + const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); + const int num_iters = GET_PARAM(2); + const int bd = GET_PARAM(3); + int i, j; + const ConvolveParams conv_params = get_conv_params_wiener(bd); + + uint16_t *input = new uint16_t[h * w]; + + // The AVX2 convolve functions always write rows with widths that are + // multiples of 16. So to avoid a buffer overflow, we may need to pad + // rows to a multiple of 16. + int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; + uint16_t *output = new uint16_t[output_n]; + uint16_t *output2 = new uint16_t[output_n]; + + // Generate random filter kernels + DECLARE_ALIGNED(16, InterpKernel, hkernel); + DECLARE_ALIGNED(16, InterpKernel, vkernel); + + generate_kernels(&rnd_, hkernel, vkernel); + + for (i = 0; i < h; ++i) + for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); + + uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input); + uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output); + uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2); + + for (i = 0; i < num_iters; ++i) { + // Choose random locations within the source block + int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); + int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); + av1_highbd_wiener_convolve_add_src_c( + input_ptr + offset_r * w + offset_c, w, output_ptr, out_w, hkernel, 16, + vkernel, 16, out_w, out_h, &conv_params, bd); + test_impl(input_ptr + offset_r * w + offset_c, w, output2_ptr, out_w, + hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); + + for (j = 0; j < out_w * out_h; ++j) + ASSERT_EQ(output[j], output2[j]) + << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " + << (j / out_w) << ") on iteration " << i; + } + delete[] input; + delete[] output; + delete[] output2; +} + +void AV1HighbdHiprecConvolveTest::RunSpeedTest( + highbd_hiprec_convolve_func test_impl) { + const int w = 128, h = 128; + const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); + const int num_iters = GET_PARAM(2) / 500; + const int bd = GET_PARAM(3); + int i, j, k; + const ConvolveParams conv_params = get_conv_params_wiener(bd); + + uint16_t *input = new uint16_t[h * w]; + + // The AVX2 convolve functions always write rows with widths that are + // multiples of 16. So to avoid a buffer overflow, we may need to pad + // rows to a multiple of 16. + int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; + uint16_t *output = new uint16_t[output_n]; + uint16_t *output2 = new uint16_t[output_n]; + + // Generate random filter kernels + DECLARE_ALIGNED(16, InterpKernel, hkernel); + DECLARE_ALIGNED(16, InterpKernel, vkernel); + + generate_kernels(&rnd_, hkernel, vkernel); + + for (i = 0; i < h; ++i) + for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); + + uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input); + uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output); + uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2); + + aom_usec_timer ref_timer; + aom_usec_timer_start(&ref_timer); + for (i = 0; i < num_iters; ++i) { + for (j = 3; j < h - out_h - 4; j++) { + for (k = 3; k < w - out_w - 4; k++) { + av1_highbd_wiener_convolve_add_src_c( + input_ptr + j * w + k, w, output_ptr, out_w, hkernel, 16, vkernel, + 16, out_w, out_h, &conv_params, bd); + } + } + } + aom_usec_timer_mark(&ref_timer); + const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); + + aom_usec_timer tst_timer; + aom_usec_timer_start(&tst_timer); + for (i = 0; i < num_iters; ++i) { + for (j = 3; j < h - out_h - 4; j++) { + for (k = 3; k < w - out_w - 4; k++) { + test_impl(input_ptr + j * w + k, w, output2_ptr, out_w, hkernel, 16, + vkernel, 16, out_w, out_h, &conv_params, bd); + } + } + } + aom_usec_timer_mark(&tst_timer); + const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); + + std::cout << "[ ] C time = " << ref_time / 1000 + << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; + + EXPECT_GT(ref_time, tst_time) + << "Error: AV1HighbdHiprecConvolveTest.SpeedTest, SIMD slower than C.\n" + << "C time: " << ref_time << " us\n" + << "SIMD time: " << tst_time << " us\n"; + + delete[] input; + delete[] output; + delete[] output2; +} +} // namespace AV1HighbdHiprecConvolve +} // namespace libaom_test |