summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c')
-rw-r--r--third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c499
1 files changed, 499 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c b/third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c
new file mode 100644
index 000000000..d9fb53785
--- /dev/null
+++ b/third_party/aom/av1/common/x86/av1_convolve_scale_sse4.c
@@ -0,0 +1,499 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <smmintrin.h>
+
+#include "config/aom_dsp_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/aom_filter.h"
+#include "av1/common/convolve.h"
+
+// A specialised version of hfilter, the horizontal filter for
+// av1_convolve_2d_scale_sse4_1. This version only supports 8 tap filters.
+static void hfilter8(const uint8_t *src, int src_stride, int16_t *dst, int w,
+ int h, int subpel_x_qn, int x_step_qn,
+ const InterpFilterParams *filter_params, unsigned round) {
+ const int bd = 8;
+ const int ntaps = 8;
+
+ src -= ntaps / 2 - 1;
+
+ int32_t round_add32 = (1 << round) / 2 + (1 << (bd + FILTER_BITS - 1));
+ const __m128i round_add = _mm_set1_epi32(round_add32);
+ const __m128i round_shift = _mm_cvtsi32_si128(round);
+
+ int x_qn = subpel_x_qn;
+ for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
+ const uint8_t *const src_col = src + (x_qn >> SCALE_SUBPEL_BITS);
+ const int filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
+ assert(filter_idx < SUBPEL_SHIFTS);
+ const int16_t *filter =
+ av1_get_interp_filter_subpel_kernel(filter_params, filter_idx);
+
+ // Load the filter coefficients
+ const __m128i coefflo = _mm_loadu_si128((__m128i *)filter);
+ const __m128i zero = _mm_castps_si128(_mm_setzero_ps());
+
+ int y;
+ for (y = 0; y <= h - 4; y += 4) {
+ const uint8_t *const src0 = src_col + y * src_stride;
+ const uint8_t *const src1 = src0 + 1 * src_stride;
+ const uint8_t *const src2 = src0 + 2 * src_stride;
+ const uint8_t *const src3 = src0 + 3 * src_stride;
+
+ // Load up source data. This is 8-bit input data; each load is just
+ // loading the lower half of the register and gets 8 pixels
+ const __m128i data08 = _mm_loadl_epi64((__m128i *)src0);
+ const __m128i data18 = _mm_loadl_epi64((__m128i *)src1);
+ const __m128i data28 = _mm_loadl_epi64((__m128i *)src2);
+ const __m128i data38 = _mm_loadl_epi64((__m128i *)src3);
+
+ // Now zero-extend up to 16-bit precision by interleaving with
+ // zeros. Drop the upper half of each register (which just had zeros)
+ const __m128i data0lo = _mm_unpacklo_epi8(data08, zero);
+ const __m128i data1lo = _mm_unpacklo_epi8(data18, zero);
+ const __m128i data2lo = _mm_unpacklo_epi8(data28, zero);
+ const __m128i data3lo = _mm_unpacklo_epi8(data38, zero);
+
+ // Multiply by coefficients
+ const __m128i conv0lo = _mm_madd_epi16(data0lo, coefflo);
+ const __m128i conv1lo = _mm_madd_epi16(data1lo, coefflo);
+ const __m128i conv2lo = _mm_madd_epi16(data2lo, coefflo);
+ const __m128i conv3lo = _mm_madd_epi16(data3lo, coefflo);
+
+ // Reduce horizontally and add
+ const __m128i conv01lo = _mm_hadd_epi32(conv0lo, conv1lo);
+ const __m128i conv23lo = _mm_hadd_epi32(conv2lo, conv3lo);
+ const __m128i conv = _mm_hadd_epi32(conv01lo, conv23lo);
+
+ // Divide down by (1 << round), rounding to nearest.
+ __m128i shifted =
+ _mm_sra_epi32(_mm_add_epi32(conv, round_add), round_shift);
+
+ shifted = _mm_packus_epi32(shifted, shifted);
+ // Write transposed to the output
+ _mm_storel_epi64((__m128i *)(dst + y + x * h), shifted);
+ }
+ for (; y < h; ++y) {
+ const uint8_t *const src_row = src_col + y * src_stride;
+
+ int32_t sum = (1 << (bd + FILTER_BITS - 1));
+ for (int k = 0; k < ntaps; ++k) {
+ sum += filter[k] * src_row[k];
+ }
+
+ dst[y + x * h] = ROUND_POWER_OF_TWO(sum, round);
+ }
+ }
+}
+
+static __m128i convolve_16_8(const int16_t *src, __m128i coeff) {
+ __m128i data = _mm_loadu_si128((__m128i *)src);
+ return _mm_madd_epi16(data, coeff);
+}
+
+// A specialised version of vfilter, the vertical filter for
+// av1_convolve_2d_scale_sse4_1. This version only supports 8 tap filters.
+static void vfilter8(const int16_t *src, int src_stride, uint8_t *dst,
+ int dst_stride, int w, int h, int subpel_y_qn,
+ int y_step_qn, const InterpFilterParams *filter_params,
+ const ConvolveParams *conv_params, int bd) {
+ const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
+ const int ntaps = 8;
+
+ const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1);
+
+ const int32_t sub32 = ((1 << (offset_bits - conv_params->round_1)) +
+ (1 << (offset_bits - conv_params->round_1 - 1)));
+ const __m128i sub = _mm_set1_epi16(sub32);
+
+ CONV_BUF_TYPE *dst16 = conv_params->dst;
+ const int dst16_stride = conv_params->dst_stride;
+ const int bits =
+ FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
+ const __m128i bits_shift = _mm_cvtsi32_si128(bits);
+ const __m128i bits_const = _mm_set1_epi16(((1 << bits) >> 1));
+ const __m128i round_shift_add =
+ _mm_set1_epi32(((1 << conv_params->round_1) >> 1));
+ const __m128i res_add_const = _mm_set1_epi32(1 << offset_bits);
+
+ const int w0 = conv_params->fwd_offset;
+ const int w1 = conv_params->bck_offset;
+ const __m128i wt0 = _mm_set1_epi16(w0);
+ const __m128i wt1 = _mm_set1_epi16(w1);
+ const __m128i wt = _mm_unpacklo_epi16(wt0, wt1);
+
+ int y_qn = subpel_y_qn;
+ for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
+ const int16_t *src_y = src + (y_qn >> SCALE_SUBPEL_BITS);
+ const int filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
+ assert(filter_idx < SUBPEL_SHIFTS);
+ const int16_t *filter =
+ av1_get_interp_filter_subpel_kernel(filter_params, filter_idx);
+
+ const __m128i coeff0716 = _mm_loadu_si128((__m128i *)filter);
+ int x;
+ for (x = 0; x <= w - 4; x += 4) {
+ const int16_t *const src0 = src_y + x * src_stride;
+ const int16_t *const src1 = src0 + 1 * src_stride;
+ const int16_t *const src2 = src0 + 2 * src_stride;
+ const int16_t *const src3 = src0 + 3 * src_stride;
+
+ // Load the source data for the three rows, adding the three registers of
+ // convolved products to one as we go (conv0..conv3) to avoid the
+ // register pressure getting too high.
+ const __m128i conv0 = convolve_16_8(src0, coeff0716);
+ const __m128i conv1 = convolve_16_8(src1, coeff0716);
+ const __m128i conv2 = convolve_16_8(src2, coeff0716);
+ const __m128i conv3 = convolve_16_8(src3, coeff0716);
+
+ // Now reduce horizontally to get one lane for each result
+ const __m128i conv01 = _mm_hadd_epi32(conv0, conv1);
+ const __m128i conv23 = _mm_hadd_epi32(conv2, conv3);
+ __m128i conv = _mm_hadd_epi32(conv01, conv23);
+
+ conv = _mm_add_epi32(conv, res_add_const);
+ // Divide down by (1 << round_1), rounding to nearest and subtract sub32.
+ __m128i shifted =
+ _mm_sra_epi32(_mm_add_epi32(conv, round_shift_add), round_shift);
+
+ uint8_t *dst_x = dst + y * dst_stride + x;
+ CONV_BUF_TYPE *dst_16_x = dst16 + y * dst16_stride + x;
+ __m128i result;
+ __m128i shifted_16 = _mm_packus_epi32(shifted, shifted);
+
+ if (conv_params->is_compound) {
+ if (conv_params->do_average) {
+ const __m128i p_16 = _mm_loadl_epi64((__m128i *)dst_16_x);
+ if (conv_params->use_jnt_comp_avg) {
+ const __m128i p_16_lo = _mm_unpacklo_epi16(p_16, shifted_16);
+ const __m128i wt_res_lo = _mm_madd_epi16(p_16_lo, wt);
+ const __m128i shifted_32 =
+ _mm_srai_epi32(wt_res_lo, DIST_PRECISION_BITS);
+ shifted_16 = _mm_packus_epi32(shifted_32, shifted_32);
+ } else {
+ shifted_16 = _mm_srai_epi16(_mm_add_epi16(p_16, shifted_16), 1);
+ }
+ const __m128i subbed = _mm_sub_epi16(shifted_16, sub);
+ result = _mm_sra_epi16(_mm_add_epi16(subbed, bits_const), bits_shift);
+ const __m128i result_8 = _mm_packus_epi16(result, result);
+ *(uint32_t *)dst_x = _mm_cvtsi128_si32(result_8);
+ } else {
+ _mm_storel_epi64((__m128i *)dst_16_x, shifted_16);
+ }
+ } else {
+ const __m128i subbed = _mm_sub_epi16(shifted_16, sub);
+ result = _mm_sra_epi16(_mm_add_epi16(subbed, bits_const), bits_shift);
+ const __m128i result_8 = _mm_packus_epi16(result, result);
+ *(uint32_t *)dst_x = _mm_cvtsi128_si32(result_8);
+ }
+ }
+ for (; x < w; ++x) {
+ const int16_t *src_x = src_y + x * src_stride;
+ int32_t sum = 1 << offset_bits;
+ for (int k = 0; k < ntaps; ++k) sum += filter[k] * src_x[k];
+ CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
+
+ if (conv_params->is_compound) {
+ if (conv_params->do_average) {
+ int32_t tmp = dst16[y * dst16_stride + x];
+ if (conv_params->use_jnt_comp_avg) {
+ tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
+ tmp = tmp >> DIST_PRECISION_BITS;
+ } else {
+ tmp += res;
+ tmp = tmp >> 1;
+ }
+ /* Subtract round offset and convolve round */
+ tmp = tmp - sub32;
+ dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits));
+ } else {
+ dst16[y * dst16_stride + x] = res;
+ }
+ } else {
+ /* Subtract round offset and convolve round */
+ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) +
+ (1 << (offset_bits - conv_params->round_1 - 1)));
+ dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits));
+ }
+ }
+ }
+}
+void av1_convolve_2d_scale_sse4_1(const uint8_t *src, int src_stride,
+ uint8_t *dst8, int dst8_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y,
+ const int subpel_x_qn, const int x_step_qn,
+ const int subpel_y_qn, const int y_step_qn,
+ ConvolveParams *conv_params) {
+ // TODO(yaowu): remove unnecessary initializations
+ int16_t tmp[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE] = { 0 };
+ int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
+ filter_params_y->taps;
+
+ const int xtaps = filter_params_x->taps;
+ const int ytaps = filter_params_y->taps;
+ const int fo_vert = ytaps / 2 - 1;
+ assert((xtaps == 8) && (ytaps == 8));
+ (void)xtaps;
+
+ // horizontal filter
+ hfilter8(src - fo_vert * src_stride, src_stride, tmp, w, im_h, subpel_x_qn,
+ x_step_qn, filter_params_x, conv_params->round_0);
+
+ // vertical filter (input is transposed)
+ vfilter8(tmp, im_h, dst8, dst8_stride, w, h, subpel_y_qn, y_step_qn,
+ filter_params_y, conv_params, 8);
+}
+
+// A specialised version of hfilter, the horizontal filter for
+// av1_highbd_convolve_2d_scale_sse4_1. This version only supports 8 tap
+// filters.
+static void highbd_hfilter8(const uint16_t *src, int src_stride, int16_t *dst,
+ int w, int h, int subpel_x_qn, int x_step_qn,
+ const InterpFilterParams *filter_params,
+ unsigned round, int bd) {
+ const int ntaps = 8;
+
+ src -= ntaps / 2 - 1;
+
+ int32_t round_add32 = (1 << round) / 2 + (1 << (bd + FILTER_BITS - 1));
+ const __m128i round_add = _mm_set1_epi32(round_add32);
+ const __m128i round_shift = _mm_cvtsi32_si128(round);
+
+ int x_qn = subpel_x_qn;
+ for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
+ const uint16_t *const src_col = src + (x_qn >> SCALE_SUBPEL_BITS);
+ const int filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
+ assert(filter_idx < SUBPEL_SHIFTS);
+ const int16_t *filter =
+ av1_get_interp_filter_subpel_kernel(filter_params, filter_idx);
+
+ // Load the filter coefficients
+ const __m128i coefflo = _mm_loadu_si128((__m128i *)filter);
+
+ int y;
+ for (y = 0; y <= h - 4; y += 4) {
+ const uint16_t *const src0 = src_col + y * src_stride;
+ const uint16_t *const src1 = src0 + 1 * src_stride;
+ const uint16_t *const src2 = src0 + 2 * src_stride;
+ const uint16_t *const src3 = src0 + 3 * src_stride;
+
+ // Load up source data. This is 16-bit input data, so each load gets the 8
+ // pixels we need.
+ const __m128i data0lo = _mm_loadu_si128((__m128i *)src0);
+ const __m128i data1lo = _mm_loadu_si128((__m128i *)src1);
+ const __m128i data2lo = _mm_loadu_si128((__m128i *)src2);
+ const __m128i data3lo = _mm_loadu_si128((__m128i *)src3);
+
+ // Multiply by coefficients
+ const __m128i conv0lo = _mm_madd_epi16(data0lo, coefflo);
+ const __m128i conv1lo = _mm_madd_epi16(data1lo, coefflo);
+ const __m128i conv2lo = _mm_madd_epi16(data2lo, coefflo);
+ const __m128i conv3lo = _mm_madd_epi16(data3lo, coefflo);
+
+ // Reduce horizontally and add
+ const __m128i conv01lo = _mm_hadd_epi32(conv0lo, conv1lo);
+ const __m128i conv23lo = _mm_hadd_epi32(conv2lo, conv3lo);
+ const __m128i conv = _mm_hadd_epi32(conv01lo, conv23lo);
+
+ // Divide down by (1 << round), rounding to nearest.
+ __m128i shifted =
+ _mm_sra_epi32(_mm_add_epi32(conv, round_add), round_shift);
+
+ shifted = _mm_packus_epi32(shifted, shifted);
+ // Write transposed to the output
+ _mm_storel_epi64((__m128i *)(dst + y + x * h), shifted);
+ }
+ for (; y < h; ++y) {
+ const uint16_t *const src_row = src_col + y * src_stride;
+
+ int32_t sum = (1 << (bd + FILTER_BITS - 1));
+ for (int k = 0; k < ntaps; ++k) {
+ sum += filter[k] * src_row[k];
+ }
+
+ dst[y + x * h] = ROUND_POWER_OF_TWO(sum, round);
+ }
+ }
+}
+// A specialised version of vfilter, the vertical filter for
+// av1_highbd_convolve_2d_scale_sse4_1. This version only supports 8 tap
+// filters.
+static void highbd_vfilter8(const int16_t *src, int src_stride, uint16_t *dst,
+ int dst_stride, int w, int h, int subpel_y_qn,
+ int y_step_qn,
+ const InterpFilterParams *filter_params,
+ const ConvolveParams *conv_params, int bd) {
+ const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
+ const int ntaps = 8;
+
+ const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1);
+
+ const int32_t sub32 = ((1 << (offset_bits - conv_params->round_1)) +
+ (1 << (offset_bits - conv_params->round_1 - 1)));
+ const __m128i sub = _mm_set1_epi32(sub32);
+
+ CONV_BUF_TYPE *dst16 = conv_params->dst;
+ const int dst16_stride = conv_params->dst_stride;
+ const __m128i clip_pixel_ =
+ _mm_set1_epi16(bd == 10 ? 1023 : (bd == 12 ? 4095 : 255));
+ const int bits =
+ FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
+ const __m128i bits_shift = _mm_cvtsi32_si128(bits);
+ const __m128i bits_const = _mm_set1_epi32(((1 << bits) >> 1));
+ const __m128i round_shift_add =
+ _mm_set1_epi32(((1 << conv_params->round_1) >> 1));
+ const __m128i res_add_const = _mm_set1_epi32(1 << offset_bits);
+ const int round_bits =
+ 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
+ __m128i round_bits_shift = _mm_cvtsi32_si128(round_bits);
+ __m128i round_bits_const = _mm_set1_epi32(((1 << round_bits) >> 1));
+
+ const int w0 = conv_params->fwd_offset;
+ const int w1 = conv_params->bck_offset;
+ const __m128i wt0 = _mm_set1_epi32(w0);
+ const __m128i wt1 = _mm_set1_epi32(w1);
+
+ int y_qn = subpel_y_qn;
+ for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
+ const int16_t *src_y = src + (y_qn >> SCALE_SUBPEL_BITS);
+ const int filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
+ assert(filter_idx < SUBPEL_SHIFTS);
+ const int16_t *filter =
+ av1_get_interp_filter_subpel_kernel(filter_params, filter_idx);
+
+ const __m128i coeff0716 = _mm_loadu_si128((__m128i *)filter);
+ int x;
+ for (x = 0; x <= w - 4; x += 4) {
+ const int16_t *const src0 = src_y + x * src_stride;
+ const int16_t *const src1 = src0 + 1 * src_stride;
+ const int16_t *const src2 = src0 + 2 * src_stride;
+ const int16_t *const src3 = src0 + 3 * src_stride;
+
+ // Load the source data for the three rows, adding the three registers of
+ // convolved products to one as we go (conv0..conv3) to avoid the
+ // register pressure getting too high.
+ const __m128i conv0 = convolve_16_8(src0, coeff0716);
+ const __m128i conv1 = convolve_16_8(src1, coeff0716);
+ const __m128i conv2 = convolve_16_8(src2, coeff0716);
+ const __m128i conv3 = convolve_16_8(src3, coeff0716);
+
+ // Now reduce horizontally to get one lane for each result
+ const __m128i conv01 = _mm_hadd_epi32(conv0, conv1);
+ const __m128i conv23 = _mm_hadd_epi32(conv2, conv3);
+ __m128i conv = _mm_hadd_epi32(conv01, conv23);
+ conv = _mm_add_epi32(conv, res_add_const);
+
+ // Divide down by (1 << round_1), rounding to nearest and subtract sub32.
+ __m128i shifted =
+ _mm_sra_epi32(_mm_add_epi32(conv, round_shift_add), round_shift);
+
+ uint16_t *dst_x = dst + y * dst_stride + x;
+ CONV_BUF_TYPE *dst_16_x = dst16 + y * dst16_stride + x;
+
+ __m128i result;
+ if (conv_params->is_compound) {
+ if (conv_params->do_average) {
+ __m128i p_32 =
+ _mm_cvtepu16_epi32(_mm_loadl_epi64((__m128i *)dst_16_x));
+
+ if (conv_params->use_jnt_comp_avg) {
+ shifted = _mm_add_epi32(_mm_mullo_epi32(p_32, wt0),
+ _mm_mullo_epi32(shifted, wt1));
+ shifted = _mm_srai_epi32(shifted, DIST_PRECISION_BITS);
+ } else {
+ shifted = _mm_srai_epi32(_mm_add_epi32(p_32, shifted), 1);
+ }
+ __m128i res32 = _mm_sub_epi32(shifted, sub);
+ res32 = _mm_sra_epi32(_mm_add_epi32(res32, round_bits_const),
+ round_bits_shift);
+
+ __m128i res16 = _mm_packus_epi32(res32, res32);
+ res16 = _mm_min_epi16(res16, clip_pixel_);
+ _mm_storel_epi64((__m128i *)dst_x, res16);
+ } else {
+ __m128i shifted_16 = _mm_packus_epi32(shifted, shifted);
+ _mm_storel_epi64((__m128i *)dst_16_x, shifted_16);
+ }
+ } else {
+ const __m128i subbed = _mm_sub_epi32(shifted, sub);
+ result = _mm_sra_epi16(_mm_add_epi32(subbed, bits_const), bits_shift);
+ result = _mm_packus_epi32(result, result);
+ result = _mm_min_epi16(result, clip_pixel_);
+ _mm_storel_epi64((__m128i *)dst_x, result);
+ }
+ }
+
+ for (; x < w; ++x) {
+ const int16_t *src_x = src_y + x * src_stride;
+ int32_t sum = 1 << offset_bits;
+ for (int k = 0; k < ntaps; ++k) sum += filter[k] * src_x[k];
+ CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
+ if (conv_params->is_compound) {
+ if (conv_params->do_average) {
+ int32_t tmp = dst16[y * dst16_stride + x];
+ if (conv_params->use_jnt_comp_avg) {
+ tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
+ tmp = tmp >> DIST_PRECISION_BITS;
+ } else {
+ tmp += res;
+ tmp = tmp >> 1;
+ }
+ /* Subtract round offset and convolve round */
+ tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) +
+ (1 << (offset_bits - conv_params->round_1 - 1)));
+ dst[y * dst_stride + x] =
+ clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
+ } else {
+ dst16[y * dst16_stride + x] = res;
+ }
+ } else {
+ /* Subtract round offset and convolve round */
+ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) +
+ (1 << (offset_bits - conv_params->round_1 - 1)));
+ dst[y * dst_stride + x] =
+ clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
+ }
+ }
+ }
+}
+
+void av1_highbd_convolve_2d_scale_sse4_1(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y, const int subpel_x_qn,
+ const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
+ ConvolveParams *conv_params, int bd) {
+ // TODO(yaowu): Move this out of stack
+ DECLARE_ALIGNED(16, int16_t,
+ tmp[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+ int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
+ filter_params_y->taps;
+ const int xtaps = filter_params_x->taps;
+ const int ytaps = filter_params_y->taps;
+ const int fo_vert = ytaps / 2 - 1;
+
+ memset(tmp, 0, sizeof(tmp));
+ assert((xtaps == 8) && (ytaps == 8));
+ (void)xtaps;
+
+ // horizontal filter
+ highbd_hfilter8(src - fo_vert * src_stride, src_stride, tmp, w, im_h,
+ subpel_x_qn, x_step_qn, filter_params_x, conv_params->round_0,
+ bd);
+
+ // vertical filter (input is transposed)
+ highbd_vfilter8(tmp, im_h, dst, dst_stride, w, h, subpel_y_qn, y_step_qn,
+ filter_params_y, conv_params, bd);
+}