summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/cdef_block.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/cdef_block.c')
-rw-r--r--third_party/aom/av1/common/cdef_block.c257
1 files changed, 257 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/cdef_block.c b/third_party/aom/av1/common/cdef_block.c
new file mode 100644
index 000000000..df1de89be
--- /dev/null
+++ b/third_party/aom/av1/common/cdef_block.c
@@ -0,0 +1,257 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <math.h>
+#include <stdlib.h>
+
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "av1/common/cdef.h"
+
+/* Generated from gen_filter_tables.c. */
+DECLARE_ALIGNED(16, const int, cdef_directions[8][2]) = {
+ { -1 * CDEF_BSTRIDE + 1, -2 * CDEF_BSTRIDE + 2 },
+ { 0 * CDEF_BSTRIDE + 1, -1 * CDEF_BSTRIDE + 2 },
+ { 0 * CDEF_BSTRIDE + 1, 0 * CDEF_BSTRIDE + 2 },
+ { 0 * CDEF_BSTRIDE + 1, 1 * CDEF_BSTRIDE + 2 },
+ { 1 * CDEF_BSTRIDE + 1, 2 * CDEF_BSTRIDE + 2 },
+ { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 1 },
+ { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 0 },
+ { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE - 1 }
+};
+
+/* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
+ The search minimizes the weighted variance along all the lines in a
+ particular direction, i.e. the squared error between the input and a
+ "predicted" block where each pixel is replaced by the average along a line
+ in a particular direction. Since each direction have the same sum(x^2) term,
+ that term is never computed. See Section 2, step 2, of:
+ http://jmvalin.ca/notes/intra_paint.pdf */
+int cdef_find_dir_c(const uint16_t *img, int stride, int32_t *var,
+ int coeff_shift) {
+ int i;
+ int32_t cost[8] = { 0 };
+ int partial[8][15] = { { 0 } };
+ int32_t best_cost = 0;
+ int best_dir = 0;
+ /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
+ The output is then 840 times larger, but we don't care for finding
+ the max. */
+ static const int div_table[] = { 0, 840, 420, 280, 210, 168, 140, 120, 105 };
+ for (i = 0; i < 8; i++) {
+ int j;
+ for (j = 0; j < 8; j++) {
+ int x;
+ /* We subtract 128 here to reduce the maximum range of the squared
+ partial sums. */
+ x = (img[i * stride + j] >> coeff_shift) - 128;
+ partial[0][i + j] += x;
+ partial[1][i + j / 2] += x;
+ partial[2][i] += x;
+ partial[3][3 + i - j / 2] += x;
+ partial[4][7 + i - j] += x;
+ partial[5][3 - i / 2 + j] += x;
+ partial[6][j] += x;
+ partial[7][i / 2 + j] += x;
+ }
+ }
+ for (i = 0; i < 8; i++) {
+ cost[2] += partial[2][i] * partial[2][i];
+ cost[6] += partial[6][i] * partial[6][i];
+ }
+ cost[2] *= div_table[8];
+ cost[6] *= div_table[8];
+ for (i = 0; i < 7; i++) {
+ cost[0] += (partial[0][i] * partial[0][i] +
+ partial[0][14 - i] * partial[0][14 - i]) *
+ div_table[i + 1];
+ cost[4] += (partial[4][i] * partial[4][i] +
+ partial[4][14 - i] * partial[4][14 - i]) *
+ div_table[i + 1];
+ }
+ cost[0] += partial[0][7] * partial[0][7] * div_table[8];
+ cost[4] += partial[4][7] * partial[4][7] * div_table[8];
+ for (i = 1; i < 8; i += 2) {
+ int j;
+ for (j = 0; j < 4 + 1; j++) {
+ cost[i] += partial[i][3 + j] * partial[i][3 + j];
+ }
+ cost[i] *= div_table[8];
+ for (j = 0; j < 4 - 1; j++) {
+ cost[i] += (partial[i][j] * partial[i][j] +
+ partial[i][10 - j] * partial[i][10 - j]) *
+ div_table[2 * j + 2];
+ }
+ }
+ for (i = 0; i < 8; i++) {
+ if (cost[i] > best_cost) {
+ best_cost = cost[i];
+ best_dir = i;
+ }
+ }
+ /* Difference between the optimal variance and the variance along the
+ orthogonal direction. Again, the sum(x^2) terms cancel out. */
+ *var = best_cost - cost[(best_dir + 4) & 7];
+ /* We'd normally divide by 840, but dividing by 1024 is close enough
+ for what we're going to do with this. */
+ *var >>= 10;
+ return best_dir;
+}
+
+const int cdef_pri_taps[2][2] = { { 4, 2 }, { 3, 3 } };
+const int cdef_sec_taps[2][2] = { { 2, 1 }, { 2, 1 } };
+
+/* Smooth in the direction detected. */
+void cdef_filter_block_c(uint8_t *dst8, uint16_t *dst16, int dstride,
+ const uint16_t *in, int pri_strength, int sec_strength,
+ int dir, int pri_damping, int sec_damping, int bsize,
+ AOM_UNUSED int max_unused, int coeff_shift) {
+ int i, j, k;
+ const int s = CDEF_BSTRIDE;
+ const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
+ const int *sec_taps = cdef_sec_taps[(pri_strength >> coeff_shift) & 1];
+ for (i = 0; i < 4 << (bsize == BLOCK_8X8 || bsize == BLOCK_4X8); i++) {
+ for (j = 0; j < 4 << (bsize == BLOCK_8X8 || bsize == BLOCK_8X4); j++) {
+ int16_t sum = 0;
+ int16_t y;
+ int16_t x = in[i * s + j];
+ int max = x;
+ int min = x;
+ for (k = 0; k < 2; k++) {
+ int16_t p0 = in[i * s + j + cdef_directions[dir][k]];
+ int16_t p1 = in[i * s + j - cdef_directions[dir][k]];
+ sum += pri_taps[k] * constrain(p0 - x, pri_strength, pri_damping);
+ sum += pri_taps[k] * constrain(p1 - x, pri_strength, pri_damping);
+ if (p0 != CDEF_VERY_LARGE) max = AOMMAX(p0, max);
+ if (p1 != CDEF_VERY_LARGE) max = AOMMAX(p1, max);
+ min = AOMMIN(p0, min);
+ min = AOMMIN(p1, min);
+ int16_t s0 = in[i * s + j + cdef_directions[(dir + 2) & 7][k]];
+ int16_t s1 = in[i * s + j - cdef_directions[(dir + 2) & 7][k]];
+ int16_t s2 = in[i * s + j + cdef_directions[(dir + 6) & 7][k]];
+ int16_t s3 = in[i * s + j - cdef_directions[(dir + 6) & 7][k]];
+ if (s0 != CDEF_VERY_LARGE) max = AOMMAX(s0, max);
+ if (s1 != CDEF_VERY_LARGE) max = AOMMAX(s1, max);
+ if (s2 != CDEF_VERY_LARGE) max = AOMMAX(s2, max);
+ if (s3 != CDEF_VERY_LARGE) max = AOMMAX(s3, max);
+ min = AOMMIN(s0, min);
+ min = AOMMIN(s1, min);
+ min = AOMMIN(s2, min);
+ min = AOMMIN(s3, min);
+ sum += sec_taps[k] * constrain(s0 - x, sec_strength, sec_damping);
+ sum += sec_taps[k] * constrain(s1 - x, sec_strength, sec_damping);
+ sum += sec_taps[k] * constrain(s2 - x, sec_strength, sec_damping);
+ sum += sec_taps[k] * constrain(s3 - x, sec_strength, sec_damping);
+ }
+ y = clamp((int16_t)x + ((8 + sum - (sum < 0)) >> 4), min, max);
+ if (dst8)
+ dst8[i * dstride + j] = (uint8_t)y;
+ else
+ dst16[i * dstride + j] = (uint16_t)y;
+ }
+ }
+}
+
+/* Compute the primary filter strength for an 8x8 block based on the
+ directional variance difference. A high variance difference means
+ that we have a highly directional pattern (e.g. a high contrast
+ edge), so we can apply more deringing. A low variance means that we
+ either have a low contrast edge, or a non-directional texture, so
+ we want to be careful not to blur. */
+static INLINE int adjust_strength(int strength, int32_t var) {
+ const int i = var >> 6 ? AOMMIN(get_msb(var >> 6), 12) : 0;
+ /* We use the variance of 8x8 blocks to adjust the strength. */
+ return var ? (strength * (4 + i) + 8) >> 4 : 0;
+}
+
+void cdef_filter_fb(uint8_t *dst8, uint16_t *dst16, int dstride, uint16_t *in,
+ int xdec, int ydec, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS],
+ int *dirinit, int var[CDEF_NBLOCKS][CDEF_NBLOCKS], int pli,
+ cdef_list *dlist, int cdef_count, int level,
+ int sec_strength, int pri_damping, int sec_damping,
+ int coeff_shift) {
+ int bi;
+ int bx;
+ int by;
+ int bsize, bsizex, bsizey;
+
+ int pri_strength = level << coeff_shift;
+ sec_strength <<= coeff_shift;
+ sec_damping += coeff_shift - (pli != AOM_PLANE_Y);
+ pri_damping += coeff_shift - (pli != AOM_PLANE_Y);
+ bsize =
+ ydec ? (xdec ? BLOCK_4X4 : BLOCK_8X4) : (xdec ? BLOCK_4X8 : BLOCK_8X8);
+ bsizex = 3 - xdec;
+ bsizey = 3 - ydec;
+ if (dirinit && pri_strength == 0 && sec_strength == 0) {
+ // If we're here, both primary and secondary strengths are 0, and
+ // we still haven't written anything to y[] yet, so we just copy
+ // the input to y[]. This is necessary only for av1_cdef_search()
+ // and only av1_cdef_search() sets dirinit.
+ for (bi = 0; bi < cdef_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ int iy, ix;
+ // TODO(stemidts/jmvalin): SIMD optimisations
+ for (iy = 0; iy < 1 << bsizey; iy++)
+ for (ix = 0; ix < 1 << bsizex; ix++)
+ dst16[(bi << (bsizex + bsizey)) + (iy << bsizex) + ix] =
+ in[((by << bsizey) + iy) * CDEF_BSTRIDE + (bx << bsizex) + ix];
+ }
+ return;
+ }
+
+ if (pli == 0) {
+ if (!dirinit || !*dirinit) {
+ for (bi = 0; bi < cdef_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ dir[by][bx] = cdef_find_dir(&in[8 * by * CDEF_BSTRIDE + 8 * bx],
+ CDEF_BSTRIDE, &var[by][bx], coeff_shift);
+ }
+ if (dirinit) *dirinit = 1;
+ }
+ }
+ if (pli == 1 && xdec != ydec) {
+ for (bi = 0; bi < cdef_count; bi++) {
+ static const int conv422[8] = { 7, 0, 2, 4, 5, 6, 6, 6 };
+ static const int conv440[8] = { 1, 2, 2, 2, 3, 4, 6, 0 };
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ dir[by][bx] = (xdec ? conv422 : conv440)[dir[by][bx]];
+ }
+ }
+
+ for (bi = 0; bi < cdef_count; bi++) {
+ int t = dlist[bi].skip ? 0 : pri_strength;
+ int s = dlist[bi].skip ? 0 : sec_strength;
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ if (dst8)
+ cdef_filter_block(&dst8[(by << bsizey) * dstride + (bx << bsizex)], NULL,
+ dstride,
+ &in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
+ (pli ? t : adjust_strength(t, var[by][bx])), s,
+ t ? dir[by][bx] : 0, pri_damping, sec_damping, bsize,
+ (256 << coeff_shift) - 1, coeff_shift);
+ else
+ cdef_filter_block(
+ NULL,
+ &dst16[dirinit ? bi << (bsizex + bsizey)
+ : (by << bsizey) * dstride + (bx << bsizex)],
+ dirinit ? 1 << bsizex : dstride,
+ &in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
+ (pli ? t : adjust_strength(t, var[by][bx])), s, t ? dir[by][bx] : 0,
+ pri_damping, sec_damping, bsize, (256 << coeff_shift) - 1,
+ coeff_shift);
+ }
+}