summaryrefslogtreecommitdiffstats
path: root/gfx/layers/d3d11/CompositorD3D11.hlsl
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/layers/d3d11/CompositorD3D11.hlsl')
-rw-r--r--gfx/layers/d3d11/CompositorD3D11.hlsl421
1 files changed, 421 insertions, 0 deletions
diff --git a/gfx/layers/d3d11/CompositorD3D11.hlsl b/gfx/layers/d3d11/CompositorD3D11.hlsl
new file mode 100644
index 000000000..21175704b
--- /dev/null
+++ b/gfx/layers/d3d11/CompositorD3D11.hlsl
@@ -0,0 +1,421 @@
+/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "BlendingHelpers.hlslh"
+#include "BlendShaderConstants.h"
+
+typedef float4 rect;
+
+float4x4 mLayerTransform : register(vs, c0);
+float4x4 mProjection : register(vs, c4);
+float4 vRenderTargetOffset : register(vs, c8);
+rect vTextureCoords : register(vs, c9);
+rect vLayerQuad : register(vs, c10);
+rect vMaskQuad : register(vs, c11);
+float4x4 mBackdropTransform : register(vs, c12);
+
+float4 fLayerColor : register(ps, c0);
+float fLayerOpacity : register(ps, c1);
+
+// x = layer type
+// y = mask type
+// z = blend op
+// w = is premultiplied
+uint4 iBlendConfig : register(ps, c2);
+
+row_major float3x3 mYuvColorMatrix : register(ps, c3);
+
+sampler sSampler : register(ps, s0);
+
+// The mix-blend mega shader uses all variables, so we have to make sure they
+// are assigned fixed slots.
+Texture2D tRGB : register(ps, t0);
+Texture2D tY : register(ps, t1);
+Texture2D tCb : register(ps, t2);
+Texture2D tCr : register(ps, t3);
+Texture2D tRGBWhite : register(ps, t4);
+Texture2D tMask : register(ps, t5);
+Texture2D tBackdrop : register(ps, t6);
+
+struct VS_INPUT {
+ float2 vPosition : POSITION;
+};
+
+struct VS_OUTPUT {
+ float4 vPosition : SV_Position;
+ float2 vTexCoords : TEXCOORD0;
+};
+
+struct VS_MASK_OUTPUT {
+ float4 vPosition : SV_Position;
+ float2 vTexCoords : TEXCOORD0;
+ float3 vMaskCoords : TEXCOORD1;
+};
+
+// Combined struct for the mix-blend compatible vertex shaders.
+struct VS_BLEND_OUTPUT {
+ float4 vPosition : SV_Position;
+ float2 vTexCoords : TEXCOORD0;
+ float3 vMaskCoords : TEXCOORD1;
+ float2 vBackdropCoords : TEXCOORD2;
+};
+
+struct PS_OUTPUT {
+ float4 vSrc;
+ float4 vAlpha;
+};
+
+float2 TexCoords(const float2 aPosition)
+{
+ float2 result;
+ const float2 size = vTextureCoords.zw;
+ result.x = vTextureCoords.x + aPosition.x * size.x;
+ result.y = vTextureCoords.y + aPosition.y * size.y;
+
+ return result;
+}
+
+SamplerState LayerTextureSamplerLinear
+{
+ Filter = MIN_MAG_MIP_LINEAR;
+ AddressU = Clamp;
+ AddressV = Clamp;
+};
+
+float4 TransformedPosition(float2 aInPosition)
+{
+ // the current vertex's position on the quad
+ // [x,y,0,1] is mandated by the CSS Transforms spec as the point value to transform
+ float4 position = float4(0, 0, 0, 1);
+
+ // We use 4 component floats to uniquely describe a rectangle, by the structure
+ // of x, y, width, height. This allows us to easily generate the 4 corners
+ // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
+ // stream source for our LayerQuad vertex shader. We do this by doing:
+ // Xout = x + Xin * width
+ // Yout = y + Yin * height
+ float2 size = vLayerQuad.zw;
+ position.x = vLayerQuad.x + aInPosition.x * size.x;
+ position.y = vLayerQuad.y + aInPosition.y * size.y;
+
+ position = mul(mLayerTransform, position);
+
+ return position;
+}
+
+float4 VertexPosition(float4 aTransformedPosition)
+{
+ float4 result;
+ result.w = aTransformedPosition.w;
+ result.xyz = aTransformedPosition.xyz / aTransformedPosition.w;
+ result -= vRenderTargetOffset;
+ result.xyz *= result.w;
+
+ result = mul(mProjection, result);
+
+ return result;
+}
+
+float2 BackdropPosition(float4 aPosition)
+{
+ // Move the position from clip space (-1,1) into 0..1 space.
+ float2 pos;
+ pos.x = (aPosition.x + 1.0) / 2.0;
+ pos.y = 1.0 - (aPosition.y + 1.0) / 2.0;
+
+ return mul(mBackdropTransform, float4(pos.xy, 0, 1.0)).xy;
+}
+
+VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex)
+{
+ VS_OUTPUT outp;
+ float4 position = TransformedPosition(aVertex.vPosition);
+
+ outp.vPosition = VertexPosition(position);
+ outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
+
+ return outp;
+}
+
+VS_MASK_OUTPUT LayerQuadMaskVS(const VS_INPUT aVertex)
+{
+ VS_MASK_OUTPUT outp;
+ float4 position = TransformedPosition(aVertex.vPosition);
+
+ outp.vPosition = VertexPosition(position);
+
+ // calculate the position on the mask texture
+ outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
+ outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
+ // We use the w coord to do non-perspective correct interpolation:
+ // the quad might be transformed in 3D, in which case it will have some
+ // perspective. The graphics card will do perspective-correct interpolation
+ // of the texture, but our mask is already transformed and so we require
+ // linear interpolation. Therefore, we must correct the interpolation
+ // ourselves, we do this by multiplying all coords by w here, and dividing by
+ // w in the pixel shader (post-interpolation), we pass w in outp.vMaskCoords.z.
+ // See http://en.wikipedia.org/wiki/Texture_mapping#Perspective_correctness
+ outp.vMaskCoords.z = 1;
+ outp.vMaskCoords *= position.w;
+
+ outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
+
+ return outp;
+}
+
+float4 RGBAShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
+{
+ float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
+ float mask = tMask.Sample(sSampler, maskCoords).r;
+ return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask;
+}
+
+float4 RGBShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
+{
+ float4 result;
+ result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
+ result.a = fLayerOpacity;
+
+ float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
+ float mask = tMask.Sample(sSampler, maskCoords).r;
+ return result * mask;
+}
+
+/* From Rec601:
+[R] [1.1643835616438356, 0.0, 1.5960267857142858] [ Y - 16]
+[G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708] x [Cb - 128]
+[B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [Cr - 128]
+
+For [0,1] instead of [0,255], and to 5 places:
+[R] [1.16438, 0.00000, 1.59603] [ Y - 0.06275]
+[G] = [1.16438, -0.39176, -0.81297] x [Cb - 0.50196]
+[B] [1.16438, 2.01723, 0.00000] [Cr - 0.50196]
+
+From Rec709:
+[R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [ Y - 16]
+[G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444] x [Cb - 128]
+[B] [1.1643835616438356, 2.1124017857142854, 0.0] [Cr - 128]
+
+For [0,1] instead of [0,255], and to 5 places:
+[R] [1.16438, 0.00000, 1.79274] [ Y - 0.06275]
+[G] = [1.16438, -0.21325, -0.53291] x [Cb - 0.50196]
+[B] [1.16438, 2.11240, 0.00000] [Cr - 0.50196]
+*/
+float4 CalculateYCbCrColor(const float2 aTexCoords)
+{
+ float3 yuv;
+ float4 color;
+
+ yuv.x = tY.Sample(sSampler, aTexCoords).r - 0.06275;
+ yuv.y = tCb.Sample(sSampler, aTexCoords).r - 0.50196;
+ yuv.z = tCr.Sample(sSampler, aTexCoords).r - 0.50196;
+
+ color.rgb = mul(mYuvColorMatrix, yuv);
+ color.a = 1.0f;
+
+ return color;
+}
+
+float4 YCbCrShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
+{
+ float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
+ float mask = tMask.Sample(sSampler, maskCoords).r;
+
+ return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity * mask;
+}
+
+PS_OUTPUT ComponentAlphaShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
+{
+ PS_OUTPUT result;
+
+ result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
+ result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
+ result.vSrc.a = result.vAlpha.g;
+
+ float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
+ float mask = tMask.Sample(sSampler, maskCoords).r;
+ result.vSrc *= fLayerOpacity * mask;
+ result.vAlpha *= fLayerOpacity * mask;
+
+ return result;
+}
+
+float4 SolidColorShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
+{
+ float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
+ float mask = tMask.Sample(sSampler, maskCoords).r;
+ return fLayerColor * mask;
+}
+
+/*
+ * Un-masked versions
+ *************************************************************
+ */
+float4 RGBAShader(const VS_OUTPUT aVertex) : SV_Target
+{
+ return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
+}
+
+float4 RGBShader(const VS_OUTPUT aVertex) : SV_Target
+{
+ float4 result;
+ result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
+ result.a = fLayerOpacity;
+ return result;
+}
+
+float4 YCbCrShader(const VS_OUTPUT aVertex) : SV_Target
+{
+ return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity;
+}
+
+PS_OUTPUT ComponentAlphaShader(const VS_OUTPUT aVertex) : SV_Target
+{
+ PS_OUTPUT result;
+
+ result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
+ result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
+ result.vSrc.a = result.vAlpha.g;
+ result.vSrc *= fLayerOpacity;
+ result.vAlpha *= fLayerOpacity;
+ return result;
+}
+
+float4 SolidColorShader(const VS_OUTPUT aVertex) : SV_Target
+{
+ return fLayerColor;
+}
+
+// Mix-blend compatible vertex shaders.
+VS_BLEND_OUTPUT LayerQuadBlendVS(const VS_INPUT aVertex)
+{
+ VS_OUTPUT v = LayerQuadVS(aVertex);
+
+ VS_BLEND_OUTPUT o;
+ o.vPosition = v.vPosition;
+ o.vTexCoords = v.vTexCoords;
+ o.vMaskCoords = float3(0, 0, 0);
+ o.vBackdropCoords = BackdropPosition(v.vPosition);
+ return o;
+}
+
+VS_BLEND_OUTPUT LayerQuadBlendMaskVS(const VS_INPUT aVertex)
+{
+ VS_MASK_OUTPUT v = LayerQuadMaskVS(aVertex);
+
+ VS_BLEND_OUTPUT o;
+ o.vPosition = v.vPosition;
+ o.vTexCoords = v.vTexCoords;
+ o.vMaskCoords = v.vMaskCoords;
+ o.vBackdropCoords = BackdropPosition(v.vPosition);
+ return o;
+}
+
+// The layer type and mask type are specified as constants. We use these to
+// call the correct pixel shader to determine the source color for blending.
+// Unfortunately this also requires some boilerplate to convert VS_BLEND_OUTPUT
+// to a compatible pixel shader input.
+float4 ComputeBlendSourceColor(const VS_BLEND_OUTPUT aVertex)
+{
+ if (iBlendConfig.y == PS_MASK_NONE) {
+ VS_OUTPUT tmp;
+ tmp.vPosition = aVertex.vPosition;
+ tmp.vTexCoords = aVertex.vTexCoords;
+ if (iBlendConfig.x == PS_LAYER_RGB) {
+ return RGBShader(tmp);
+ } else if (iBlendConfig.x == PS_LAYER_RGBA) {
+ return RGBAShader(tmp);
+ } else if (iBlendConfig.x == PS_LAYER_YCBCR) {
+ return YCbCrShader(tmp);
+ }
+ return SolidColorShader(tmp);
+ } else if (iBlendConfig.y == PS_MASK) {
+ VS_MASK_OUTPUT tmp;
+ tmp.vPosition = aVertex.vPosition;
+ tmp.vTexCoords = aVertex.vTexCoords;
+ tmp.vMaskCoords = aVertex.vMaskCoords;
+
+ if (iBlendConfig.x == PS_LAYER_RGB) {
+ return RGBShaderMask(tmp);
+ } else if (iBlendConfig.x == PS_LAYER_RGBA) {
+ return RGBAShaderMask(tmp);
+ } else if (iBlendConfig.x == PS_LAYER_YCBCR) {
+ return YCbCrShaderMask(tmp);
+ }
+ return SolidColorShaderMask(tmp);
+ }
+
+ return float4(0.0, 0.0, 0.0, 1.0);
+}
+
+float3 ChooseBlendFunc(float3 dest, float3 src)
+{
+ [flatten] switch (iBlendConfig.z) {
+ case PS_BLEND_MULTIPLY:
+ return BlendMultiply(dest, src);
+ case PS_BLEND_SCREEN:
+ return BlendScreen(dest, src);
+ case PS_BLEND_OVERLAY:
+ return BlendOverlay(dest, src);
+ case PS_BLEND_DARKEN:
+ return BlendDarken(dest, src);
+ case PS_BLEND_LIGHTEN:
+ return BlendLighten(dest, src);
+ case PS_BLEND_COLOR_DODGE:
+ return BlendColorDodge(dest, src);
+ case PS_BLEND_COLOR_BURN:
+ return BlendColorBurn(dest, src);
+ case PS_BLEND_HARD_LIGHT:
+ return BlendHardLight(dest, src);
+ case PS_BLEND_SOFT_LIGHT:
+ return BlendSoftLight(dest, src);
+ case PS_BLEND_DIFFERENCE:
+ return BlendDifference(dest, src);
+ case PS_BLEND_EXCLUSION:
+ return BlendExclusion(dest, src);
+ case PS_BLEND_HUE:
+ return BlendHue(dest, src);
+ case PS_BLEND_SATURATION:
+ return BlendSaturation(dest, src);
+ case PS_BLEND_COLOR:
+ return BlendColor(dest, src);
+ case PS_BLEND_LUMINOSITY:
+ return BlendLuminosity(dest, src);
+ default:
+ return float3(0, 0, 0);
+ }
+}
+
+float4 BlendShader(const VS_BLEND_OUTPUT aVertex) : SV_Target
+{
+ float4 backdrop = tBackdrop.Sample(sSampler, aVertex.vBackdropCoords.xy);
+ float4 source = ComputeBlendSourceColor(aVertex);
+
+ // Shortcut when the backdrop or source alpha is 0, otherwise we may leak
+ // infinity into the blend function and return incorrect results.
+ if (backdrop.a == 0.0) {
+ return source;
+ }
+ if (source.a == 0.0) {
+ return float4(0, 0, 0, 0);
+ }
+
+ // The spec assumes there is no premultiplied alpha. The backdrop is always
+ // premultiplied, so undo the premultiply. If the source is premultiplied we
+ // must fix that as well.
+ backdrop.rgb /= backdrop.a;
+ if (iBlendConfig.w) {
+ source.rgb /= source.a;
+ }
+
+ float4 result;
+ result.rgb = ChooseBlendFunc(backdrop.rgb, source.rgb);
+ result.a = source.a;
+
+ // Factor backdrop alpha, then premultiply for the final OP_OVER.
+ result.rgb = (1.0 - backdrop.a) * source.rgb + backdrop.a * result.rgb;
+ result.rgb *= result.a;
+ return result;
+}