diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /js/src/jit/arm64/vixl/Logic-vixl.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jit/arm64/vixl/Logic-vixl.cpp')
-rw-r--r-- | js/src/jit/arm64/vixl/Logic-vixl.cpp | 4878 |
1 files changed, 4878 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Logic-vixl.cpp b/js/src/jit/arm64/vixl/Logic-vixl.cpp new file mode 100644 index 000000000..539e145ec --- /dev/null +++ b/js/src/jit/arm64/vixl/Logic-vixl.cpp @@ -0,0 +1,4878 @@ +// Copyright 2015, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifdef JS_SIMULATOR_ARM64 + +#include <cmath> + +#include "jit/arm64/vixl/Simulator-vixl.h" + +namespace vixl { + +template<> double Simulator::FPDefaultNaN<double>() { + return kFP64DefaultNaN; +} + + +template<> float Simulator::FPDefaultNaN<float>() { + return kFP32DefaultNaN; +} + +// See FPRound for a description of this function. +static inline double FPRoundToDouble(int64_t sign, int64_t exponent, + uint64_t mantissa, FPRounding round_mode) { + int64_t bits = + FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign, + exponent, + mantissa, + round_mode); + return rawbits_to_double(bits); +} + + +// See FPRound for a description of this function. +static inline float FPRoundToFloat(int64_t sign, int64_t exponent, + uint64_t mantissa, FPRounding round_mode) { + int32_t bits = + FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign, + exponent, + mantissa, + round_mode); + return rawbits_to_float(bits); +} + + +// See FPRound for a description of this function. +static inline float16 FPRoundToFloat16(int64_t sign, + int64_t exponent, + uint64_t mantissa, + FPRounding round_mode) { + return FPRound<float16, kFloat16ExponentBits, kFloat16MantissaBits>( + sign, exponent, mantissa, round_mode); +} + + +double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) { + if (src >= 0) { + return UFixedToDouble(src, fbits, round); + } else { + // This works for all negative values, including INT64_MIN. + return -UFixedToDouble(-src, fbits, round); + } +} + + +double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) { + // An input of 0 is a special case because the result is effectively + // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. + if (src == 0) { + return 0.0; + } + + // Calculate the exponent. The highest significant bit will have the value + // 2^exponent. + const int highest_significant_bit = 63 - CountLeadingZeros(src); + const int64_t exponent = highest_significant_bit - fbits; + + return FPRoundToDouble(0, exponent, src, round); +} + + +float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) { + if (src >= 0) { + return UFixedToFloat(src, fbits, round); + } else { + // This works for all negative values, including INT64_MIN. + return -UFixedToFloat(-src, fbits, round); + } +} + + +float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) { + // An input of 0 is a special case because the result is effectively + // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. + if (src == 0) { + return 0.0f; + } + + // Calculate the exponent. The highest significant bit will have the value + // 2^exponent. + const int highest_significant_bit = 63 - CountLeadingZeros(src); + const int32_t exponent = highest_significant_bit - fbits; + + return FPRoundToFloat(0, exponent, src, round); +} + + +double Simulator::FPToDouble(float value) { + switch (std::fpclassify(value)) { + case FP_NAN: { + if (IsSignallingNaN(value)) { + FPProcessException(); + } + if (DN()) return kFP64DefaultNaN; + + // Convert NaNs as the processor would: + // - The sign is propagated. + // - The payload (mantissa) is transferred entirely, except that the top + // bit is forced to '1', making the result a quiet NaN. The unused + // (low-order) payload bits are set to 0. + uint32_t raw = float_to_rawbits(value); + + uint64_t sign = raw >> 31; + uint64_t exponent = (1 << 11) - 1; + uint64_t payload = unsigned_bitextract_64(21, 0, raw); + payload <<= (52 - 23); // The unused low-order bits should be 0. + payload |= (UINT64_C(1) << 51); // Force a quiet NaN. + + return rawbits_to_double((sign << 63) | (exponent << 52) | payload); + } + + case FP_ZERO: + case FP_NORMAL: + case FP_SUBNORMAL: + case FP_INFINITE: { + // All other inputs are preserved in a standard cast, because every value + // representable using an IEEE-754 float is also representable using an + // IEEE-754 double. + return static_cast<double>(value); + } + } + + VIXL_UNREACHABLE(); + return static_cast<double>(value); +} + + +float Simulator::FPToFloat(float16 value) { + uint32_t sign = value >> 15; + uint32_t exponent = unsigned_bitextract_32( + kFloat16MantissaBits + kFloat16ExponentBits - 1, kFloat16MantissaBits, + value); + uint32_t mantissa = unsigned_bitextract_32( + kFloat16MantissaBits - 1, 0, value); + + switch (float16classify(value)) { + case FP_ZERO: + return (sign == 0) ? 0.0f : -0.0f; + + case FP_INFINITE: + return (sign == 0) ? kFP32PositiveInfinity : kFP32NegativeInfinity; + + case FP_SUBNORMAL: { + // Calculate shift required to put mantissa into the most-significant bits + // of the destination mantissa. + int shift = CountLeadingZeros(mantissa << (32 - 10)); + + // Shift mantissa and discard implicit '1'. + mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits) + shift + 1; + mantissa &= (1 << kFloatMantissaBits) - 1; + + // Adjust the exponent for the shift applied, and rebias. + exponent = exponent - shift + (-15 + 127); + break; + } + + case FP_NAN: + if (IsSignallingNaN(value)) { + FPProcessException(); + } + if (DN()) return kFP32DefaultNaN; + + // Convert NaNs as the processor would: + // - The sign is propagated. + // - The payload (mantissa) is transferred entirely, except that the top + // bit is forced to '1', making the result a quiet NaN. The unused + // (low-order) payload bits are set to 0. + exponent = (1 << kFloatExponentBits) - 1; + + // Increase bits in mantissa, making low-order bits 0. + mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits); + mantissa |= 1 << 22; // Force a quiet NaN. + break; + + case FP_NORMAL: + // Increase bits in mantissa, making low-order bits 0. + mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits); + + // Change exponent bias. + exponent += (-15 + 127); + break; + + default: VIXL_UNREACHABLE(); + } + return rawbits_to_float((sign << 31) | + (exponent << kFloatMantissaBits) | + mantissa); +} + + +float16 Simulator::FPToFloat16(float value, FPRounding round_mode) { + // Only the FPTieEven rounding mode is implemented. + VIXL_ASSERT(round_mode == FPTieEven); + USE(round_mode); + + uint32_t raw = float_to_rawbits(value); + int32_t sign = raw >> 31; + int32_t exponent = unsigned_bitextract_32(30, 23, raw) - 127; + uint32_t mantissa = unsigned_bitextract_32(22, 0, raw); + + switch (std::fpclassify(value)) { + case FP_NAN: { + if (IsSignallingNaN(value)) { + FPProcessException(); + } + if (DN()) return kFP16DefaultNaN; + + // Convert NaNs as the processor would: + // - The sign is propagated. + // - The payload (mantissa) is transferred as much as possible, except + // that the top bit is forced to '1', making the result a quiet NaN. + float16 result = (sign == 0) ? kFP16PositiveInfinity + : kFP16NegativeInfinity; + result |= mantissa >> (kFloatMantissaBits - kFloat16MantissaBits); + result |= (1 << 9); // Force a quiet NaN; + return result; + } + + case FP_ZERO: + return (sign == 0) ? 0 : 0x8000; + + case FP_INFINITE: + return (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; + + case FP_NORMAL: + case FP_SUBNORMAL: { + // Convert float-to-half as the processor would, assuming that FPCR.FZ + // (flush-to-zero) is not set. + + // Add the implicit '1' bit to the mantissa. + mantissa += (1 << 23); + return FPRoundToFloat16(sign, exponent, mantissa, round_mode); + } + } + + VIXL_UNREACHABLE(); + return 0; +} + + +float16 Simulator::FPToFloat16(double value, FPRounding round_mode) { + // Only the FPTieEven rounding mode is implemented. + VIXL_ASSERT(round_mode == FPTieEven); + USE(round_mode); + + uint64_t raw = double_to_rawbits(value); + int32_t sign = raw >> 63; + int64_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023; + uint64_t mantissa = unsigned_bitextract_64(51, 0, raw); + + switch (std::fpclassify(value)) { + case FP_NAN: { + if (IsSignallingNaN(value)) { + FPProcessException(); + } + if (DN()) return kFP16DefaultNaN; + + // Convert NaNs as the processor would: + // - The sign is propagated. + // - The payload (mantissa) is transferred as much as possible, except + // that the top bit is forced to '1', making the result a quiet NaN. + float16 result = (sign == 0) ? kFP16PositiveInfinity + : kFP16NegativeInfinity; + result |= mantissa >> (kDoubleMantissaBits - kFloat16MantissaBits); + result |= (1 << 9); // Force a quiet NaN; + return result; + } + + case FP_ZERO: + return (sign == 0) ? 0 : 0x8000; + + case FP_INFINITE: + return (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; + + case FP_NORMAL: + case FP_SUBNORMAL: { + // Convert double-to-half as the processor would, assuming that FPCR.FZ + // (flush-to-zero) is not set. + + // Add the implicit '1' bit to the mantissa. + mantissa += (UINT64_C(1) << 52); + return FPRoundToFloat16(sign, exponent, mantissa, round_mode); + } + } + + VIXL_UNREACHABLE(); + return 0; +} + + +float Simulator::FPToFloat(double value, FPRounding round_mode) { + // Only the FPTieEven rounding mode is implemented. + VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd)); + USE(round_mode); + + switch (std::fpclassify(value)) { + case FP_NAN: { + if (IsSignallingNaN(value)) { + FPProcessException(); + } + if (DN()) return kFP32DefaultNaN; + + // Convert NaNs as the processor would: + // - The sign is propagated. + // - The payload (mantissa) is transferred as much as possible, except + // that the top bit is forced to '1', making the result a quiet NaN. + uint64_t raw = double_to_rawbits(value); + + uint32_t sign = raw >> 63; + uint32_t exponent = (1 << 8) - 1; + uint32_t payload = + static_cast<uint32_t>(unsigned_bitextract_64(50, 52 - 23, raw)); + payload |= (1 << 22); // Force a quiet NaN. + + return rawbits_to_float((sign << 31) | (exponent << 23) | payload); + } + + case FP_ZERO: + case FP_INFINITE: { + // In a C++ cast, any value representable in the target type will be + // unchanged. This is always the case for +/-0.0 and infinities. + return static_cast<float>(value); + } + + case FP_NORMAL: + case FP_SUBNORMAL: { + // Convert double-to-float as the processor would, assuming that FPCR.FZ + // (flush-to-zero) is not set. + uint64_t raw = double_to_rawbits(value); + // Extract the IEEE-754 double components. + uint32_t sign = raw >> 63; + // Extract the exponent and remove the IEEE-754 encoding bias. + int32_t exponent = + static_cast<int32_t>(unsigned_bitextract_64(62, 52, raw)) - 1023; + // Extract the mantissa and add the implicit '1' bit. + uint64_t mantissa = unsigned_bitextract_64(51, 0, raw); + if (std::fpclassify(value) == FP_NORMAL) { + mantissa |= (UINT64_C(1) << 52); + } + return FPRoundToFloat(sign, exponent, mantissa, round_mode); + } + } + + VIXL_UNREACHABLE(); + return value; +} + + +void Simulator::ld1(VectorFormat vform, + LogicVRegister dst, + uint64_t addr) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.ReadUintFromMem(vform, i, addr); + addr += LaneSizeInBytesFromFormat(vform); + } +} + + +void Simulator::ld1(VectorFormat vform, + LogicVRegister dst, + int index, + uint64_t addr) { + dst.ReadUintFromMem(vform, index, addr); +} + + +void Simulator::ld1r(VectorFormat vform, + LogicVRegister dst, + uint64_t addr) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.ReadUintFromMem(vform, i, addr); + } +} + + +void Simulator::ld2(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr1 + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr1); + dst2.ReadUintFromMem(vform, i, addr2); + addr1 += 2 * esize; + addr2 += 2 * esize; + } +} + + +void Simulator::ld2(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + int index, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); + dst1.ReadUintFromMem(vform, index, addr1); + dst2.ReadUintFromMem(vform, index, addr2); +} + + +void Simulator::ld2r(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + uint64_t addr) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr); + dst2.ReadUintFromMem(vform, i, addr2); + } +} + + +void Simulator::ld3(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr1 + esize; + uint64_t addr3 = addr2 + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr1); + dst2.ReadUintFromMem(vform, i, addr2); + dst3.ReadUintFromMem(vform, i, addr3); + addr1 += 3 * esize; + addr2 += 3 * esize; + addr3 += 3 * esize; + } +} + + +void Simulator::ld3(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + int index, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); + uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); + dst1.ReadUintFromMem(vform, index, addr1); + dst2.ReadUintFromMem(vform, index, addr2); + dst3.ReadUintFromMem(vform, index, addr3); +} + + +void Simulator::ld3r(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + uint64_t addr) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); + uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr); + dst2.ReadUintFromMem(vform, i, addr2); + dst3.ReadUintFromMem(vform, i, addr3); + } +} + + +void Simulator::ld4(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + LogicVRegister dst4, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + dst4.ClearForWrite(vform); + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr1 + esize; + uint64_t addr3 = addr2 + esize; + uint64_t addr4 = addr3 + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr1); + dst2.ReadUintFromMem(vform, i, addr2); + dst3.ReadUintFromMem(vform, i, addr3); + dst4.ReadUintFromMem(vform, i, addr4); + addr1 += 4 * esize; + addr2 += 4 * esize; + addr3 += 4 * esize; + addr4 += 4 * esize; + } +} + + +void Simulator::ld4(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + LogicVRegister dst4, + int index, + uint64_t addr1) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + dst4.ClearForWrite(vform); + uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); + uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); + uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform); + dst1.ReadUintFromMem(vform, index, addr1); + dst2.ReadUintFromMem(vform, index, addr2); + dst3.ReadUintFromMem(vform, index, addr3); + dst4.ReadUintFromMem(vform, index, addr4); +} + + +void Simulator::ld4r(VectorFormat vform, + LogicVRegister dst1, + LogicVRegister dst2, + LogicVRegister dst3, + LogicVRegister dst4, + uint64_t addr) { + dst1.ClearForWrite(vform); + dst2.ClearForWrite(vform); + dst3.ClearForWrite(vform); + dst4.ClearForWrite(vform); + uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); + uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); + uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst1.ReadUintFromMem(vform, i, addr); + dst2.ReadUintFromMem(vform, i, addr2); + dst3.ReadUintFromMem(vform, i, addr3); + dst4.ReadUintFromMem(vform, i, addr4); + } +} + + +void Simulator::st1(VectorFormat vform, + LogicVRegister src, + uint64_t addr) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + src.WriteUintToMem(vform, i, addr); + addr += LaneSizeInBytesFromFormat(vform); + } +} + + +void Simulator::st1(VectorFormat vform, + LogicVRegister src, + int index, + uint64_t addr) { + src.WriteUintToMem(vform, index, addr); +} + + +void Simulator::st2(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.WriteUintToMem(vform, i, addr); + dst2.WriteUintToMem(vform, i, addr2); + addr += 2 * esize; + addr2 += 2 * esize; + } +} + + +void Simulator::st2(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + int index, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + dst.WriteUintToMem(vform, index, addr); + dst2.WriteUintToMem(vform, index, addr + 1 * esize); +} + + +void Simulator::st3(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + LogicVRegister dst3, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr + esize; + uint64_t addr3 = addr2 + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.WriteUintToMem(vform, i, addr); + dst2.WriteUintToMem(vform, i, addr2); + dst3.WriteUintToMem(vform, i, addr3); + addr += 3 * esize; + addr2 += 3 * esize; + addr3 += 3 * esize; + } +} + + +void Simulator::st3(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + LogicVRegister dst3, + int index, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + dst.WriteUintToMem(vform, index, addr); + dst2.WriteUintToMem(vform, index, addr + 1 * esize); + dst3.WriteUintToMem(vform, index, addr + 2 * esize); +} + + +void Simulator::st4(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + LogicVRegister dst3, + LogicVRegister dst4, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + uint64_t addr2 = addr + esize; + uint64_t addr3 = addr2 + esize; + uint64_t addr4 = addr3 + esize; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.WriteUintToMem(vform, i, addr); + dst2.WriteUintToMem(vform, i, addr2); + dst3.WriteUintToMem(vform, i, addr3); + dst4.WriteUintToMem(vform, i, addr4); + addr += 4 * esize; + addr2 += 4 * esize; + addr3 += 4 * esize; + addr4 += 4 * esize; + } +} + + +void Simulator::st4(VectorFormat vform, + LogicVRegister dst, + LogicVRegister dst2, + LogicVRegister dst3, + LogicVRegister dst4, + int index, + uint64_t addr) { + int esize = LaneSizeInBytesFromFormat(vform); + dst.WriteUintToMem(vform, index, addr); + dst2.WriteUintToMem(vform, index, addr + 1 * esize); + dst3.WriteUintToMem(vform, index, addr + 2 * esize); + dst4.WriteUintToMem(vform, index, addr + 3 * esize); +} + + +LogicVRegister Simulator::cmp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + Condition cond) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + int64_t sa = src1.Int(vform, i); + int64_t sb = src2.Int(vform, i); + uint64_t ua = src1.Uint(vform, i); + uint64_t ub = src2.Uint(vform, i); + bool result = false; + switch (cond) { + case eq: result = (ua == ub); break; + case ge: result = (sa >= sb); break; + case gt: result = (sa > sb) ; break; + case hi: result = (ua > ub) ; break; + case hs: result = (ua >= ub); break; + case lt: result = (sa < sb) ; break; + case le: result = (sa <= sb); break; + default: VIXL_UNREACHABLE(); break; + } + dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0); + } + return dst; +} + + +LogicVRegister Simulator::cmp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + int imm, + Condition cond) { + SimVRegister temp; + LogicVRegister imm_reg = dup_immediate(vform, temp, imm); + return cmp(vform, dst, src1, imm_reg, cond); +} + + +LogicVRegister Simulator::cmptst(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t ua = src1.Uint(vform, i); + uint64_t ub = src2.Uint(vform, i); + dst.SetUint(vform, i, ((ua & ub) != 0) ? MaxUintFromFormat(vform) : 0); + } + return dst; +} + + +LogicVRegister Simulator::add(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + // TODO(all): consider assigning the result of LaneCountFromFormat to a local. + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + // Test for unsigned saturation. + uint64_t ua = src1.UintLeftJustified(vform, i); + uint64_t ub = src2.UintLeftJustified(vform, i); + uint64_t ur = ua + ub; + if (ur < ua) { + dst.SetUnsignedSat(i, true); + } + + // Test for signed saturation. + int64_t sa = src1.IntLeftJustified(vform, i); + int64_t sb = src2.IntLeftJustified(vform, i); + int64_t sr = sa + sb; + // If the signs of the operands are the same, but different from the result, + // there was an overflow. + if (((sa >= 0) == (sb >= 0)) && ((sa >= 0) != (sr >= 0))) { + dst.SetSignedSat(i, sa >= 0); + } + + dst.SetInt(vform, i, src1.Int(vform, i) + src2.Int(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::addp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uzp1(vform, temp1, src1, src2); + uzp2(vform, temp2, src1, src2); + add(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::mla(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + mul(vform, temp, src1, src2); + add(vform, dst, dst, temp); + return dst; +} + + +LogicVRegister Simulator::mls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + mul(vform, temp, src1, src2); + sub(vform, dst, dst, temp); + return dst; +} + + +LogicVRegister Simulator::mul(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) * src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::mul(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = VectorFormatFillQ(vform); + return mul(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::mla(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = VectorFormatFillQ(vform); + return mla(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::mls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = VectorFormatFillQ(vform); + return mls(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smull(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umull(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::smlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return smlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::umlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return umlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmull(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = + VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); + return sqdmlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqdmulh(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = VectorFormatFillQ(vform); + return sqdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +LogicVRegister Simulator::sqrdmulh(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + SimVRegister temp; + VectorFormat indexform = VectorFormatFillQ(vform); + return sqrdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index)); +} + + +uint16_t Simulator::PolynomialMult(uint8_t op1, uint8_t op2) { + uint16_t result = 0; + uint16_t extended_op2 = op2; + for (int i = 0; i < 8; ++i) { + if ((op1 >> i) & 1) { + result = result ^ (extended_op2 << i); + } + } + return result; +} + + +LogicVRegister Simulator::pmul(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, + PolynomialMult(src1.Uint(vform, i), src2.Uint(vform, i))); + } + return dst; +} + + +LogicVRegister Simulator::pmull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + VectorFormat vform_src = VectorFormatHalfWidth(vform); + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, PolynomialMult(src1.Uint(vform_src, i), + src2.Uint(vform_src, i))); + } + return dst; +} + + +LogicVRegister Simulator::pmull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + VectorFormat vform_src = VectorFormatHalfWidthDoubleLanes(vform); + dst.ClearForWrite(vform); + int lane_count = LaneCountFromFormat(vform); + for (int i = 0; i < lane_count; i++) { + dst.SetUint(vform, i, PolynomialMult(src1.Uint(vform_src, lane_count + i), + src2.Uint(vform_src, lane_count + i))); + } + return dst; +} + + +LogicVRegister Simulator::sub(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + // Test for unsigned saturation. + if (src2.Uint(vform, i) > src1.Uint(vform, i)) { + dst.SetUnsignedSat(i, false); + } + + // Test for signed saturation. + int64_t sa = src1.IntLeftJustified(vform, i); + int64_t sb = src2.IntLeftJustified(vform, i); + int64_t sr = sa - sb; + // If the signs of the operands are different, and the sign of the first + // operand doesn't match the result, there was an overflow. + if (((sa >= 0) != (sb >= 0)) && ((sa >= 0) != (sr >= 0))) { + dst.SetSignedSat(i, sr < 0); + } + + dst.SetInt(vform, i, src1.Int(vform, i) - src2.Int(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::and_(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) & src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::orr(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) | src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::orn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) | ~src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::eor(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) ^ src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::bic(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src1.Uint(vform, i) & ~src2.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::bic(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + uint64_t imm) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; ++i) { + result[i] = src.Uint(vform, i) & ~imm; + } + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::bif(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t operand1 = dst.Uint(vform, i); + uint64_t operand2 = ~src2.Uint(vform, i); + uint64_t operand3 = src1.Uint(vform, i); + uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); + dst.SetUint(vform, i, result); + } + return dst; +} + + +LogicVRegister Simulator::bit(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t operand1 = dst.Uint(vform, i); + uint64_t operand2 = src2.Uint(vform, i); + uint64_t operand3 = src1.Uint(vform, i); + uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); + dst.SetUint(vform, i, result); + } + return dst; +} + + +LogicVRegister Simulator::bsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t operand1 = src2.Uint(vform, i); + uint64_t operand2 = dst.Uint(vform, i); + uint64_t operand3 = src1.Uint(vform, i); + uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); + dst.SetUint(vform, i, result); + } + return dst; +} + + +LogicVRegister Simulator::sminmax(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + bool max) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + int64_t src1_val = src1.Int(vform, i); + int64_t src2_val = src2.Int(vform, i); + int64_t dst_val; + if (max == true) { + dst_val = (src1_val > src2_val) ? src1_val : src2_val; + } else { + dst_val = (src1_val < src2_val) ? src1_val : src2_val; + } + dst.SetInt(vform, i, dst_val); + } + return dst; +} + + +LogicVRegister Simulator::smax(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + return sminmax(vform, dst, src1, src2, true); +} + + +LogicVRegister Simulator::smin(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + return sminmax(vform, dst, src1, src2, false); +} + + +LogicVRegister Simulator::sminmaxp(VectorFormat vform, + LogicVRegister dst, + int dst_index, + const LogicVRegister& src, + bool max) { + for (int i = 0; i < LaneCountFromFormat(vform); i += 2) { + int64_t src1_val = src.Int(vform, i); + int64_t src2_val = src.Int(vform, i + 1); + int64_t dst_val; + if (max == true) { + dst_val = (src1_val > src2_val) ? src1_val : src2_val; + } else { + dst_val = (src1_val < src2_val) ? src1_val : src2_val; + } + dst.SetInt(vform, dst_index + (i >> 1), dst_val); + } + return dst; +} + + +LogicVRegister Simulator::smaxp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + sminmaxp(vform, dst, 0, src1, true); + sminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, true); + return dst; +} + + +LogicVRegister Simulator::sminp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + sminmaxp(vform, dst, 0, src1, false); + sminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, false); + return dst; +} + + +LogicVRegister Simulator::addp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VIXL_ASSERT(vform == kFormatD); + + int64_t dst_val = src.Int(kFormat2D, 0) + src.Int(kFormat2D, 1); + dst.ClearForWrite(vform); + dst.SetInt(vform, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::addv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_dst + = ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform)); + + + int64_t dst_val = 0; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst_val += src.Int(vform, i); + } + + dst.ClearForWrite(vform_dst); + dst.SetInt(vform_dst, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::saddlv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_dst + = ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2); + + int64_t dst_val = 0; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst_val += src.Int(vform, i); + } + + dst.ClearForWrite(vform_dst); + dst.SetInt(vform_dst, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::uaddlv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_dst + = ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2); + + uint64_t dst_val = 0; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst_val += src.Uint(vform, i); + } + + dst.ClearForWrite(vform_dst); + dst.SetUint(vform_dst, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::sminmaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + bool max) { + dst.ClearForWrite(vform); + int64_t dst_val = max ? INT64_MIN : INT64_MAX; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetInt(vform, i, 0); + int64_t src_val = src.Int(vform, i); + if (max == true) { + dst_val = (src_val > dst_val) ? src_val : dst_val; + } else { + dst_val = (src_val < dst_val) ? src_val : dst_val; + } + } + dst.SetInt(vform, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::smaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + sminmaxv(vform, dst, src, true); + return dst; +} + + +LogicVRegister Simulator::sminv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + sminmaxv(vform, dst, src, false); + return dst; +} + + +LogicVRegister Simulator::uminmax(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + bool max) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t src1_val = src1.Uint(vform, i); + uint64_t src2_val = src2.Uint(vform, i); + uint64_t dst_val; + if (max == true) { + dst_val = (src1_val > src2_val) ? src1_val : src2_val; + } else { + dst_val = (src1_val < src2_val) ? src1_val : src2_val; + } + dst.SetUint(vform, i, dst_val); + } + return dst; +} + + +LogicVRegister Simulator::umax(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + return uminmax(vform, dst, src1, src2, true); +} + + +LogicVRegister Simulator::umin(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + return uminmax(vform, dst, src1, src2, false); +} + + +LogicVRegister Simulator::uminmaxp(VectorFormat vform, + LogicVRegister dst, + int dst_index, + const LogicVRegister& src, + bool max) { + for (int i = 0; i < LaneCountFromFormat(vform); i += 2) { + uint64_t src1_val = src.Uint(vform, i); + uint64_t src2_val = src.Uint(vform, i + 1); + uint64_t dst_val; + if (max == true) { + dst_val = (src1_val > src2_val) ? src1_val : src2_val; + } else { + dst_val = (src1_val < src2_val) ? src1_val : src2_val; + } + dst.SetUint(vform, dst_index + (i >> 1), dst_val); + } + return dst; +} + + +LogicVRegister Simulator::umaxp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + uminmaxp(vform, dst, 0, src1, true); + uminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, true); + return dst; +} + + +LogicVRegister Simulator::uminp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + uminmaxp(vform, dst, 0, src1, false); + uminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, false); + return dst; +} + + +LogicVRegister Simulator::uminmaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + bool max) { + dst.ClearForWrite(vform); + uint64_t dst_val = max ? 0 : UINT64_MAX; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, 0); + uint64_t src_val = src.Uint(vform, i); + if (max == true) { + dst_val = (src_val > dst_val) ? src_val : dst_val; + } else { + dst_val = (src_val < dst_val) ? src_val : dst_val; + } + } + dst.SetUint(vform, 0, dst_val); + return dst; +} + + +LogicVRegister Simulator::umaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uminmaxv(vform, dst, src, true); + return dst; +} + + +LogicVRegister Simulator::uminv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uminmaxv(vform, dst, src, false); + return dst; +} + + +LogicVRegister Simulator::shl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, shift); + return ushl(vform, dst, src, shiftreg); +} + + +LogicVRegister Simulator::sshll(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp1, temp2; + LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); + LogicVRegister extendedreg = sxtl(vform, temp2, src); + return sshl(vform, dst, extendedreg, shiftreg); +} + + +LogicVRegister Simulator::sshll2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp1, temp2; + LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); + LogicVRegister extendedreg = sxtl2(vform, temp2, src); + return sshl(vform, dst, extendedreg, shiftreg); +} + + +LogicVRegister Simulator::shll(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + int shift = LaneSizeInBitsFromFormat(vform) / 2; + return sshll(vform, dst, src, shift); +} + + +LogicVRegister Simulator::shll2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + int shift = LaneSizeInBitsFromFormat(vform) / 2; + return sshll2(vform, dst, src, shift); +} + + +LogicVRegister Simulator::ushll(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp1, temp2; + LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); + LogicVRegister extendedreg = uxtl(vform, temp2, src); + return ushl(vform, dst, extendedreg, shiftreg); +} + + +LogicVRegister Simulator::ushll2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp1, temp2; + LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); + LogicVRegister extendedreg = uxtl2(vform, temp2, src); + return ushl(vform, dst, extendedreg, shiftreg); +} + + +LogicVRegister Simulator::sli(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + dst.ClearForWrite(vform); + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; i++) { + uint64_t src_lane = src.Uint(vform, i); + uint64_t dst_lane = dst.Uint(vform, i); + uint64_t shifted = src_lane << shift; + uint64_t mask = MaxUintFromFormat(vform) << shift; + dst.SetUint(vform, i, (dst_lane & ~mask) | shifted); + } + return dst; +} + + +LogicVRegister Simulator::sqshl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, shift); + return sshl(vform, dst, src, shiftreg).SignedSaturate(vform); +} + + +LogicVRegister Simulator::uqshl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, shift); + return ushl(vform, dst, src, shiftreg).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::sqshlu(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, shift); + return sshl(vform, dst, src, shiftreg).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::sri(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + dst.ClearForWrite(vform); + int laneCount = LaneCountFromFormat(vform); + VIXL_ASSERT((shift > 0) && + (shift <= static_cast<int>(LaneSizeInBitsFromFormat(vform)))); + for (int i = 0; i < laneCount; i++) { + uint64_t src_lane = src.Uint(vform, i); + uint64_t dst_lane = dst.Uint(vform, i); + uint64_t shifted; + uint64_t mask; + if (shift == 64) { + shifted = 0; + mask = 0; + } else { + shifted = src_lane >> shift; + mask = MaxUintFromFormat(vform) >> shift; + } + dst.SetUint(vform, i, (dst_lane & ~mask) | shifted); + } + return dst; +} + + +LogicVRegister Simulator::ushr(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, -shift); + return ushl(vform, dst, src, shiftreg); +} + + +LogicVRegister Simulator::sshr(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + VIXL_ASSERT(shift >= 0); + SimVRegister temp; + LogicVRegister shiftreg = dup_immediate(vform, temp, -shift); + return sshl(vform, dst, src, shiftreg); +} + + +LogicVRegister Simulator::ssra(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + LogicVRegister shifted_reg = sshr(vform, temp, src, shift); + return add(vform, dst, dst, shifted_reg); +} + + +LogicVRegister Simulator::usra(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + LogicVRegister shifted_reg = ushr(vform, temp, src, shift); + return add(vform, dst, dst, shifted_reg); +} + + +LogicVRegister Simulator::srsra(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + LogicVRegister shifted_reg = sshr(vform, temp, src, shift).Round(vform); + return add(vform, dst, dst, shifted_reg); +} + + +LogicVRegister Simulator::ursra(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + LogicVRegister shifted_reg = ushr(vform, temp, src, shift).Round(vform); + return add(vform, dst, dst, shifted_reg); +} + + +LogicVRegister Simulator::cls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uint64_t result[16]; + int laneSizeInBits = LaneSizeInBitsFromFormat(vform); + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; i++) { + result[i] = CountLeadingSignBits(src.Int(vform, i), laneSizeInBits); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::clz(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uint64_t result[16]; + int laneSizeInBits = LaneSizeInBitsFromFormat(vform); + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; i++) { + result[i] = CountLeadingZeros(src.Uint(vform, i), laneSizeInBits); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::cnt(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uint64_t result[16]; + int laneSizeInBits = LaneSizeInBitsFromFormat(vform); + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; i++) { + uint64_t value = src.Uint(vform, i); + result[i] = 0; + for (int j = 0; j < laneSizeInBits; j++) { + result[i] += (value & 1); + value >>= 1; + } + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::sshl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + int8_t shift_val = src2.Int(vform, i); + int64_t lj_src_val = src1.IntLeftJustified(vform, i); + + // Set signed saturation state. + if ((shift_val > CountLeadingSignBits(lj_src_val)) && + (lj_src_val != 0)) { + dst.SetSignedSat(i, lj_src_val >= 0); + } + + // Set unsigned saturation state. + if (lj_src_val < 0) { + dst.SetUnsignedSat(i, false); + } else if ((shift_val > CountLeadingZeros(lj_src_val)) && + (lj_src_val != 0)) { + dst.SetUnsignedSat(i, true); + } + + int64_t src_val = src1.Int(vform, i); + if (shift_val > 63) { + dst.SetInt(vform, i, 0); + } else if (shift_val < -63) { + dst.SetRounding(i, src_val < 0); + dst.SetInt(vform, i, (src_val < 0) ? -1 : 0); + } else { + if (shift_val < 0) { + // Set rounding state. Rounding only needed on right shifts. + if (((src_val >> (-shift_val - 1)) & 1) == 1) { + dst.SetRounding(i, true); + } + src_val >>= -shift_val; + } else { + src_val <<= shift_val; + } + dst.SetInt(vform, i, src_val); + } + } + return dst; +} + + +LogicVRegister Simulator::ushl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + int8_t shift_val = src2.Int(vform, i); + uint64_t lj_src_val = src1.UintLeftJustified(vform, i); + + // Set saturation state. + if ((shift_val > CountLeadingZeros(lj_src_val)) && (lj_src_val != 0)) { + dst.SetUnsignedSat(i, true); + } + + uint64_t src_val = src1.Uint(vform, i); + if ((shift_val > 63) || (shift_val < -64)) { + dst.SetUint(vform, i, 0); + } else { + if (shift_val < 0) { + // Set rounding state. Rounding only needed on right shifts. + if (((src_val >> (-shift_val - 1)) & 1) == 1) { + dst.SetRounding(i, true); + } + + if (shift_val == -64) { + src_val = 0; + } else { + src_val >>= -shift_val; + } + } else { + src_val <<= shift_val; + } + dst.SetUint(vform, i, src_val); + } + } + return dst; +} + + +LogicVRegister Simulator::neg(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + // Test for signed saturation. + int64_t sa = src.Int(vform, i); + if (sa == MinIntFromFormat(vform)) { + dst.SetSignedSat(i, true); + } + dst.SetInt(vform, i, -sa); + } + return dst; +} + + +LogicVRegister Simulator::suqadd(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + int64_t sa = dst.IntLeftJustified(vform, i); + uint64_t ub = src.UintLeftJustified(vform, i); + int64_t sr = sa + ub; + + if (sr < sa) { // Test for signed positive saturation. + dst.SetInt(vform, i, MaxIntFromFormat(vform)); + } else { + dst.SetInt(vform, i, dst.Int(vform, i) + src.Int(vform, i)); + } + } + return dst; +} + + +LogicVRegister Simulator::usqadd(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t ua = dst.UintLeftJustified(vform, i); + int64_t sb = src.IntLeftJustified(vform, i); + uint64_t ur = ua + sb; + + if ((sb > 0) && (ur <= ua)) { + dst.SetUint(vform, i, MaxUintFromFormat(vform)); // Positive saturation. + } else if ((sb < 0) && (ur >= ua)) { + dst.SetUint(vform, i, 0); // Negative saturation. + } else { + dst.SetUint(vform, i, dst.Uint(vform, i) + src.Int(vform, i)); + } + } + return dst; +} + + +LogicVRegister Simulator::abs(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + // Test for signed saturation. + int64_t sa = src.Int(vform, i); + if (sa == MinIntFromFormat(vform)) { + dst.SetSignedSat(i, true); + } + if (sa < 0) { + dst.SetInt(vform, i, -sa); + } else { + dst.SetInt(vform, i, sa); + } + } + return dst; +} + + +LogicVRegister Simulator::extractnarrow(VectorFormat dstform, + LogicVRegister dst, + bool dstIsSigned, + const LogicVRegister& src, + bool srcIsSigned) { + bool upperhalf = false; + VectorFormat srcform = kFormatUndefined; + int64_t ssrc[8]; + uint64_t usrc[8]; + + switch (dstform) { + case kFormat8B : upperhalf = false; srcform = kFormat8H; break; + case kFormat16B: upperhalf = true; srcform = kFormat8H; break; + case kFormat4H : upperhalf = false; srcform = kFormat4S; break; + case kFormat8H : upperhalf = true; srcform = kFormat4S; break; + case kFormat2S : upperhalf = false; srcform = kFormat2D; break; + case kFormat4S : upperhalf = true; srcform = kFormat2D; break; + case kFormatB : upperhalf = false; srcform = kFormatH; break; + case kFormatH : upperhalf = false; srcform = kFormatS; break; + case kFormatS : upperhalf = false; srcform = kFormatD; break; + default:VIXL_UNIMPLEMENTED(); + } + + for (int i = 0; i < LaneCountFromFormat(srcform); i++) { + ssrc[i] = src.Int(srcform, i); + usrc[i] = src.Uint(srcform, i); + } + + int offset; + if (upperhalf) { + offset = LaneCountFromFormat(dstform) / 2; + } else { + offset = 0; + dst.ClearForWrite(dstform); + } + + for (int i = 0; i < LaneCountFromFormat(srcform); i++) { + // Test for signed saturation + if (ssrc[i] > MaxIntFromFormat(dstform)) { + dst.SetSignedSat(offset + i, true); + } else if (ssrc[i] < MinIntFromFormat(dstform)) { + dst.SetSignedSat(offset + i, false); + } + + // Test for unsigned saturation + if (srcIsSigned) { + if (ssrc[i] > static_cast<int64_t>(MaxUintFromFormat(dstform))) { + dst.SetUnsignedSat(offset + i, true); + } else if (ssrc[i] < 0) { + dst.SetUnsignedSat(offset + i, false); + } + } else { + if (usrc[i] > MaxUintFromFormat(dstform)) { + dst.SetUnsignedSat(offset + i, true); + } + } + + int64_t result; + if (srcIsSigned) { + result = ssrc[i] & MaxUintFromFormat(dstform); + } else { + result = usrc[i] & MaxUintFromFormat(dstform); + } + + if (dstIsSigned) { + dst.SetInt(dstform, offset + i, result); + } else { + dst.SetUint(dstform, offset + i, result); + } + } + return dst; +} + + +LogicVRegister Simulator::xtn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return extractnarrow(vform, dst, true, src, true); +} + + +LogicVRegister Simulator::sqxtn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return extractnarrow(vform, dst, true, src, true).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqxtun(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return extractnarrow(vform, dst, false, src, true).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::uqxtn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return extractnarrow(vform, dst, false, src, false).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::absdiff(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + bool issigned) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + if (issigned) { + int64_t sr = src1.Int(vform, i) - src2.Int(vform, i); + sr = sr > 0 ? sr : -sr; + dst.SetInt(vform, i, sr); + } else { + int64_t sr = src1.Uint(vform, i) - src2.Uint(vform, i); + sr = sr > 0 ? sr : -sr; + dst.SetUint(vform, i, sr); + } + } + return dst; +} + + +LogicVRegister Simulator::saba(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + dst.ClearForWrite(vform); + absdiff(vform, temp, src1, src2, true); + add(vform, dst, dst, temp); + return dst; +} + + +LogicVRegister Simulator::uaba(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + dst.ClearForWrite(vform); + absdiff(vform, temp, src1, src2, false); + add(vform, dst, dst, temp); + return dst; +} + + +LogicVRegister Simulator::not_(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, ~src.Uint(vform, i)); + } + return dst; +} + + +LogicVRegister Simulator::rbit(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int laneSizeInBits = LaneSizeInBitsFromFormat(vform); + uint64_t reversed_value; + uint64_t value; + for (int i = 0; i < laneCount; i++) { + value = src.Uint(vform, i); + reversed_value = 0; + for (int j = 0; j < laneSizeInBits; j++) { + reversed_value = (reversed_value << 1) | (value & 1); + value >>= 1; + } + result[i] = reversed_value; + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::rev(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int revSize) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int laneSize = LaneSizeInBytesFromFormat(vform); + int lanesPerLoop = revSize / laneSize; + for (int i = 0; i < laneCount; i += lanesPerLoop) { + for (int j = 0; j < lanesPerLoop; j++) { + result[i + lanesPerLoop - 1 - j] = src.Uint(vform, i + j); + } + } + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::rev16(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return rev(vform, dst, src, 2); +} + + +LogicVRegister Simulator::rev32(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return rev(vform, dst, src, 4); +} + + +LogicVRegister Simulator::rev64(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return rev(vform, dst, src, 8); +} + + +LogicVRegister Simulator::addlp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + bool is_signed, + bool do_accumulate) { + VectorFormat vformsrc = VectorFormatHalfWidthDoubleLanes(vform); + + int64_t sr[16]; + uint64_t ur[16]; + + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; ++i) { + if (is_signed) { + sr[i] = src.Int(vformsrc, 2 * i) + src.Int(vformsrc, 2 * i + 1); + } else { + ur[i] = src.Uint(vformsrc, 2 * i) + src.Uint(vformsrc, 2 * i + 1); + } + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + if (do_accumulate) { + if (is_signed) { + dst.SetInt(vform, i, dst.Int(vform, i) + sr[i]); + } else { + dst.SetUint(vform, i, dst.Uint(vform, i) + ur[i]); + } + } else { + if (is_signed) { + dst.SetInt(vform, i, sr[i]); + } else { + dst.SetUint(vform, i, ur[i]); + } + } + } + + return dst; +} + + +LogicVRegister Simulator::saddlp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return addlp(vform, dst, src, true, false); +} + + +LogicVRegister Simulator::uaddlp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return addlp(vform, dst, src, false, false); +} + + +LogicVRegister Simulator::sadalp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return addlp(vform, dst, src, true, true); +} + + +LogicVRegister Simulator::uadalp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return addlp(vform, dst, src, false, true); +} + + +LogicVRegister Simulator::ext(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + uint8_t result[16]; + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount - index; ++i) { + result[i] = src1.Uint(vform, i + index); + } + for (int i = 0; i < index; ++i) { + result[laneCount - index + i] = src2.Uint(vform, i); + } + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::dup_element(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int src_index) { + int laneCount = LaneCountFromFormat(vform); + uint64_t value = src.Uint(vform, src_index); + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, value); + } + return dst; +} + + +LogicVRegister Simulator::dup_immediate(VectorFormat vform, + LogicVRegister dst, + uint64_t imm) { + int laneCount = LaneCountFromFormat(vform); + uint64_t value = imm & MaxUintFromFormat(vform); + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, value); + } + return dst; +} + + +LogicVRegister Simulator::ins_element(VectorFormat vform, + LogicVRegister dst, + int dst_index, + const LogicVRegister& src, + int src_index) { + dst.SetUint(vform, dst_index, src.Uint(vform, src_index)); + return dst; +} + + +LogicVRegister Simulator::ins_immediate(VectorFormat vform, + LogicVRegister dst, + int dst_index, + uint64_t imm) { + uint64_t value = imm & MaxUintFromFormat(vform); + dst.SetUint(vform, dst_index, value); + return dst; +} + + +LogicVRegister Simulator::movi(VectorFormat vform, + LogicVRegister dst, + uint64_t imm) { + int laneCount = LaneCountFromFormat(vform); + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, imm); + } + return dst; +} + + +LogicVRegister Simulator::mvni(VectorFormat vform, + LogicVRegister dst, + uint64_t imm) { + int laneCount = LaneCountFromFormat(vform); + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, ~imm); + } + return dst; +} + + +LogicVRegister Simulator::orr(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + uint64_t imm) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; ++i) { + result[i] = src.Uint(vform, i) | imm; + } + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::uxtl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_half = VectorFormatHalfWidth(vform); + + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetUint(vform, i, src.Uint(vform_half, i)); + } + return dst; +} + + +LogicVRegister Simulator::sxtl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_half = VectorFormatHalfWidth(vform); + + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetInt(vform, i, src.Int(vform_half, i)); + } + return dst; +} + + +LogicVRegister Simulator::uxtl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_half = VectorFormatHalfWidth(vform); + int lane_count = LaneCountFromFormat(vform); + + dst.ClearForWrite(vform); + for (int i = 0; i < lane_count; i++) { + dst.SetUint(vform, i, src.Uint(vform_half, lane_count + i)); + } + return dst; +} + + +LogicVRegister Simulator::sxtl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VectorFormat vform_half = VectorFormatHalfWidth(vform); + int lane_count = LaneCountFromFormat(vform); + + dst.ClearForWrite(vform); + for (int i = 0; i < lane_count; i++) { + dst.SetInt(vform, i, src.Int(vform_half, lane_count + i)); + } + return dst; +} + + +LogicVRegister Simulator::shrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vform_src = VectorFormatDoubleWidth(vform); + VectorFormat vform_dst = vform; + LogicVRegister shifted_src = ushr(vform_src, temp, src, shift); + return extractnarrow(vform_dst, dst, false, shifted_src, false); +} + + +LogicVRegister Simulator::shrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift); + return extractnarrow(vformdst, dst, false, shifted_src, false); +} + + +LogicVRegister Simulator::rshrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(vform); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc); + return extractnarrow(vformdst, dst, false, shifted_src, false); +} + + +LogicVRegister Simulator::rshrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc); + return extractnarrow(vformdst, dst, false, shifted_src, false); +} + + +LogicVRegister Simulator::tbl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& ind) { + movi(vform, dst, 0); + return tbx(vform, dst, tab, ind); +} + + +LogicVRegister Simulator::tbl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& ind) { + movi(vform, dst, 0); + return tbx(vform, dst, tab, tab2, ind); +} + + +LogicVRegister Simulator::tbl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& tab3, + const LogicVRegister& ind) { + movi(vform, dst, 0); + return tbx(vform, dst, tab, tab2, tab3, ind); +} + + +LogicVRegister Simulator::tbl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& tab3, + const LogicVRegister& tab4, + const LogicVRegister& ind) { + movi(vform, dst, 0); + return tbx(vform, dst, tab, tab2, tab3, tab4, ind); +} + + +LogicVRegister Simulator::tbx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& ind) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t j = ind.Uint(vform, i); + switch (j >> 4) { + case 0: dst.SetUint(vform, i, tab.Uint(kFormat16B, j & 15)); break; + } + } + return dst; +} + + +LogicVRegister Simulator::tbx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& ind) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t j = ind.Uint(vform, i); + switch (j >> 4) { + case 0: dst.SetUint(vform, i, tab.Uint(kFormat16B, j & 15)); break; + case 1: dst.SetUint(vform, i, tab2.Uint(kFormat16B, j & 15)); break; + } + } + return dst; +} + + +LogicVRegister Simulator::tbx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& tab3, + const LogicVRegister& ind) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t j = ind.Uint(vform, i); + switch (j >> 4) { + case 0: dst.SetUint(vform, i, tab.Uint(kFormat16B, j & 15)); break; + case 1: dst.SetUint(vform, i, tab2.Uint(kFormat16B, j & 15)); break; + case 2: dst.SetUint(vform, i, tab3.Uint(kFormat16B, j & 15)); break; + } + } + return dst; +} + + +LogicVRegister Simulator::tbx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& tab, + const LogicVRegister& tab2, + const LogicVRegister& tab3, + const LogicVRegister& tab4, + const LogicVRegister& ind) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + uint64_t j = ind.Uint(vform, i); + switch (j >> 4) { + case 0: dst.SetUint(vform, i, tab.Uint(kFormat16B, j & 15)); break; + case 1: dst.SetUint(vform, i, tab2.Uint(kFormat16B, j & 15)); break; + case 2: dst.SetUint(vform, i, tab3.Uint(kFormat16B, j & 15)); break; + case 3: dst.SetUint(vform, i, tab4.Uint(kFormat16B, j & 15)); break; + } + } + return dst; +} + + +LogicVRegister Simulator::uqshrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + return shrn(vform, dst, src, shift).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::uqshrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + return shrn2(vform, dst, src, shift).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::uqrshrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + return rshrn(vform, dst, src, shift).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::uqrshrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + return rshrn2(vform, dst, src, shift).UnsignedSaturate(vform); +} + + +LogicVRegister Simulator::sqshrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(vform); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); + return sqxtn(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqshrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); + return sqxtn(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqrshrn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(vform); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); + return sqxtn(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqrshrn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); + return sqxtn(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqshrun(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(vform); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); + return sqxtun(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqshrun2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); + return sqxtun(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqrshrun(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(vform); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); + return sqxtun(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::sqrshrun2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int shift) { + SimVRegister temp; + VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); + VectorFormat vformdst = vform; + LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); + return sqxtun(vformdst, dst, shifted_src); +} + + +LogicVRegister Simulator::uaddl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + add(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::uaddl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + add(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::uaddw(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + uxtl(vform, temp, src2); + add(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::uaddw2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + uxtl2(vform, temp, src2); + add(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::saddl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + add(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::saddl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + add(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::saddw(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sxtl(vform, temp, src2); + add(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::saddw2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sxtl2(vform, temp, src2); + add(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::usubl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + sub(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::usubl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + sub(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::usubw(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + uxtl(vform, temp, src2); + sub(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::usubw2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + uxtl2(vform, temp, src2); + sub(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::ssubl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + sub(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::ssubl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + sub(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::ssubw(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sxtl(vform, temp, src2); + sub(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::ssubw2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sxtl2(vform, temp, src2); + sub(vform, dst, src1, temp); + return dst; +} + + +LogicVRegister Simulator::uabal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + uaba(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::uabal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + uaba(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::sabal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + saba(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::sabal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + saba(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::uabdl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + absdiff(vform, dst, temp1, temp2, false); + return dst; +} + + +LogicVRegister Simulator::uabdl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + absdiff(vform, dst, temp1, temp2, false); + return dst; +} + + +LogicVRegister Simulator::sabdl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + absdiff(vform, dst, temp1, temp2, true); + return dst; +} + + +LogicVRegister Simulator::sabdl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + absdiff(vform, dst, temp1, temp2, true); + return dst; +} + + +LogicVRegister Simulator::umull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + mul(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::umull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + mul(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + mul(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + mul(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::umlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + mls(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::umlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + mls(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + mls(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + mls(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::umlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl(vform, temp1, src1); + uxtl(vform, temp2, src2); + mla(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::umlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + uxtl2(vform, temp1, src1); + uxtl2(vform, temp2, src2); + mla(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl(vform, temp1, src1); + sxtl(vform, temp2, src2); + mla(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::smlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp1, temp2; + sxtl2(vform, temp1, src1); + sxtl2(vform, temp2, src2); + mla(vform, dst, temp1, temp2); + return dst; +} + + +LogicVRegister Simulator::sqdmlal(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = sqdmull(vform, temp, src1, src2); + return add(vform, dst, dst, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqdmlal2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = sqdmull2(vform, temp, src1, src2); + return add(vform, dst, dst, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqdmlsl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = sqdmull(vform, temp, src1, src2); + return sub(vform, dst, dst, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqdmlsl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = sqdmull2(vform, temp, src1, src2); + return sub(vform, dst, dst, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqdmull(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = smull(vform, temp, src1, src2); + return add(vform, dst, product, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqdmull2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = smull2(vform, temp, src1, src2); + return add(vform, dst, product, product).SignedSaturate(vform); +} + + +LogicVRegister Simulator::sqrdmulh(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + bool round) { + // 2 * INT_32_MIN * INT_32_MIN causes int64_t to overflow. + // To avoid this, we use (src1 * src2 + 1 << (esize - 2)) >> (esize - 1) + // which is same as (2 * src1 * src2 + 1 << (esize - 1)) >> esize. + + int esize = LaneSizeInBitsFromFormat(vform); + int round_const = round ? (1 << (esize - 2)) : 0; + int64_t product; + + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + product = src1.Int(vform, i) * src2.Int(vform, i); + product += round_const; + product = product >> (esize - 1); + + if (product > MaxIntFromFormat(vform)) { + product = MaxIntFromFormat(vform); + } else if (product < MinIntFromFormat(vform)) { + product = MinIntFromFormat(vform); + } + dst.SetInt(vform, i, product); + } + return dst; +} + + +LogicVRegister Simulator::sqdmulh(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + return sqrdmulh(vform, dst, src1, src2, false); +} + + +LogicVRegister Simulator::addhn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + add(VectorFormatDoubleWidth(vform), temp, src1, src2); + shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::addhn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); + shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::raddhn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + add(VectorFormatDoubleWidth(vform), temp, src1, src2); + rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::raddhn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); + rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::subhn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sub(VectorFormatDoubleWidth(vform), temp, src1, src2); + shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::subhn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); + shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::rsubhn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sub(VectorFormatDoubleWidth(vform), temp, src1, src2); + rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::rsubhn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); + rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); + return dst; +} + + +LogicVRegister Simulator::trn1(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int pairs = laneCount / 2; + for (int i = 0; i < pairs; ++i) { + result[2 * i] = src1.Uint(vform, 2 * i); + result[(2 * i) + 1] = src2.Uint(vform, 2 * i); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::trn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int pairs = laneCount / 2; + for (int i = 0; i < pairs; ++i) { + result[2 * i] = src1.Uint(vform, (2 * i) + 1); + result[(2 * i) + 1] = src2.Uint(vform, (2 * i) + 1); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::zip1(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int pairs = laneCount / 2; + for (int i = 0; i < pairs; ++i) { + result[2 * i] = src1.Uint(vform, i); + result[(2 * i) + 1] = src2.Uint(vform, i); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::zip2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[16]; + int laneCount = LaneCountFromFormat(vform); + int pairs = laneCount / 2; + for (int i = 0; i < pairs; ++i) { + result[2 * i] = src1.Uint(vform, pairs + i); + result[(2 * i) + 1] = src2.Uint(vform, pairs + i); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[i]); + } + return dst; +} + + +LogicVRegister Simulator::uzp1(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[32]; + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; ++i) { + result[i] = src1.Uint(vform, i); + result[laneCount + i] = src2.Uint(vform, i); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[2 * i]); + } + return dst; +} + + +LogicVRegister Simulator::uzp2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + uint64_t result[32]; + int laneCount = LaneCountFromFormat(vform); + for (int i = 0; i < laneCount; ++i) { + result[i] = src1.Uint(vform, i); + result[laneCount + i] = src2.Uint(vform, i); + } + + dst.ClearForWrite(vform); + for (int i = 0; i < laneCount; ++i) { + dst.SetUint(vform, i, result[ (2 * i) + 1]); + } + return dst; +} + + +template <typename T> +T Simulator::FPAdd(T op1, T op2) { + T result = FPProcessNaNs(op1, op2); + if (std::isnan(result)) return result; + + if (std::isinf(op1) && std::isinf(op2) && (op1 != op2)) { + // inf + -inf returns the default NaN. + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + // Other cases should be handled by standard arithmetic. + return op1 + op2; + } +} + + +template <typename T> +T Simulator::FPSub(T op1, T op2) { + // NaNs should be handled elsewhere. + VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); + + if (std::isinf(op1) && std::isinf(op2) && (op1 == op2)) { + // inf - inf returns the default NaN. + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + // Other cases should be handled by standard arithmetic. + return op1 - op2; + } +} + + +template <typename T> +T Simulator::FPMul(T op1, T op2) { + // NaNs should be handled elsewhere. + VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); + + if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) { + // inf * 0.0 returns the default NaN. + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + // Other cases should be handled by standard arithmetic. + return op1 * op2; + } +} + + +template<typename T> +T Simulator::FPMulx(T op1, T op2) { + if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) { + // inf * 0.0 returns +/-2.0. + T two = 2.0; + return copysign(1.0, op1) * copysign(1.0, op2) * two; + } + return FPMul(op1, op2); +} + + +template<typename T> +T Simulator::FPMulAdd(T a, T op1, T op2) { + T result = FPProcessNaNs3(a, op1, op2); + + T sign_a = copysign(1.0, a); + T sign_prod = copysign(1.0, op1) * copysign(1.0, op2); + bool isinf_prod = std::isinf(op1) || std::isinf(op2); + bool operation_generates_nan = + (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0 + (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf + (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf + + if (std::isnan(result)) { + // Generated NaNs override quiet NaNs propagated from a. + if (operation_generates_nan && IsQuietNaN(a)) { + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + return result; + } + } + + // If the operation would produce a NaN, return the default NaN. + if (operation_generates_nan) { + FPProcessException(); + return FPDefaultNaN<T>(); + } + + // Work around broken fma implementations for exact zero results: The sign of + // exact 0.0 results is positive unless both a and op1 * op2 are negative. + if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) { + return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0; + } + + result = FusedMultiplyAdd(op1, op2, a); + VIXL_ASSERT(!std::isnan(result)); + + // Work around broken fma implementations for rounded zero results: If a is + // 0.0, the sign of the result is the sign of op1 * op2 before rounding. + if ((a == 0.0) && (result == 0.0)) { + return copysign(0.0, sign_prod); + } + + return result; +} + + +template <typename T> +T Simulator::FPDiv(T op1, T op2) { + // NaNs should be handled elsewhere. + VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); + + if ((std::isinf(op1) && std::isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) { + // inf / inf and 0.0 / 0.0 return the default NaN. + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + if (op2 == 0.0) FPProcessException(); + + // Other cases should be handled by standard arithmetic. + return op1 / op2; + } +} + + +template <typename T> +T Simulator::FPSqrt(T op) { + if (std::isnan(op)) { + return FPProcessNaN(op); + } else if (op < 0.0) { + FPProcessException(); + return FPDefaultNaN<T>(); + } else { + return sqrt(op); + } +} + + +template <typename T> +T Simulator::FPMax(T a, T b) { + T result = FPProcessNaNs(a, b); + if (std::isnan(result)) return result; + + if ((a == 0.0) && (b == 0.0) && + (copysign(1.0, a) != copysign(1.0, b))) { + // a and b are zero, and the sign differs: return +0.0. + return 0.0; + } else { + return (a > b) ? a : b; + } +} + + +template <typename T> +T Simulator::FPMaxNM(T a, T b) { + if (IsQuietNaN(a) && !IsQuietNaN(b)) { + a = kFP64NegativeInfinity; + } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { + b = kFP64NegativeInfinity; + } + + T result = FPProcessNaNs(a, b); + return std::isnan(result) ? result : FPMax(a, b); +} + + +template <typename T> +T Simulator::FPMin(T a, T b) { + T result = FPProcessNaNs(a, b); + if (std::isnan(result)) return result; + + if ((a == 0.0) && (b == 0.0) && + (copysign(1.0, a) != copysign(1.0, b))) { + // a and b are zero, and the sign differs: return -0.0. + return -0.0; + } else { + return (a < b) ? a : b; + } +} + + +template <typename T> +T Simulator::FPMinNM(T a, T b) { + if (IsQuietNaN(a) && !IsQuietNaN(b)) { + a = kFP64PositiveInfinity; + } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { + b = kFP64PositiveInfinity; + } + + T result = FPProcessNaNs(a, b); + return std::isnan(result) ? result : FPMin(a, b); +} + + +template <typename T> +T Simulator::FPRecipStepFused(T op1, T op2) { + const T two = 2.0; + if ((std::isinf(op1) && (op2 == 0.0)) + || ((op1 == 0.0) && (std::isinf(op2)))) { + return two; + } else if (std::isinf(op1) || std::isinf(op2)) { + // Return +inf if signs match, otherwise -inf. + return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity + : kFP64NegativeInfinity; + } else { + return FusedMultiplyAdd(op1, op2, two); + } +} + + +template <typename T> +T Simulator::FPRSqrtStepFused(T op1, T op2) { + const T one_point_five = 1.5; + const T two = 2.0; + + if ((std::isinf(op1) && (op2 == 0.0)) + || ((op1 == 0.0) && (std::isinf(op2)))) { + return one_point_five; + } else if (std::isinf(op1) || std::isinf(op2)) { + // Return +inf if signs match, otherwise -inf. + return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity + : kFP64NegativeInfinity; + } else { + // The multiply-add-halve operation must be fully fused, so avoid interim + // rounding by checking which operand can be losslessly divided by two + // before doing the multiply-add. + if (std::isnormal(op1 / two)) { + return FusedMultiplyAdd(op1 / two, op2, one_point_five); + } else if (std::isnormal(op2 / two)) { + return FusedMultiplyAdd(op1, op2 / two, one_point_five); + } else { + // Neither operand is normal after halving: the result is dominated by + // the addition term, so just return that. + return one_point_five; + } + } +} + + +double Simulator::FPRoundInt(double value, FPRounding round_mode) { + if ((value == 0.0) || (value == kFP64PositiveInfinity) || + (value == kFP64NegativeInfinity)) { + return value; + } else if (std::isnan(value)) { + return FPProcessNaN(value); + } + + double int_result = std::floor(value); + double error = value - int_result; + switch (round_mode) { + case FPTieAway: { + // Take care of correctly handling the range ]-0.5, -0.0], which must + // yield -0.0. + if ((-0.5 < value) && (value < 0.0)) { + int_result = -0.0; + + } else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) { + // If the error is greater than 0.5, or is equal to 0.5 and the integer + // result is positive, round up. + int_result++; + } + break; + } + case FPTieEven: { + // Take care of correctly handling the range [-0.5, -0.0], which must + // yield -0.0. + if ((-0.5 <= value) && (value < 0.0)) { + int_result = -0.0; + + // If the error is greater than 0.5, or is equal to 0.5 and the integer + // result is odd, round up. + } else if ((error > 0.5) || + ((error == 0.5) && (std::fmod(int_result, 2) != 0))) { + int_result++; + } + break; + } + case FPZero: { + // If value>0 then we take floor(value) + // otherwise, ceil(value). + if (value < 0) { + int_result = ceil(value); + } + break; + } + case FPNegativeInfinity: { + // We always use floor(value). + break; + } + case FPPositiveInfinity: { + // Take care of correctly handling the range ]-1.0, -0.0], which must + // yield -0.0. + if ((-1.0 < value) && (value < 0.0)) { + int_result = -0.0; + + // If the error is non-zero, round up. + } else if (error > 0.0) { + int_result++; + } + break; + } + default: VIXL_UNIMPLEMENTED(); + } + return int_result; +} + + +int32_t Simulator::FPToInt32(double value, FPRounding rmode) { + value = FPRoundInt(value, rmode); + if (value >= kWMaxInt) { + return kWMaxInt; + } else if (value < kWMinInt) { + return kWMinInt; + } + return std::isnan(value) ? 0 : static_cast<int32_t>(value); +} + + +int64_t Simulator::FPToInt64(double value, FPRounding rmode) { + value = FPRoundInt(value, rmode); + if (value >= kXMaxInt) { + return kXMaxInt; + } else if (value < kXMinInt) { + return kXMinInt; + } + return std::isnan(value) ? 0 : static_cast<int64_t>(value); +} + + +uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) { + value = FPRoundInt(value, rmode); + if (value >= kWMaxUInt) { + return kWMaxUInt; + } else if (value < 0.0) { + return 0; + } + return std::isnan(value) ? 0 : static_cast<uint32_t>(value); +} + + +uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) { + value = FPRoundInt(value, rmode); + if (value >= kXMaxUInt) { + return kXMaxUInt; + } else if (value < 0.0) { + return 0; + } + return std::isnan(value) ? 0 : static_cast<uint64_t>(value); +} + + +#define DEFINE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \ +template <typename T> \ +LogicVRegister Simulator::FN(VectorFormat vform, \ + LogicVRegister dst, \ + const LogicVRegister& src1, \ + const LogicVRegister& src2) { \ + dst.ClearForWrite(vform); \ + for (int i = 0; i < LaneCountFromFormat(vform); i++) { \ + T op1 = src1.Float<T>(i); \ + T op2 = src2.Float<T>(i); \ + T result; \ + if (PROCNAN) { \ + result = FPProcessNaNs(op1, op2); \ + if (!std::isnan(result)) { \ + result = OP(op1, op2); \ + } \ + } else { \ + result = OP(op1, op2); \ + } \ + dst.SetFloat(i, result); \ + } \ + return dst; \ +} \ + \ +LogicVRegister Simulator::FN(VectorFormat vform, \ + LogicVRegister dst, \ + const LogicVRegister& src1, \ + const LogicVRegister& src2) { \ + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { \ + FN<float>(vform, dst, src1, src2); \ + } else { \ + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); \ + FN<double>(vform, dst, src1, src2); \ + } \ + return dst; \ +} +NEON_FP3SAME_LIST(DEFINE_NEON_FP_VECTOR_OP) +#undef DEFINE_NEON_FP_VECTOR_OP + + +LogicVRegister Simulator::fnmul(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + LogicVRegister product = fmul(vform, temp, src1, src2); + return fneg(vform, dst, product); +} + + +template <typename T> +LogicVRegister Simulator::frecps(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op1 = -src1.Float<T>(i); + T op2 = src2.Float<T>(i); + T result = FPProcessNaNs(op1, op2); + dst.SetFloat(i, std::isnan(result) ? result : FPRecipStepFused(op1, op2)); + } + return dst; +} + + +LogicVRegister Simulator::frecps(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + frecps<float>(vform, dst, src1, src2); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + frecps<double>(vform, dst, src1, src2); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::frsqrts(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op1 = -src1.Float<T>(i); + T op2 = src2.Float<T>(i); + T result = FPProcessNaNs(op1, op2); + dst.SetFloat(i, std::isnan(result) ? result : FPRSqrtStepFused(op1, op2)); + } + return dst; +} + + +LogicVRegister Simulator::frsqrts(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + frsqrts<float>(vform, dst, src1, src2); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + frsqrts<double>(vform, dst, src1, src2); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::fcmp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + Condition cond) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + bool result = false; + T op1 = src1.Float<T>(i); + T op2 = src2.Float<T>(i); + T nan_result = FPProcessNaNs(op1, op2); + if (!std::isnan(nan_result)) { + switch (cond) { + case eq: result = (op1 == op2); break; + case ge: result = (op1 >= op2); break; + case gt: result = (op1 > op2) ; break; + case le: result = (op1 <= op2); break; + case lt: result = (op1 < op2) ; break; + default: VIXL_UNREACHABLE(); break; + } + } + dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0); + } + return dst; +} + + +LogicVRegister Simulator::fcmp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + Condition cond) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + fcmp<float>(vform, dst, src1, src2, cond); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + fcmp<double>(vform, dst, src1, src2, cond); + } + return dst; +} + + +LogicVRegister Simulator::fcmp_zero(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + Condition cond) { + SimVRegister temp; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister zero_reg = dup_immediate(vform, temp, float_to_rawbits(0.0)); + fcmp<float>(vform, dst, src, zero_reg, cond); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister zero_reg = dup_immediate(vform, temp, + double_to_rawbits(0.0)); + fcmp<double>(vform, dst, src, zero_reg, cond); + } + return dst; +} + + +LogicVRegister Simulator::fabscmp(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + Condition cond) { + SimVRegister temp1, temp2; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister abs_src1 = fabs_<float>(vform, temp1, src1); + LogicVRegister abs_src2 = fabs_<float>(vform, temp2, src2); + fcmp<float>(vform, dst, abs_src1, abs_src2, cond); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister abs_src1 = fabs_<double>(vform, temp1, src1); + LogicVRegister abs_src2 = fabs_<double>(vform, temp2, src2); + fcmp<double>(vform, dst, abs_src1, abs_src2, cond); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::fmla(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op1 = src1.Float<T>(i); + T op2 = src2.Float<T>(i); + T acc = dst.Float<T>(i); + T result = FPMulAdd(acc, op1, op2); + dst.SetFloat(i, result); + } + return dst; +} + + +LogicVRegister Simulator::fmla(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + fmla<float>(vform, dst, src1, src2); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + fmla<double>(vform, dst, src1, src2); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::fmls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op1 = -src1.Float<T>(i); + T op2 = src2.Float<T>(i); + T acc = dst.Float<T>(i); + T result = FPMulAdd(acc, op1, op2); + dst.SetFloat(i, result); + } + return dst; +} + + +LogicVRegister Simulator::fmls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + fmls<float>(vform, dst, src1, src2); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + fmls<double>(vform, dst, src1, src2); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::fneg(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op = src.Float<T>(i); + op = -op; + dst.SetFloat(i, op); + } + return dst; +} + + +LogicVRegister Simulator::fneg(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + fneg<float>(vform, dst, src); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + fneg<double>(vform, dst, src); + } + return dst; +} + + +template <typename T> +LogicVRegister Simulator::fabs_(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op = src.Float<T>(i); + if (copysign(1.0, op) < 0.0) { + op = -op; + } + dst.SetFloat(i, op); + } + return dst; +} + + +LogicVRegister Simulator::fabs_(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + fabs_<float>(vform, dst, src); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + fabs_<double>(vform, dst, src); + } + return dst; +} + + +LogicVRegister Simulator::fabd(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2) { + SimVRegister temp; + fsub(vform, temp, src1, src2); + fabs_(vform, dst, temp); + return dst; +} + + +LogicVRegister Simulator::fsqrt(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float result = FPSqrt(src.Float<float>(i)); + dst.SetFloat(i, result); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double result = FPSqrt(src.Float<double>(i)); + dst.SetFloat(i, result); + } + } + return dst; +} + + +#define DEFINE_NEON_FP_PAIR_OP(FNP, FN, OP) \ +LogicVRegister Simulator::FNP(VectorFormat vform, \ + LogicVRegister dst, \ + const LogicVRegister& src1, \ + const LogicVRegister& src2) { \ + SimVRegister temp1, temp2; \ + uzp1(vform, temp1, src1, src2); \ + uzp2(vform, temp2, src1, src2); \ + FN(vform, dst, temp1, temp2); \ + return dst; \ +} \ + \ +LogicVRegister Simulator::FNP(VectorFormat vform, \ + LogicVRegister dst, \ + const LogicVRegister& src) { \ + if (vform == kFormatS) { \ + float result = OP(src.Float<float>(0), src.Float<float>(1)); \ + dst.SetFloat(0, result); \ + } else { \ + VIXL_ASSERT(vform == kFormatD); \ + double result = OP(src.Float<double>(0), src.Float<double>(1)); \ + dst.SetFloat(0, result); \ + } \ + dst.ClearForWrite(vform); \ + return dst; \ +} +NEON_FPPAIRWISE_LIST(DEFINE_NEON_FP_PAIR_OP) +#undef DEFINE_NEON_FP_PAIR_OP + + +LogicVRegister Simulator::fminmaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + FPMinMaxOp Op) { + VIXL_ASSERT(vform == kFormat4S); + USE(vform); + float result1 = (this->*Op)(src.Float<float>(0), src.Float<float>(1)); + float result2 = (this->*Op)(src.Float<float>(2), src.Float<float>(3)); + float result = (this->*Op)(result1, result2); + dst.ClearForWrite(kFormatS); + dst.SetFloat<float>(0, result); + return dst; +} + + +LogicVRegister Simulator::fmaxv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return fminmaxv(vform, dst, src, &Simulator::FPMax); +} + + +LogicVRegister Simulator::fminv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return fminmaxv(vform, dst, src, &Simulator::FPMin); +} + + +LogicVRegister Simulator::fmaxnmv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return fminmaxv(vform, dst, src, &Simulator::FPMaxNM); +} + + +LogicVRegister Simulator::fminnmv(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + return fminmaxv(vform, dst, src, &Simulator::FPMinNM); +} + + +LogicVRegister Simulator::fmul(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + dst.ClearForWrite(vform); + SimVRegister temp; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); + fmul<float>(vform, dst, src1, index_reg); + + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); + fmul<double>(vform, dst, src1, index_reg); + } + return dst; +} + + +LogicVRegister Simulator::fmla(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + dst.ClearForWrite(vform); + SimVRegister temp; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); + fmla<float>(vform, dst, src1, index_reg); + + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); + fmla<double>(vform, dst, src1, index_reg); + } + return dst; +} + + +LogicVRegister Simulator::fmls(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + dst.ClearForWrite(vform); + SimVRegister temp; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); + fmls<float>(vform, dst, src1, index_reg); + + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); + fmls<double>(vform, dst, src1, index_reg); + } + return dst; +} + + +LogicVRegister Simulator::fmulx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src1, + const LogicVRegister& src2, + int index) { + dst.ClearForWrite(vform); + SimVRegister temp; + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); + fmulx<float>(vform, dst, src1, index_reg); + + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); + fmulx<double>(vform, dst, src1, index_reg); + } + return dst; +} + + +LogicVRegister Simulator::frint(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + FPRounding rounding_mode, + bool inexact_exception) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float input = src.Float<float>(i); + float rounded = FPRoundInt(input, rounding_mode); + if (inexact_exception && !std::isnan(input) && (input != rounded)) { + FPProcessException(); + } + dst.SetFloat<float>(i, rounded); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double input = src.Float<double>(i); + double rounded = FPRoundInt(input, rounding_mode); + if (inexact_exception && !std::isnan(input) && (input != rounded)) { + FPProcessException(); + } + dst.SetFloat<double>(i, rounded); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvts(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + FPRounding rounding_mode, + int fbits) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float op = src.Float<float>(i) * std::pow(2.0f, fbits); + dst.SetInt(vform, i, FPToInt32(op, rounding_mode)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double op = src.Float<double>(i) * std::pow(2.0, fbits); + dst.SetInt(vform, i, FPToInt64(op, rounding_mode)); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtu(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + FPRounding rounding_mode, + int fbits) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float op = src.Float<float>(i) * std::pow(2.0f, fbits); + dst.SetUint(vform, i, FPToUInt32(op, rounding_mode)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double op = src.Float<double>(i) * std::pow(2.0, fbits); + dst.SetUint(vform, i, FPToUInt64(op, rounding_mode)); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtl(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) { + dst.SetFloat(i, FPToFloat(src.Float<float16>(i))); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) { + dst.SetFloat(i, FPToDouble(src.Float<float>(i))); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtl2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + int lane_count = LaneCountFromFormat(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < lane_count; i++) { + dst.SetFloat(i, FPToFloat(src.Float<float16>(i + lane_count))); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < lane_count; i++) { + dst.SetFloat(i, FPToDouble(src.Float<float>(i + lane_count))); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + if (LaneSizeInBitsFromFormat(vform) == kHRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetFloat(i, FPToFloat16(src.Float<float>(i), FPTieEven)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetFloat(i, FPToFloat(src.Float<double>(i), FPTieEven)); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + int lane_count = LaneCountFromFormat(vform) / 2; + if (LaneSizeInBitsFromFormat(vform) == kHRegSize) { + for (int i = lane_count - 1; i >= 0; i--) { + dst.SetFloat(i + lane_count, FPToFloat16(src.Float<float>(i), FPTieEven)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize); + for (int i = lane_count - 1; i >= 0; i--) { + dst.SetFloat(i + lane_count, FPToFloat(src.Float<double>(i), FPTieEven)); + } + } + return dst; +} + + +LogicVRegister Simulator::fcvtxn(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + dst.SetFloat(i, FPToFloat(src.Float<double>(i), FPRoundOdd)); + } + return dst; +} + + +LogicVRegister Simulator::fcvtxn2(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize); + int lane_count = LaneCountFromFormat(vform) / 2; + for (int i = lane_count - 1; i >= 0; i--) { + dst.SetFloat(i + lane_count, FPToFloat(src.Float<double>(i), FPRoundOdd)); + } + return dst; +} + + +// Based on reference C function recip_sqrt_estimate from ARM ARM. +double Simulator::recip_sqrt_estimate(double a) { + int q0, q1, s; + double r; + if (a < 0.5) { + q0 = static_cast<int>(a * 512.0); + r = 1.0 / sqrt((static_cast<double>(q0) + 0.5) / 512.0); + } else { + q1 = static_cast<int>(a * 256.0); + r = 1.0 / sqrt((static_cast<double>(q1) + 0.5) / 256.0); + } + s = static_cast<int>(256.0 * r + 0.5); + return static_cast<double>(s) / 256.0; +} + + +static inline uint64_t Bits(uint64_t val, int start_bit, int end_bit) { + return unsigned_bitextract_64(start_bit, end_bit, val); +} + + +template <typename T> +T Simulator::FPRecipSqrtEstimate(T op) { + if (std::isnan(op)) { + return FPProcessNaN(op); + } else if (op == 0.0) { + if (copysign(1.0, op) < 0.0) { + return kFP64NegativeInfinity; + } else { + return kFP64PositiveInfinity; + } + } else if (copysign(1.0, op) < 0.0) { + FPProcessException(); + return FPDefaultNaN<T>(); + } else if (std::isinf(op)) { + return 0.0; + } else { + uint64_t fraction; + int exp, result_exp; + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + exp = float_exp(op); + fraction = float_mantissa(op); + fraction <<= 29; + } else { + exp = double_exp(op); + fraction = double_mantissa(op); + } + + if (exp == 0) { + while (Bits(fraction, 51, 51) == 0) { + fraction = Bits(fraction, 50, 0) << 1; + exp -= 1; + } + fraction = Bits(fraction, 50, 0) << 1; + } + + double scaled; + if (Bits(exp, 0, 0) == 0) { + scaled = double_pack(0, 1022, Bits(fraction, 51, 44) << 44); + } else { + scaled = double_pack(0, 1021, Bits(fraction, 51, 44) << 44); + } + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + result_exp = (380 - exp) / 2; + } else { + result_exp = (3068 - exp) / 2; + } + + uint64_t estimate = double_to_rawbits(recip_sqrt_estimate(scaled)); + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0)); + uint32_t est_bits = static_cast<uint32_t>(Bits(estimate, 51, 29)); + return float_pack(0, exp_bits, est_bits); + } else { + return double_pack(0, Bits(result_exp, 10, 0), Bits(estimate, 51, 0)); + } + } +} + + +LogicVRegister Simulator::frsqrte(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float input = src.Float<float>(i); + dst.SetFloat(i, FPRecipSqrtEstimate<float>(input)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double input = src.Float<double>(i); + dst.SetFloat(i, FPRecipSqrtEstimate<double>(input)); + } + } + return dst; +} + +template <typename T> +T Simulator::FPRecipEstimate(T op, FPRounding rounding) { + uint32_t sign; + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + sign = float_sign(op); + } else { + sign = double_sign(op); + } + + if (std::isnan(op)) { + return FPProcessNaN(op); + } else if (std::isinf(op)) { + return (sign == 1) ? -0.0 : 0.0; + } else if (op == 0.0) { + FPProcessException(); // FPExc_DivideByZero exception. + return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity; + } else if (((sizeof(T) == sizeof(float)) && // NOLINT(runtime/sizeof) + (std::fabs(op) < std::pow(2.0, -128.0))) || + ((sizeof(T) == sizeof(double)) && // NOLINT(runtime/sizeof) + (std::fabs(op) < std::pow(2.0, -1024.0)))) { + bool overflow_to_inf = false; + switch (rounding) { + case FPTieEven: overflow_to_inf = true; break; + case FPPositiveInfinity: overflow_to_inf = (sign == 0); break; + case FPNegativeInfinity: overflow_to_inf = (sign == 1); break; + case FPZero: overflow_to_inf = false; break; + default: break; + } + FPProcessException(); // FPExc_Overflow and FPExc_Inexact. + if (overflow_to_inf) { + return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity; + } else { + // Return FPMaxNormal(sign). + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + return float_pack(sign, 0xfe, 0x07fffff); + } else { + return double_pack(sign, 0x7fe, 0x0fffffffffffffl); + } + } + } else { + uint64_t fraction; + int exp, result_exp; + uint32_t sign; + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + sign = float_sign(op); + exp = float_exp(op); + fraction = float_mantissa(op); + fraction <<= 29; + } else { + sign = double_sign(op); + exp = double_exp(op); + fraction = double_mantissa(op); + } + + if (exp == 0) { + if (Bits(fraction, 51, 51) == 0) { + exp -= 1; + fraction = Bits(fraction, 49, 0) << 2; + } else { + fraction = Bits(fraction, 50, 0) << 1; + } + } + + double scaled = double_pack(0, 1022, Bits(fraction, 51, 44) << 44); + + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + result_exp = (253 - exp); // In range 253-254 = -1 to 253+1 = 254. + } else { + result_exp = (2045 - exp); // In range 2045-2046 = -1 to 2045+1 = 2046. + } + + double estimate = recip_estimate(scaled); + + fraction = double_mantissa(estimate); + if (result_exp == 0) { + fraction = (UINT64_C(1) << 51) | Bits(fraction, 51, 1); + } else if (result_exp == -1) { + fraction = (UINT64_C(1) << 50) | Bits(fraction, 51, 2); + result_exp = 0; + } + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0)); + uint32_t frac_bits = static_cast<uint32_t>(Bits(fraction, 51, 29)); + return float_pack(sign, exp_bits, frac_bits); + } else { + return double_pack(sign, Bits(result_exp, 10, 0), Bits(fraction, 51, 0)); + } + } +} + + +LogicVRegister Simulator::frecpe(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + FPRounding round) { + dst.ClearForWrite(vform); + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + float input = src.Float<float>(i); + dst.SetFloat(i, FPRecipEstimate<float>(input, round)); + } + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + double input = src.Float<double>(i); + dst.SetFloat(i, FPRecipEstimate<double>(input, round)); + } + } + return dst; +} + + +LogicVRegister Simulator::ursqrte(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + uint64_t operand; + uint32_t result; + double dp_operand, dp_result; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + operand = src.Uint(vform, i); + if (operand <= 0x3FFFFFFF) { + result = 0xFFFFFFFF; + } else { + dp_operand = operand * std::pow(2.0, -32); + dp_result = recip_sqrt_estimate(dp_operand) * std::pow(2.0, 31); + result = static_cast<uint32_t>(dp_result); + } + dst.SetUint(vform, i, result); + } + return dst; +} + + +// Based on reference C function recip_estimate from ARM ARM. +double Simulator::recip_estimate(double a) { + int q, s; + double r; + q = static_cast<int>(a * 512.0); + r = 1.0 / ((static_cast<double>(q) + 0.5) / 512.0); + s = static_cast<int>(256.0 * r + 0.5); + return static_cast<double>(s) / 256.0; +} + + +LogicVRegister Simulator::urecpe(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + uint64_t operand; + uint32_t result; + double dp_operand, dp_result; + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + operand = src.Uint(vform, i); + if (operand <= 0x7FFFFFFF) { + result = 0xFFFFFFFF; + } else { + dp_operand = operand * std::pow(2.0, -32); + dp_result = recip_estimate(dp_operand) * std::pow(2.0, 31); + result = static_cast<uint32_t>(dp_result); + } + dst.SetUint(vform, i, result); + } + return dst; +} + +template <typename T> +LogicVRegister Simulator::frecpx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + dst.ClearForWrite(vform); + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + T op = src.Float<T>(i); + T result; + if (std::isnan(op)) { + result = FPProcessNaN(op); + } else { + int exp; + uint32_t sign; + if (sizeof(T) == sizeof(float)) { // NOLINT(runtime/sizeof) + sign = float_sign(op); + exp = float_exp(op); + exp = (exp == 0) ? (0xFF - 1) : static_cast<int>(Bits(~exp, 7, 0)); + result = float_pack(sign, exp, 0); + } else { + sign = double_sign(op); + exp = double_exp(op); + exp = (exp == 0) ? (0x7FF - 1) : static_cast<int>(Bits(~exp, 10, 0)); + result = double_pack(sign, exp, 0); + } + } + dst.SetFloat(i, result); + } + return dst; +} + + +LogicVRegister Simulator::frecpx(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + frecpx<float>(vform, dst, src); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + frecpx<double>(vform, dst, src); + } + return dst; +} + +LogicVRegister Simulator::scvtf(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int fbits, + FPRounding round) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + float result = FixedToFloat(src.Int(kFormatS, i), fbits, round); + dst.SetFloat<float>(i, result); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + double result = FixedToDouble(src.Int(kFormatD, i), fbits, round); + dst.SetFloat<double>(i, result); + } + } + return dst; +} + + +LogicVRegister Simulator::ucvtf(VectorFormat vform, + LogicVRegister dst, + const LogicVRegister& src, + int fbits, + FPRounding round) { + for (int i = 0; i < LaneCountFromFormat(vform); i++) { + if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { + float result = UFixedToFloat(src.Uint(kFormatS, i), fbits, round); + dst.SetFloat<float>(i, result); + } else { + VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); + double result = UFixedToDouble(src.Uint(kFormatD, i), fbits, round); + dst.SetFloat<double>(i, result); + } + } + return dst; +} + + +} // namespace vixl + +#endif // JS_SIMULATOR_ARM64 |