diff options
Diffstat (limited to 'depends/xz-embedded/include')
-rw-r--r-- | depends/xz-embedded/include/xz.h | 319 |
1 files changed, 319 insertions, 0 deletions
diff --git a/depends/xz-embedded/include/xz.h b/depends/xz-embedded/include/xz.h new file mode 100644 index 00000000..49a96f7b --- /dev/null +++ b/depends/xz-embedded/include/xz.h @@ -0,0 +1,319 @@ +/* + * XZ decompressor + * + * Authors: Lasse Collin <lasse.collin@tukaani.org> + * Igor Pavlov <http://7-zip.org/> + * + * This file has been put into the public domain. + * You can do whatever you want with this file. + */ + +#ifndef XZ_H +#define XZ_H + +#ifdef __KERNEL__ +# include <linux/stddef.h> +# include <linux/types.h> +#else +# include <stddef.h> +# include <stdint.h> +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/* Definitions that determine available features */ +#define XZ_DEC_ANY_CHECK 1 +#define XZ_USE_CRC64 1 + +// native machine code compression stuff +/* +#define XZ_DEC_X86 +#define XZ_DEC_POWERPC +#define XZ_DEC_IA64 +#define XZ_DEC_ARM +#define XZ_DEC_ARMTHUMB +#define XZ_DEC_SPARC +*/ + + +/* In Linux, this is used to make extern functions static when needed. */ +#ifndef XZ_EXTERN +# define XZ_EXTERN extern +#endif + +/** + * enum xz_mode - Operation mode + * + * @XZ_SINGLE: Single-call mode. This uses less RAM than + * than multi-call modes, because the LZMA2 + * dictionary doesn't need to be allocated as + * part of the decoder state. All required data + * structures are allocated at initialization, + * so xz_dec_run() cannot return XZ_MEM_ERROR. + * @XZ_PREALLOC: Multi-call mode with preallocated LZMA2 + * dictionary buffer. All data structures are + * allocated at initialization, so xz_dec_run() + * cannot return XZ_MEM_ERROR. + * @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is + * allocated once the required size has been + * parsed from the stream headers. If the + * allocation fails, xz_dec_run() will return + * XZ_MEM_ERROR. + * + * It is possible to enable support only for a subset of the above + * modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC, + * or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled + * with support for all operation modes, but the preboot code may + * be built with fewer features to minimize code size. + */ +enum xz_mode { + XZ_SINGLE, + XZ_PREALLOC, + XZ_DYNALLOC +}; + +/** + * enum xz_ret - Return codes + * @XZ_OK: Everything is OK so far. More input or more + * output space is required to continue. This + * return code is possible only in multi-call mode + * (XZ_PREALLOC or XZ_DYNALLOC). + * @XZ_STREAM_END: Operation finished successfully. + * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding + * is still possible in multi-call mode by simply + * calling xz_dec_run() again. + * Note that this return value is used only if + * XZ_DEC_ANY_CHECK was defined at build time, + * which is not used in the kernel. Unsupported + * check types return XZ_OPTIONS_ERROR if + * XZ_DEC_ANY_CHECK was not defined at build time. + * @XZ_MEM_ERROR: Allocating memory failed. This return code is + * possible only if the decoder was initialized + * with XZ_DYNALLOC. The amount of memory that was + * tried to be allocated was no more than the + * dict_max argument given to xz_dec_init(). + * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than + * allowed by the dict_max argument given to + * xz_dec_init(). This return value is possible + * only in multi-call mode (XZ_PREALLOC or + * XZ_DYNALLOC); the single-call mode (XZ_SINGLE) + * ignores the dict_max argument. + * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic + * bytes). + * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested + * compression options. In the decoder this means + * that the header CRC32 matches, but the header + * itself specifies something that we don't support. + * @XZ_DATA_ERROR: Compressed data is corrupt. + * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly + * different between multi-call and single-call + * mode; more information below. + * + * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls + * to XZ code cannot consume any input and cannot produce any new output. + * This happens when there is no new input available, or the output buffer + * is full while at least one output byte is still pending. Assuming your + * code is not buggy, you can get this error only when decoding a compressed + * stream that is truncated or otherwise corrupt. + * + * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer + * is too small or the compressed input is corrupt in a way that makes the + * decoder produce more output than the caller expected. When it is + * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR + * is used instead of XZ_BUF_ERROR. + */ +enum xz_ret { + XZ_OK, + XZ_STREAM_END, + XZ_UNSUPPORTED_CHECK, + XZ_MEM_ERROR, + XZ_MEMLIMIT_ERROR, + XZ_FORMAT_ERROR, + XZ_OPTIONS_ERROR, + XZ_DATA_ERROR, + XZ_BUF_ERROR +}; + +/** + * struct xz_buf - Passing input and output buffers to XZ code + * @in: Beginning of the input buffer. This may be NULL if and only + * if in_pos is equal to in_size. + * @in_pos: Current position in the input buffer. This must not exceed + * in_size. + * @in_size: Size of the input buffer + * @out: Beginning of the output buffer. This may be NULL if and only + * if out_pos is equal to out_size. + * @out_pos: Current position in the output buffer. This must not exceed + * out_size. + * @out_size: Size of the output buffer + * + * Only the contents of the output buffer from out[out_pos] onward, and + * the variables in_pos and out_pos are modified by the XZ code. + */ +struct xz_buf { + const uint8_t *in; + size_t in_pos; + size_t in_size; + + uint8_t *out; + size_t out_pos; + size_t out_size; +}; + +/** + * struct xz_dec - Opaque type to hold the XZ decoder state + */ +struct xz_dec; + +/** + * xz_dec_init() - Allocate and initialize a XZ decoder state + * @mode: Operation mode + * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for + * multi-call decoding. This is ignored in single-call mode + * (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes + * or 2^n + 2^(n-1) bytes (the latter sizes are less common + * in practice), so other values for dict_max don't make sense. + * In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB, + * 512 KiB, and 1 MiB are probably the only reasonable values, + * except for kernel and initramfs images where a bigger + * dictionary can be fine and useful. + * + * Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at + * once. The caller must provide enough output space or the decoding will + * fail. The output space is used as the dictionary buffer, which is why + * there is no need to allocate the dictionary as part of the decoder's + * internal state. + * + * Because the output buffer is used as the workspace, streams encoded using + * a big dictionary are not a problem in single-call mode. It is enough that + * the output buffer is big enough to hold the actual uncompressed data; it + * can be smaller than the dictionary size stored in the stream headers. + * + * Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes + * of memory is preallocated for the LZMA2 dictionary. This way there is no + * risk that xz_dec_run() could run out of memory, since xz_dec_run() will + * never allocate any memory. Instead, if the preallocated dictionary is too + * small for decoding the given input stream, xz_dec_run() will return + * XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be + * decoded to avoid allocating excessive amount of memory for the dictionary. + * + * Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC): + * dict_max specifies the maximum allowed dictionary size that xz_dec_run() + * may allocate once it has parsed the dictionary size from the stream + * headers. This way excessive allocations can be avoided while still + * limiting the maximum memory usage to a sane value to prevent running the + * system out of memory when decompressing streams from untrusted sources. + * + * On success, xz_dec_init() returns a pointer to struct xz_dec, which is + * ready to be used with xz_dec_run(). If memory allocation fails, + * xz_dec_init() returns NULL. + */ +XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max); + +/** + * xz_dec_run() - Run the XZ decoder + * @s: Decoder state allocated using xz_dec_init() + * @b: Input and output buffers + * + * The possible return values depend on build options and operation mode. + * See enum xz_ret for details. + * + * Note that if an error occurs in single-call mode (return value is not + * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the + * contents of the output buffer from b->out[b->out_pos] onward are + * undefined. This is true even after XZ_BUF_ERROR, because with some filter + * chains, there may be a second pass over the output buffer, and this pass + * cannot be properly done if the output buffer is truncated. Thus, you + * cannot give the single-call decoder a too small buffer and then expect to + * get that amount valid data from the beginning of the stream. You must use + * the multi-call decoder if you don't want to uncompress the whole stream. + */ +XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b); + +/** + * xz_dec_reset() - Reset an already allocated decoder state + * @s: Decoder state allocated using xz_dec_init() + * + * This function can be used to reset the multi-call decoder state without + * freeing and reallocating memory with xz_dec_end() and xz_dec_init(). + * + * In single-call mode, xz_dec_reset() is always called in the beginning of + * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in + * multi-call mode. + */ +XZ_EXTERN void xz_dec_reset(struct xz_dec *s); + +/** + * xz_dec_end() - Free the memory allocated for the decoder state + * @s: Decoder state allocated using xz_dec_init(). If s is NULL, + * this function does nothing. + */ +XZ_EXTERN void xz_dec_end(struct xz_dec *s); + +/* + * Standalone build (userspace build or in-kernel build for boot time use) + * needs a CRC32 implementation. For normal in-kernel use, kernel's own + * CRC32 module is used instead, and users of this module don't need to + * care about the functions below. + */ +#ifndef XZ_INTERNAL_CRC32 +# ifdef __KERNEL__ +# define XZ_INTERNAL_CRC32 0 +# else +# define XZ_INTERNAL_CRC32 1 +# endif +#endif + +/* + * If CRC64 support has been enabled with XZ_USE_CRC64, a CRC64 + * implementation is needed too. + */ +#ifndef XZ_USE_CRC64 +# undef XZ_INTERNAL_CRC64 +# define XZ_INTERNAL_CRC64 0 +#endif +#ifndef XZ_INTERNAL_CRC64 +# ifdef __KERNEL__ +# error Using CRC64 in the kernel has not been implemented. +# else +# define XZ_INTERNAL_CRC64 1 +# endif +#endif + +#if XZ_INTERNAL_CRC32 +/* + * This must be called before any other xz_* function to initialize + * the CRC32 lookup table. + */ +XZ_EXTERN void xz_crc32_init(void); + +/* + * Update CRC32 value using the polynomial from IEEE-802.3. To start a new + * calculation, the third argument must be zero. To continue the calculation, + * the previously returned value is passed as the third argument. + */ +XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc); +#endif + +#if XZ_INTERNAL_CRC64 +/* + * This must be called before any other xz_* function (except xz_crc32_init()) + * to initialize the CRC64 lookup table. + */ +XZ_EXTERN void xz_crc64_init(void); + +/* + * Update CRC64 value using the polynomial from ECMA-182. To start a new + * calculation, the third argument must be zero. To continue the calculation, + * the previously returned value is passed as the third argument. + */ +XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc); +#endif + +#ifdef __cplusplus +} +#endif + +#endif |