summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/cfl.c
blob: f9acfcbc903b99200ba43e5cb3933c89881f1952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"

void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) {
  if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) ||
        (cm->subsampling_x == 1 && cm->subsampling_y == 1))) {
    aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                       "Only 4:4:4 and 4:2:0 are currently supported by CfL");
  }
  memset(&cfl->pred_buf_q3, 0, sizeof(cfl->pred_buf_q3));
  cfl->subsampling_x = cm->subsampling_x;
  cfl->subsampling_y = cm->subsampling_y;
  cfl->are_parameters_computed = 0;
  cfl->store_y = 0;
#if CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG
  cfl_clear_sub8x8_val(cfl);
#endif  // CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG
}

// Due to frame boundary issues, it is possible that the total area covered by
// chroma exceeds that of luma. When this happens, we fill the missing pixels by
// repeating the last columns and/or rows.
static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
  const int diff_width = width - cfl->buf_width;
  const int diff_height = height - cfl->buf_height;

  if (diff_width > 0) {
    const int min_height = height - diff_height;
    int16_t *pred_buf_q3 = cfl->pred_buf_q3 + (width - diff_width);
    for (int j = 0; j < min_height; j++) {
      const int last_pixel = pred_buf_q3[-1];
      for (int i = 0; i < diff_width; i++) {
        pred_buf_q3[i] = last_pixel;
      }
      pred_buf_q3 += MAX_SB_SIZE;
    }
    cfl->buf_width = width;
  }
  if (diff_height > 0) {
    int16_t *pred_buf_q3 =
        cfl->pred_buf_q3 + ((height - diff_height) * MAX_SB_SIZE);
    for (int j = 0; j < diff_height; j++) {
      const int16_t *last_row_q3 = pred_buf_q3 - MAX_SB_SIZE;
      for (int i = 0; i < width; i++) {
        pred_buf_q3[i] = last_row_q3[i];
      }
      pred_buf_q3 += MAX_SB_SIZE;
    }
    cfl->buf_height = height;
  }
}

static void sum_above_row_lbd(const uint8_t *above_u, const uint8_t *above_v,
                              int width, int *out_sum_u, int *out_sum_v) {
  int sum_u = 0;
  int sum_v = 0;
  for (int i = 0; i < width; i++) {
    sum_u += above_u[i];
    sum_v += above_v[i];
  }
  *out_sum_u += sum_u;
  *out_sum_v += sum_v;
}
#if CONFIG_HIGHBITDEPTH
static void sum_above_row_hbd(const uint16_t *above_u, const uint16_t *above_v,
                              int width, int *out_sum_u, int *out_sum_v) {
  int sum_u = 0;
  int sum_v = 0;
  for (int i = 0; i < width; i++) {
    sum_u += above_u[i];
    sum_v += above_v[i];
  }
  *out_sum_u += sum_u;
  *out_sum_v += sum_v;
}
#endif  // CONFIG_HIGHBITDEPTH

static void sum_above_row(const MACROBLOCKD *xd, int width, int *out_sum_u,
                          int *out_sum_v) {
  const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
  const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];
#if CONFIG_HIGHBITDEPTH
  if (get_bitdepth_data_path_index(xd)) {
    const uint16_t *above_u_16 =
        CONVERT_TO_SHORTPTR(pd_u->dst.buf) - pd_u->dst.stride;
    const uint16_t *above_v_16 =
        CONVERT_TO_SHORTPTR(pd_v->dst.buf) - pd_v->dst.stride;
    sum_above_row_hbd(above_u_16, above_v_16, width, out_sum_u, out_sum_v);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  const uint8_t *above_u = pd_u->dst.buf - pd_u->dst.stride;
  const uint8_t *above_v = pd_v->dst.buf - pd_v->dst.stride;
  sum_above_row_lbd(above_u, above_v, width, out_sum_u, out_sum_v);
}

static void sum_left_col_lbd(const uint8_t *left_u, int u_stride,
                             const uint8_t *left_v, int v_stride, int height,
                             int *out_sum_u, int *out_sum_v) {
  int sum_u = 0;
  int sum_v = 0;
  for (int i = 0; i < height; i++) {
    sum_u += left_u[i * u_stride];
    sum_v += left_v[i * v_stride];
  }
  *out_sum_u += sum_u;
  *out_sum_v += sum_v;
}
#if CONFIG_HIGHBITDEPTH
static void sum_left_col_hbd(const uint16_t *left_u, int u_stride,
                             const uint16_t *left_v, int v_stride, int height,
                             int *out_sum_u, int *out_sum_v) {
  int sum_u = 0;
  int sum_v = 0;
  for (int i = 0; i < height; i++) {
    sum_u += left_u[i * u_stride];
    sum_v += left_v[i * v_stride];
  }
  *out_sum_u += sum_u;
  *out_sum_v += sum_v;
}
#endif  // CONFIG_HIGHBITDEPTH
static void sum_left_col(const MACROBLOCKD *xd, int height, int *out_sum_u,
                         int *out_sum_v) {
  const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
  const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];

#if CONFIG_HIGHBITDEPTH
  if (get_bitdepth_data_path_index(xd)) {
    const uint16_t *left_u_16 = CONVERT_TO_SHORTPTR(pd_u->dst.buf) - 1;
    const uint16_t *left_v_16 = CONVERT_TO_SHORTPTR(pd_v->dst.buf) - 1;
    sum_left_col_hbd(left_u_16, pd_u->dst.stride, left_v_16, pd_v->dst.stride,
                     height, out_sum_u, out_sum_v);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  const uint8_t *left_u = pd_u->dst.buf - 1;
  const uint8_t *left_v = pd_v->dst.buf - 1;
  sum_left_col_lbd(left_u, pd_u->dst.stride, left_v, pd_v->dst.stride, height,
                   out_sum_u, out_sum_v);
}

// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
  CFL_CTX *const cfl = xd->cfl;

  // Compute DC_PRED until block boundary. We can't assume the neighbor will use
  // the same transform size.
  const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U)
                    << tx_size_wide_log2[0];
  const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U)
                     << tx_size_high_log2[0];
  // Number of pixel on the top and left borders.
  const int num_pel = width + height;

  int sum_u = 0;
  int sum_v = 0;

// Match behavior of build_intra_predictors_high (reconintra.c) at superblock
// boundaries:
// base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
// base+1   A      B  ..     Y      Z
// base+1   C      D  ..     W      X
// base+1   E      F  ..     U      V
// base+1   G      H  ..     S      T      T      T      T      T
// ..

#if CONFIG_CHROMA_SUB8X8
  if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) {
#else
  if (xd->up_available && xd->mb_to_right_edge >= 0) {
#endif
    sum_above_row(xd, width, &sum_u, &sum_v);
  } else {
    const int base = 128 << (xd->bd - 8);
    sum_u = width * (base - 1);
    sum_v = width * (base - 1);
  }

#if CONFIG_CHROMA_SUB8X8
  if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) {
#else
  if (xd->left_available && xd->mb_to_bottom_edge >= 0) {
#endif
    sum_left_col(xd, height, &sum_u, &sum_v);
  } else {
    const int base = 128 << (xd->bd - 8);
    sum_u += height * (base + 1);
    sum_v += height * (base + 1);
  }

  // TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will
  // not be a power of two. So these divisions will have to use a lookup table.
  cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel;
  cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel;
}

static void cfl_subtract_averages(CFL_CTX *cfl, TX_SIZE tx_size) {
  const int width = cfl->uv_width;
  const int height = cfl->uv_height;
  const int tx_height = tx_size_high[tx_size];
  const int tx_width = tx_size_wide[tx_size];
  const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size];
  const int num_pel_log2 =
      (tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]);

  int16_t *pred_buf_q3 = cfl->pred_buf_q3;

  cfl_pad(cfl, width, height);

  for (int b_j = 0; b_j < height; b_j += tx_height) {
    for (int b_i = 0; b_i < width; b_i += tx_width) {
      int sum_q3 = 0;
      int16_t *tx_pred_buf_q3 = pred_buf_q3;
      for (int t_j = 0; t_j < tx_height; t_j++) {
        for (int t_i = b_i; t_i < b_i + tx_width; t_i++) {
          sum_q3 += tx_pred_buf_q3[t_i];
        }
        tx_pred_buf_q3 += MAX_SB_SIZE;
      }
      int avg_q3 = (sum_q3 + (1 << (num_pel_log2 - 1))) >> num_pel_log2;
      // Loss is never more than 1/2 (in Q3)
      assert(fabs((double)avg_q3 - (sum_q3 / ((double)(1 << num_pel_log2)))) <=
             0.5);

      tx_pred_buf_q3 = pred_buf_q3;
      for (int t_j = 0; t_j < tx_height; t_j++) {
        for (int t_i = b_i; t_i < b_i + tx_width; t_i++) {
          tx_pred_buf_q3[t_i] -= avg_q3;
        }

        tx_pred_buf_q3 += MAX_SB_SIZE;
      }
    }
    pred_buf_q3 += block_row_stride;
  }
}

static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign,
                                   CFL_PRED_TYPE pred_type) {
  const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
                                                   : CFL_SIGN_V(joint_sign);
  if (alpha_sign == CFL_SIGN_ZERO) return 0;
  const int abs_alpha_q3 =
      (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
  return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
}

static void cfl_build_prediction_lbd(const int16_t *pred_buf_q3, uint8_t *dst,
                                     int dst_stride, int width, int height,
                                     int alpha_q3, int dc_pred) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      dst[i] =
          clip_pixel(get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred);
    }
    dst += dst_stride;
    pred_buf_q3 += MAX_SB_SIZE;
  }
}

#if CONFIG_HIGHBITDEPTH
static void cfl_build_prediction_hbd(const int16_t *pred_buf_q3, uint16_t *dst,
                                     int dst_stride, int width, int height,
                                     int alpha_q3, int dc_pred, int bit_depth) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      dst[i] = clip_pixel_highbd(
          get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred, bit_depth);
    }
    dst += dst_stride;
    pred_buf_q3 += MAX_SB_SIZE;
  }
}
#endif  // CONFIG_HIGHBITDEPTH

static void cfl_build_prediction(const int16_t *pred_buf_q3, uint8_t *dst,
                                 int dst_stride, int width, int height,
                                 int alpha_q3, int dc_pred, int use_hbd,
                                 int bit_depth) {
#if CONFIG_HIGHBITDEPTH
  if (use_hbd) {
    uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
    cfl_build_prediction_hbd(pred_buf_q3, dst_16, dst_stride, width, height,
                             alpha_q3, dc_pred, bit_depth);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  (void)use_hbd;
  (void)bit_depth;
  cfl_build_prediction_lbd(pred_buf_q3, dst, dst_stride, width, height,
                           alpha_q3, dc_pred);
}

void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
                       int row, int col, TX_SIZE tx_size, int plane) {
  CFL_CTX *const cfl = xd->cfl;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;

  // CfL parameters must be computed before prediction can be done.
  assert(cfl->are_parameters_computed == 1);

  const int16_t *pred_buf_q3 =
      cfl->pred_buf_q3 + ((row * MAX_SB_SIZE + col) << tx_size_wide_log2[0]);
  const int alpha_q3 =
      cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);

  cfl_build_prediction(pred_buf_q3, dst, dst_stride, tx_size_wide[tx_size],
                       tx_size_high[tx_size], alpha_q3, cfl->dc_pred[plane - 1],
                       get_bitdepth_data_path_index(xd), xd->bd);
}

static void cfl_luma_subsampling_420_lbd(const uint8_t *input, int input_stride,
                                         int16_t *output_q3, int width,
                                         int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      int top = i << 1;
      int bot = top + input_stride;
      output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1])
                     << 1;
    }
    input += input_stride << 1;
    output_q3 += MAX_SB_SIZE;
  }
}

static void cfl_luma_subsampling_444_lbd(const uint8_t *input, int input_stride,
                                         int16_t *output_q3, int width,
                                         int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      output_q3[i] = input[i] << 3;
    }
    input += input_stride;
    output_q3 += MAX_SB_SIZE;
  }
}

#if CONFIG_HIGHBITDEPTH
static void cfl_luma_subsampling_420_hbd(const uint16_t *input,
                                         int input_stride, int16_t *output_q3,
                                         int width, int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      int top = i << 1;
      int bot = top + input_stride;
      output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1])
                     << 1;
    }
    input += input_stride << 1;
    output_q3 += MAX_SB_SIZE;
  }
}

static void cfl_luma_subsampling_444_hbd(const uint16_t *input,
                                         int input_stride, int16_t *output_q3,
                                         int width, int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      output_q3[i] = input[i] << 3;
    }
    input += input_stride;
    output_q3 += MAX_SB_SIZE;
  }
}
#endif  // CONFIG_HIGHBITDEPTH

static void cfl_luma_subsampling_420(const uint8_t *input, int input_stride,
                                     int16_t *output_q3, int width, int height,
                                     int use_hbd) {
#if CONFIG_HIGHBITDEPTH
  if (use_hbd) {
    const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input);
    cfl_luma_subsampling_420_hbd(input_16, input_stride, output_q3, width,
                                 height);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  (void)use_hbd;
  cfl_luma_subsampling_420_lbd(input, input_stride, output_q3, width, height);
}

static void cfl_luma_subsampling_444(const uint8_t *input, int input_stride,
                                     int16_t *output_q3, int width, int height,
                                     int use_hbd) {
#if CONFIG_HIGHBITDEPTH
  if (use_hbd) {
    uint16_t *input_16 = CONVERT_TO_SHORTPTR(input);
    cfl_luma_subsampling_444_hbd(input_16, input_stride, output_q3, width,
                                 height);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  (void)use_hbd;
  cfl_luma_subsampling_444_lbd(input, input_stride, output_q3, width, height);
}

static INLINE void cfl_store(CFL_CTX *cfl, const uint8_t *input,
                             int input_stride, int row, int col, int width,
                             int height, int use_hbd) {
  const int tx_off_log2 = tx_size_wide_log2[0];
  const int sub_x = cfl->subsampling_x;
  const int sub_y = cfl->subsampling_y;
  const int store_row = row << (tx_off_log2 - sub_y);
  const int store_col = col << (tx_off_log2 - sub_x);
  const int store_height = height >> sub_y;
  const int store_width = width >> sub_x;

  // Invalidate current parameters
  cfl->are_parameters_computed = 0;

  // Store the surface of the pixel buffer that was written to, this way we
  // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
  // frame boundary)
  if (col == 0 && row == 0) {
    cfl->buf_width = store_width;
    cfl->buf_height = store_height;
  } else {
    cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
    cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
  }

  // Check that we will remain inside the pixel buffer.
  assert(store_row + store_height <= MAX_SB_SIZE);
  assert(store_col + store_width <= MAX_SB_SIZE);

  // Store the input into the CfL pixel buffer
  int16_t *pred_buf_q3 =
      cfl->pred_buf_q3 + (store_row * MAX_SB_SIZE + store_col);

  if (sub_y == 0 && sub_x == 0) {
    cfl_luma_subsampling_444(input, input_stride, pred_buf_q3, store_width,
                             store_height, use_hbd);
  } else if (sub_y == 1 && sub_x == 1) {
    cfl_luma_subsampling_420(input, input_stride, pred_buf_q3, store_width,
                             store_height, use_hbd);
  } else {
    // TODO(ltrudeau) add support for 4:2:2
    assert(0);  // Unsupported chroma subsampling
  }
}

#if CONFIG_CHROMA_SUB8X8
// Adjust the row and column of blocks smaller than 8X8, as chroma-referenced
// and non-chroma-referenced blocks are stored together in the CfL buffer.
static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out,
                                        int *col_out) {
  // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s.
  if ((cfl->mi_row & 0x01) && cfl->subsampling_y) {
    assert(*row_out == 0);
    (*row_out)++;
  }

  // Increment col index for right: 4x8, 4x16 or both right 4x4s.
  if ((cfl->mi_col & 0x01) && cfl->subsampling_x) {
    assert(*col_out == 0);
    (*col_out)++;
  }
}
#if CONFIG_DEBUG
static INLINE void sub8x8_set_val(CFL_CTX *cfl, int row, int col, int val_high,
                                  int val_wide) {
  for (int val_r = 0; val_r < val_high; val_r++) {
    assert(row + val_r < CFL_SUB8X8_VAL_MI_SIZE);
    int row_off = (row + val_r) * CFL_SUB8X8_VAL_MI_SIZE;
    for (int val_c = 0; val_c < val_wide; val_c++) {
      assert(col + val_c < CFL_SUB8X8_VAL_MI_SIZE);
      assert(cfl->sub8x8_val[row_off + col + val_c] == 0);
      cfl->sub8x8_val[row_off + col + val_c]++;
    }
  }
}
#endif  // CONFIG_DEBUG
#endif  // CONFIG_CHROMA_SUB8X8

void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
                  BLOCK_SIZE bsize) {
  CFL_CTX *const cfl = xd->cfl;
  struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
  uint8_t *dst =
      &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
  (void)bsize;
#if CONFIG_CHROMA_SUB8X8

  if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    // Only dimensions of size 4 can have an odd offset.
    assert(!((col & 1) && tx_size_wide[tx_size] != 4));
    assert(!((row & 1) && tx_size_high[tx_size] != 4));
    sub8x8_adjust_offset(cfl, &row, &col);
#if CONFIG_DEBUG
    sub8x8_set_val(cfl, row, col, tx_size_high_unit[tx_size],
                   tx_size_wide_unit[tx_size]);
#endif  // CONFIG_DEBUG
  }
#endif
  cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size_wide[tx_size],
            tx_size_high[tx_size], get_bitdepth_data_path_index(xd));
}

void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) {
  CFL_CTX *const cfl = xd->cfl;
  struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
  int row = 0;
  int col = 0;
#if CONFIG_CHROMA_SUB8X8
  bsize = AOMMAX(BLOCK_4X4, bsize);
  if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    sub8x8_adjust_offset(cfl, &row, &col);
#if CONFIG_DEBUG
    sub8x8_set_val(cfl, row, col, mi_size_high[bsize], mi_size_wide[bsize]);
#endif  // CONFIG_DEBUG
  }
#endif  // CONFIG_CHROMA_SUB8X8
  const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
  const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
  cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, width, height,
            get_bitdepth_data_path_index(xd));
}

void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
  CFL_CTX *const cfl = xd->cfl;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;

  // Do not call cfl_compute_parameters multiple time on the same values.
  assert(cfl->are_parameters_computed == 0);

#if CONFIG_CHROMA_SUB8X8
  const BLOCK_SIZE plane_bsize = AOMMAX(
      BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]));
#if CONFIG_DEBUG
  if (mbmi->sb_type < BLOCK_8X8) {
    for (int val_r = 0; val_r < mi_size_high[mbmi->sb_type]; val_r++) {
      for (int val_c = 0; val_c < mi_size_wide[mbmi->sb_type]; val_c++) {
        assert(cfl->sub8x8_val[val_r * CFL_SUB8X8_VAL_MI_SIZE + val_c] == 1);
      }
    }
    cfl_clear_sub8x8_val(cfl);
  }
#endif  // CONFIG_DEBUG
#else
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]);
#endif
  // AOM_PLANE_U is used, but both planes will have the same sizes.
  cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size);
  cfl->uv_height =
      max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size);

  assert(cfl->buf_width <= cfl->uv_width);
  assert(cfl->buf_height <= cfl->uv_height);

  cfl_dc_pred(xd, plane_bsize);
  cfl_subtract_averages(cfl, tx_size);
  cfl->are_parameters_computed = 1;
}