1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/av1_inv_txfm1d.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
/* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
0.5 shifts per pixel. */
int i;
tran_low_t output[16];
tran_low_t a1, b1, c1, d1, e1;
const tran_low_t *ip = input;
tran_low_t *op = output;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
for (i = 0; i < 4; i++) {
a1 = ip[0] >> UNIT_QUANT_SHIFT;
c1 = ip[1] >> UNIT_QUANT_SHIFT;
d1 = ip[2] >> UNIT_QUANT_SHIFT;
b1 = ip[3] >> UNIT_QUANT_SHIFT;
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
op[0] = a1;
op[1] = b1;
op[2] = c1;
op[3] = d1;
ip += 4;
op += 4;
}
ip = output;
for (i = 0; i < 4; i++) {
a1 = ip[4 * 0];
c1 = ip[4 * 1];
d1 = ip[4 * 2];
b1 = ip[4 * 3];
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
range_check_value(a1, bd + 1);
range_check_value(b1, bd + 1);
range_check_value(c1, bd + 1);
range_check_value(d1, bd + 1);
dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
ip++;
dest++;
}
}
void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
int dest_stride, int bd) {
int i;
tran_low_t a1, e1;
tran_low_t tmp[4];
const tran_low_t *ip = in;
tran_low_t *op = tmp;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
(void)bd;
a1 = ip[0] >> UNIT_QUANT_SHIFT;
e1 = a1 >> 1;
a1 -= e1;
op[0] = a1;
op[1] = op[2] = op[3] = e1;
ip = tmp;
for (i = 0; i < 4; i++) {
e1 = ip[0] >> 1;
a1 = ip[0] - e1;
dest[dest_stride * 0] =
highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd);
dest[dest_stride * 1] =
highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd);
dest[dest_stride * 2] =
highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd);
dest[dest_stride * 3] =
highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd);
ip++;
dest++;
}
}
static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT4: return av1_idct4_new;
case TXFM_TYPE_DCT8: return av1_idct8_new;
case TXFM_TYPE_DCT16: return av1_idct16_new;
case TXFM_TYPE_DCT32: return av1_idct32_new;
case TXFM_TYPE_DCT64: return av1_idct64_new;
case TXFM_TYPE_ADST4: return av1_iadst4_new;
case TXFM_TYPE_ADST8: return av1_iadst8_new;
case TXFM_TYPE_ADST16: return av1_iadst16_new;
case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
default: assert(0); return NULL;
}
}
static const int8_t inv_shift_4x4[2] = { 0, -4 };
static const int8_t inv_shift_8x8[2] = { -1, -4 };
static const int8_t inv_shift_16x16[2] = { -2, -4 };
static const int8_t inv_shift_32x32[2] = { -2, -4 };
static const int8_t inv_shift_64x64[2] = { -2, -4 };
static const int8_t inv_shift_4x8[2] = { 0, -4 };
static const int8_t inv_shift_8x4[2] = { 0, -4 };
static const int8_t inv_shift_8x16[2] = { -1, -4 };
static const int8_t inv_shift_16x8[2] = { -1, -4 };
static const int8_t inv_shift_16x32[2] = { -1, -4 };
static const int8_t inv_shift_32x16[2] = { -1, -4 };
static const int8_t inv_shift_32x64[2] = { -1, -4 };
static const int8_t inv_shift_64x32[2] = { -1, -4 };
static const int8_t inv_shift_4x16[2] = { -1, -4 };
static const int8_t inv_shift_16x4[2] = { -1, -4 };
static const int8_t inv_shift_8x32[2] = { -2, -4 };
static const int8_t inv_shift_32x8[2] = { -2, -4 };
static const int8_t inv_shift_16x64[2] = { -2, -4 };
static const int8_t inv_shift_64x16[2] = { -2, -4 };
const int8_t *inv_txfm_shift_ls[TX_SIZES_ALL] = {
inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32,
inv_shift_64x64, inv_shift_4x8, inv_shift_8x4, inv_shift_8x16,
inv_shift_16x8, inv_shift_16x32, inv_shift_32x16, inv_shift_32x64,
inv_shift_64x32, inv_shift_4x16, inv_shift_16x4, inv_shift_8x32,
inv_shift_32x8, inv_shift_16x64, inv_shift_64x16,
};
/* clang-format off */
const int8_t inv_cos_bit_col[MAX_TXWH_IDX] // txw_idx
[MAX_TXWH_IDX] = { // txh_idx
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0, 0 },
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0 },
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
{ 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
{ 0, 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }
};
const int8_t inv_cos_bit_row[MAX_TXWH_IDX] // txw_idx
[MAX_TXWH_IDX] = { // txh_idx
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0, 0 },
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0 },
{ INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
{ 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
{ 0, 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }
};
/* clang-format on */
const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
TXFM_2D_FLIP_CFG *cfg) {
assert(cfg != NULL);
cfg->tx_size = tx_size;
set_flip_cfg(tx_type, cfg);
av1_zero(cfg->stage_range_col);
av1_zero(cfg->stage_range_row);
set_flip_cfg(tx_type, cfg);
const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
cfg->shift = inv_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
cfg->cos_bit_col = inv_cos_bit_col[txw_idx][txh_idx];
cfg->cos_bit_row = inv_cos_bit_row[txw_idx][txh_idx];
cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
}
cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
}
cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
}
void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
int bd) {
const int fwd_shift = inv_start_range[tx_size];
const int8_t *shift = cfg->shift;
int8_t opt_range_row, opt_range_col;
if (bd == 8) {
opt_range_row = 16;
opt_range_col = 16;
} else if (bd == 10) {
opt_range_row = 18;
opt_range_col = 16;
} else {
assert(bd == 12);
opt_range_row = 20;
opt_range_col = 18;
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1;
(void)real_range_row;
if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) {
// the adst4 may use 1 extra bit on top of opt_range_row at stage 1
// so opt_range_col >= real_range_col will not hold
stage_range_row[i] = opt_range_row;
} else {
assert(opt_range_row >= real_range_row);
stage_range_row[i] = opt_range_row;
}
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
int real_range_col =
cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
(void)real_range_col;
if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) {
// the adst4 may use 1 extra bit on top of opt_range_row at stage 1
// so opt_range_col >= real_range_col will not hold
stage_range_col[i] = opt_range_col;
} else {
assert(opt_range_col >= real_range_col);
stage_range_col[i] = opt_range_col;
}
}
}
static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
int stride, TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf, TX_SIZE tx_size,
int bd) {
// Note when assigning txfm_size_col, we use the txfm_size from the
// row configuration and vice versa. This is intentionally done to
// accurately perform rectangular transforms. When the transform is
// rectangular, the number of columns will be the same as the
// txfm_size stored in the row cfg struct. It will make no difference
// for square transforms.
const int txfm_size_col = tx_size_wide[cfg->tx_size];
const int txfm_size_row = tx_size_high[cfg->tx_size];
// Take the shift from the larger dimension in the rectangular case.
const int8_t *shift = cfg->shift;
const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
// txfm_buf's length is txfm_size_row * txfm_size_col + 2 *
// AOMMAX(txfm_size_row, txfm_size_col)
// it is used for intermediate data buffering
const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
int32_t *temp_in = txfm_buf;
int32_t *temp_out = temp_in + buf_offset;
int32_t *buf = temp_out + buf_offset;
int32_t *buf_ptr = buf;
int c, r;
// Rows
for (r = 0; r < txfm_size_row; ++r) {
if (abs(rect_type) == 1) {
for (c = 0; c < txfm_size_col; ++c) {
temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits);
}
clamp_buf(temp_in, txfm_size_col, bd + 8);
txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
} else {
for (c = 0; c < txfm_size_col; ++c) {
temp_in[c] = input[c];
}
clamp_buf(temp_in, txfm_size_col, bd + 8);
txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
}
av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
input += txfm_size_col;
buf_ptr += txfm_size_col;
}
// Columns
for (c = 0; c < txfm_size_col; ++c) {
if (cfg->lr_flip == 0) {
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + c];
} else {
// flip left right
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
}
clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16));
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
if (cfg->ud_flip == 0) {
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] =
highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
}
} else {
// flip upside down
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] = highbd_clip_pixel_add(
output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
}
}
}
}
static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
int stride, int32_t *txfm_buf,
TX_TYPE tx_type, TX_SIZE tx_size,
int bd) {
TXFM_2D_FLIP_CFG cfg;
av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
// Forward shift sum uses larger square size, to be consistent with what
// av1_gen_inv_stage_range() does for inverse shifts.
inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
}
void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
}
void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
}
void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
}
void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
}
void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
}
void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
}
void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
}
void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
}
void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
}
void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
}
void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// TODO(urvang): Can the same array be reused, instead of using a new array?
// Remap 32x32 input into a modified 64x64 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 64];
for (int row = 0; row < 32; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
bd);
}
void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 64x32 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 32];
for (int row = 0; row < 32; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
bd);
}
void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 32x64 input by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[32 * 64];
memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
bd);
}
void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 16x32 input into a modified 16x64 input by:
// - Copying over these values in top-left 16x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[16 * 64];
memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
bd);
}
void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x16 input into a modified 64x16 by:
// - Copying over these values in top-left 32x16 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 16];
for (int row = 0; row < 16; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
bd);
}
void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
}
void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
}
void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
}
void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
}
|