summaryrefslogtreecommitdiffstats
path: root/js/src/ds/OrderedHashTable.h
blob: c12d43caa7f01a0bc7637290524c2378854d5bea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ds_OrderedHashTable_h
#define ds_OrderedHashTable_h

/*
 * Define two collection templates, js::OrderedHashMap and js::OrderedHashSet.
 * They are like js::HashMap and js::HashSet except that:
 *
 *   - Iterating over an Ordered hash table visits the entries in the order in
 *     which they were inserted. This means that unlike a HashMap, the behavior
 *     of an OrderedHashMap is deterministic (as long as the HashPolicy methods
 *     are effect-free and consistent); the hashing is a pure performance
 *     optimization.
 *
 *   - Range objects over Ordered tables remain valid even when entries are
 *     added or removed or the table is resized. (However in the case of
 *     removing entries, note the warning on class Range below.)
 *
 *   - The API is a little different, so it's not a drop-in replacement.
 *     In particular, the hash policy is a little different.
 *     Also, the Ordered templates lack the Ptr and AddPtr types.
 *
 * Hash policies
 *
 * See the comment about "Hash policy" in HashTable.h for general features that
 * hash policy classes must provide. Hash policies for OrderedHashMaps and Sets
 * differ in that the hash() method takes an extra argument:
 *     static js::HashNumber hash(Lookup, const HashCodeScrambler&);
 * They must additionally provide a distinguished "empty" key value and the
 * following static member functions:
 *     bool isEmpty(const Key&);
 *     void makeEmpty(Key*);
 */

#include "mozilla/HashFunctions.h"
#include "mozilla/Move.h"

using mozilla::Forward;
using mozilla::Move;

namespace js {

namespace detail {

/*
 * detail::OrderedHashTable is the underlying data structure used to implement both
 * OrderedHashMap and OrderedHashSet. Programs should use one of those two
 * templates rather than OrderedHashTable.
 */
template <class T, class Ops, class AllocPolicy>
class OrderedHashTable
{
  public:
    typedef typename Ops::KeyType Key;
    typedef typename Ops::Lookup Lookup;

    struct Data
    {
        T element;
        Data* chain;

        Data(const T& e, Data* c) : element(e), chain(c) {}
        Data(T&& e, Data* c) : element(Move(e)), chain(c) {}
    };

    class Range;
    friend class Range;

  private:
    Data** hashTable;           // hash table (has hashBuckets() elements)
    Data* data;                 // data vector, an array of Data objects
                                // data[0:dataLength] are constructed
    uint32_t dataLength;        // number of constructed elements in data
    uint32_t dataCapacity;      // size of data, in elements
    uint32_t liveCount;         // dataLength less empty (removed) entries
    uint32_t hashShift;         // multiplicative hash shift
    Range* ranges;              // list of all live Ranges on this table
    AllocPolicy alloc;
    mozilla::HashCodeScrambler hcs;  // don't reveal pointer hash codes

  public:
    OrderedHashTable(AllocPolicy& ap, mozilla::HashCodeScrambler hcs)
        : hashTable(nullptr), data(nullptr), dataLength(0), ranges(nullptr), alloc(ap), hcs(hcs) {}

    MOZ_MUST_USE bool init() {
        MOZ_ASSERT(!hashTable, "init must be called at most once");

        uint32_t buckets = initialBuckets();
        Data** tableAlloc = alloc.template pod_malloc<Data*>(buckets);
        if (!tableAlloc)
            return false;
        for (uint32_t i = 0; i < buckets; i++)
            tableAlloc[i] = nullptr;

        uint32_t capacity = uint32_t(buckets * fillFactor());
        Data* dataAlloc = alloc.template pod_malloc<Data>(capacity);
        if (!dataAlloc) {
            alloc.free_(tableAlloc);
            return false;
        }

        // clear() requires that members are assigned only after all allocation
        // has succeeded, and that this->ranges is left untouched.
        hashTable = tableAlloc;
        data = dataAlloc;
        dataLength = 0;
        dataCapacity = capacity;
        liveCount = 0;
        hashShift = HashNumberSizeBits - initialBucketsLog2();
        MOZ_ASSERT(hashBuckets() == buckets);
        return true;
    }

    ~OrderedHashTable() {
        for (Range* r = ranges; r; ) {
            Range* next = r->next;
            r->onTableDestroyed();
            r = next;
        }
        alloc.free_(hashTable);
        freeData(data, dataLength);
    }

    /* Return the number of elements in the table. */
    uint32_t count() const { return liveCount; }

    /* True if any element matches l. */
    bool has(const Lookup& l) const {
        return lookup(l) != nullptr;
    }

    /* Return a pointer to the element, if any, that matches l, or nullptr. */
    T* get(const Lookup& l) {
        Data* e = lookup(l, prepareHash(l));
        return e ? &e->element : nullptr;
    }

    /* Return a pointer to the element, if any, that matches l, or nullptr. */
    const T* get(const Lookup& l) const {
        return const_cast<OrderedHashTable*>(this)->get(l);
    }

    /*
     * If the table already contains an entry that matches |element|,
     * replace that entry with |element|. Otherwise add a new entry.
     *
     * On success, return true, whether there was already a matching element or
     * not. On allocation failure, return false. If this returns false, it
     * means the element was not added to the table.
     */
    template <typename ElementInput>
    MOZ_MUST_USE bool put(ElementInput&& element) {
        HashNumber h = prepareHash(Ops::getKey(element));
        if (Data* e = lookup(Ops::getKey(element), h)) {
            e->element = Forward<ElementInput>(element);
            return true;
        }

        if (dataLength == dataCapacity) {
            // If the hashTable is more than 1/4 deleted data, simply rehash in
            // place to free up some space. Otherwise, grow the table.
            uint32_t newHashShift = liveCount >= dataCapacity * 0.75 ? hashShift - 1 : hashShift;
            if (!rehash(newHashShift))
                return false;
        }

        h >>= hashShift;
        liveCount++;
        Data* e = &data[dataLength++];
        new (e) Data(Forward<ElementInput>(element), hashTable[h]);
        hashTable[h] = e;
        return true;
    }

    /*
     * If the table contains an element matching l, remove it and set *foundp
     * to true. Otherwise set *foundp to false.
     *
     * Return true on success, false if we tried to shrink the table and hit an
     * allocation failure. Even if this returns false, *foundp is set correctly
     * and the matching element was removed. Shrinking is an optimization and
     * it's OK for it to fail.
     */
    bool remove(const Lookup& l, bool* foundp) {
        // Note: This could be optimized so that removing the last entry,
        // data[dataLength - 1], decrements dataLength. LIFO use cases would
        // benefit.

        // If a matching entry exists, empty it.
        Data* e = lookup(l, prepareHash(l));
        if (e == nullptr) {
            *foundp = false;
            return true;
        }

        *foundp = true;
        liveCount--;
        Ops::makeEmpty(&e->element);

        // Update active Ranges.
        uint32_t pos = e - data;
        for (Range* r = ranges; r; r = r->next)
            r->onRemove(pos);

        // If many entries have been removed, try to shrink the table.
        if (hashBuckets() > initialBuckets() && liveCount < dataLength * minDataFill()) {
            if (!rehash(hashShift + 1))
                return false;
        }
        return true;
    }

    /*
     * Remove all entries.
     *
     * Returns false on OOM, leaving the OrderedHashTable and any live Ranges
     * in the old state.
     *
     * The effect on live Ranges is the same as removing all entries; in
     * particular, those Ranges are still live and will see any entries added
     * after a successful clear().
     */
    MOZ_MUST_USE bool clear() {
        if (dataLength != 0) {
            Data** oldHashTable = hashTable;
            Data* oldData = data;
            uint32_t oldDataLength = dataLength;

            hashTable = nullptr;
            if (!init()) {
                // init() only mutates members on success; see comment above.
                hashTable = oldHashTable;
                return false;
            }

            alloc.free_(oldHashTable);
            freeData(oldData, oldDataLength);
            for (Range* r = ranges; r; r = r->next)
                r->onClear();
        }

        MOZ_ASSERT(hashTable);
        MOZ_ASSERT(data);
        MOZ_ASSERT(dataLength == 0);
        MOZ_ASSERT(liveCount == 0);
        return true;
    }

    /*
     * Ranges are used to iterate over OrderedHashTables.
     *
     * Suppose 'Map' is some instance of OrderedHashMap, and 'map' is a Map.
     * Then you can walk all the key-value pairs like this:
     *
     *     for (Map::Range r = map.all(); !r.empty(); r.popFront()) {
     *         Map::Entry& pair = r.front();
     *         ... do something with pair ...
     *     }
     *
     * Ranges remain valid for the lifetime of the OrderedHashTable, even if
     * entries are added or removed or the table is resized. Don't do anything
     * to a Range, except destroy it, after the OrderedHashTable has been
     * destroyed. (We support destroying the two objects in either order to
     * humor the GC, bless its nondeterministic heart.)
     *
     * Warning: The behavior when the current front() entry is removed from the
     * table is subtly different from js::HashTable<>::Enum::removeFront()!
     * HashTable::Enum doesn't skip any entries when you removeFront() and then
     * popFront(). OrderedHashTable::Range does! (This is useful for using a
     * Range to implement JS Map.prototype.iterator.)
     *
     * The workaround is to call popFront() as soon as possible,
     * before there's any possibility of modifying the table:
     *
     *     for (Map::Range r = map.all(); !r.empty(); ) {
     *         Key key = r.front().key;         // this won't modify map
     *         Value val = r.front().value;     // this won't modify map
     *         r.popFront();
     *         // ...do things that might modify map...
     *     }
     */
    class Range
    {
        friend class OrderedHashTable;

        // Cannot be a reference since we need to be able to do
        // |offsetof(Range, ht)|.
        OrderedHashTable* ht;

        /* The index of front() within ht->data. */
        uint32_t i;

        /*
         * The number of nonempty entries in ht->data to the left of front().
         * This is used when the table is resized or compacted.
         */
        uint32_t count;

        /*
         * Links in the doubly-linked list of active Ranges on ht.
         *
         * prevp points to the previous Range's .next field;
         *   or to ht->ranges if this is the first Range in the list.
         * next points to the next Range;
         *   or nullptr if this is the last Range in the list.
         *
         * Invariant: *prevp == this.
         */
        Range** prevp;
        Range* next;

        /*
         * Create a Range over all the entries in ht.
         * (This is private on purpose. End users must use ht->all().)
         */
        explicit Range(OrderedHashTable* ht) : ht(ht), i(0), count(0), prevp(&ht->ranges), next(ht->ranges) {
            *prevp = this;
            if (next)
                next->prevp = &next;
            seek();
        }

      public:
        Range(const Range& other)
            : ht(other.ht), i(other.i), count(other.count), prevp(&ht->ranges), next(ht->ranges)
        {
            *prevp = this;
            if (next)
                next->prevp = &next;
        }

        ~Range() {
            *prevp = next;
            if (next)
                next->prevp = prevp;
        }

      private:
        // Prohibit copy assignment.
        Range& operator=(const Range& other) = delete;

        void seek() {
            while (i < ht->dataLength && Ops::isEmpty(Ops::getKey(ht->data[i].element)))
                i++;
        }

        /*
         * The hash table calls this when an entry is removed.
         * j is the index of the removed entry.
         */
        void onRemove(uint32_t j) {
            MOZ_ASSERT(valid());
            if (j < i)
                count--;
            if (j == i)
                seek();
        }

        /*
         * The hash table calls this when the table is resized or compacted.
         * Since |count| is the number of nonempty entries to the left of
         * front(), discarding the empty entries will not affect count, and it
         * will make i and count equal.
         */
        void onCompact() {
            MOZ_ASSERT(valid());
            i = count;
        }

        /* The hash table calls this when cleared. */
        void onClear() {
            MOZ_ASSERT(valid());
            i = count = 0;
        }

        bool valid() const {
            return next != this;
        }

        void onTableDestroyed() {
            MOZ_ASSERT(valid());
            prevp = &next;
            next = this;
        }

      public:
        bool empty() const {
            MOZ_ASSERT(valid());
            return i >= ht->dataLength;
        }

        /*
         * Return the first element in the range. This must not be called if
         * this->empty().
         *
         * Warning: Removing an entry from the table also removes it from any
         * live Ranges, and a Range can become empty that way, rendering
         * front() invalid. If in doubt, check empty() before calling front().
         */
        T& front() {
            MOZ_ASSERT(valid());
            MOZ_ASSERT(!empty());
            return ht->data[i].element;
        }

        /*
         * Remove the first element from this range.
         * This must not be called if this->empty().
         *
         * Warning: Removing an entry from the table also removes it from any
         * live Ranges, and a Range can become empty that way, rendering
         * popFront() invalid. If in doubt, check empty() before calling
         * popFront().
         */
        void popFront() {
            MOZ_ASSERT(valid());
            MOZ_ASSERT(!empty());
            MOZ_ASSERT(!Ops::isEmpty(Ops::getKey(ht->data[i].element)));
            count++;
            i++;
            seek();
        }

        /*
         * Change the key of the front entry.
         *
         * This calls Ops::hash on both the current key and the new key.
         * Ops::hash on the current key must return the same hash code as
         * when the entry was added to the table.
         */
        void rekeyFront(const Key& k) {
            MOZ_ASSERT(valid());
            Data& entry = ht->data[i];
            HashNumber oldHash = ht->prepareHash(Ops::getKey(entry.element)) >> ht->hashShift;
            HashNumber newHash = ht->prepareHash(k) >> ht->hashShift;
            Ops::setKey(entry.element, k);
            if (newHash != oldHash) {
                // Remove this entry from its old hash chain. (If this crashes
                // reading nullptr, it would mean we did not find this entry on
                // the hash chain where we expected it. That probably means the
                // key's hash code changed since it was inserted, breaking the
                // hash code invariant.)
                Data** ep = &ht->hashTable[oldHash];
                while (*ep != &entry)
                    ep = &(*ep)->chain;
                *ep = entry.chain;

                // Add it to the new hash chain. We could just insert it at the
                // beginning of the chain. Instead, we do a bit of work to
                // preserve the invariant that hash chains always go in reverse
                // insertion order (descending memory order). No code currently
                // depends on this invariant, so it's fine to kill it if
                // needed.
                ep = &ht->hashTable[newHash];
                while (*ep && *ep > &entry)
                    ep = &(*ep)->chain;
                entry.chain = *ep;
                *ep = &entry;
            }
        }

        static size_t offsetOfHashTable() {
            return offsetof(Range, ht);
        }
        static size_t offsetOfI() {
            return offsetof(Range, i);
        }
        static size_t offsetOfCount() {
            return offsetof(Range, count);
        }
        static size_t offsetOfPrevP() {
            return offsetof(Range, prevp);
        }
        static size_t offsetOfNext() {
            return offsetof(Range, next);
        }
    };

    Range all() { return Range(this); }

    /*
     * Change the value of the given key.
     *
     * This calls Ops::hash on both the current key and the new key.
     * Ops::hash on the current key must return the same hash code as
     * when the entry was added to the table.
     */
    void rekeyOneEntry(const Key& current, const Key& newKey, const T& element) {
        if (current == newKey)
            return;

        Data* entry = lookup(current, prepareHash(current));
        if (!entry)
            return;

        HashNumber oldHash = prepareHash(current) >> hashShift;
        HashNumber newHash = prepareHash(newKey) >> hashShift;

        entry->element = element;

        // Remove this entry from its old hash chain. (If this crashes
        // reading nullptr, it would mean we did not find this entry on
        // the hash chain where we expected it. That probably means the
        // key's hash code changed since it was inserted, breaking the
        // hash code invariant.)
        Data** ep = &hashTable[oldHash];
        while (*ep != entry)
            ep = &(*ep)->chain;
        *ep = entry->chain;

        // Add it to the new hash chain. We could just insert it at the
        // beginning of the chain. Instead, we do a bit of work to
        // preserve the invariant that hash chains always go in reverse
        // insertion order (descending memory order). No code currently
        // depends on this invariant, so it's fine to kill it if
        // needed.
        ep = &hashTable[newHash];
        while (*ep && *ep > entry)
            ep = &(*ep)->chain;
        entry->chain = *ep;
        *ep = entry;
    }

    static size_t offsetOfDataLength() {
        return offsetof(OrderedHashTable, dataLength);
    }
    static size_t offsetOfData() {
        return offsetof(OrderedHashTable, data);
    }
    static constexpr size_t offsetOfDataElement() {
        return offsetof(Data, element);
    }
    static constexpr size_t sizeofData() {
        return sizeof(Data);
    }

  private:
    /* Logarithm base 2 of the number of buckets in the hash table initially. */
    static uint32_t initialBucketsLog2() { return 1; }
    static uint32_t initialBuckets() { return 1 << initialBucketsLog2(); }

    /*
     * The maximum load factor (mean number of entries per bucket).
     * It is an invariant that
     *     dataCapacity == floor(hashBuckets() * fillFactor()).
     *
     * The fill factor should be between 2 and 4, and it should be chosen so that
     * the fill factor times sizeof(Data) is close to but <= a power of 2.
     * This fixed fill factor was chosen to make the size of the data
     * array, in bytes, close to a power of two when sizeof(T) is 16.
     */
    static double fillFactor() { return 8.0 / 3.0; }

    /*
     * The minimum permitted value of (liveCount / dataLength).
     * If that ratio drops below this value, we shrink the table.
     */
    static double minDataFill() { return 0.25; }

  public:
    HashNumber prepareHash(const Lookup& l) const {
        return ScrambleHashCode(Ops::hash(l, hcs));
    }

  private:
    /* The size of hashTable, in elements. Always a power of two. */
    uint32_t hashBuckets() const {
        return 1 << (HashNumberSizeBits - hashShift);
    }

    static void destroyData(Data* data, uint32_t length) {
        for (Data* p = data + length; p != data; )
            (--p)->~Data();
    }

    void freeData(Data* data, uint32_t length) {
        destroyData(data, length);
        alloc.free_(data);
    }

    Data* lookup(const Lookup& l, HashNumber h) {
        for (Data* e = hashTable[h >> hashShift]; e; e = e->chain) {
            if (Ops::match(Ops::getKey(e->element), l))
                return e;
        }
        return nullptr;
    }

    const Data* lookup(const Lookup& l) const {
        return const_cast<OrderedHashTable*>(this)->lookup(l, prepareHash(l));
    }

    /* This is called after rehashing the table. */
    void compacted() {
        // If we had any empty entries, compacting may have moved live entries
        // to the left within |data|. Notify all live Ranges of the change.
        for (Range* r = ranges; r; r = r->next)
            r->onCompact();
    }

    /* Compact the entries in |data| and rehash them. */
    void rehashInPlace() {
        for (uint32_t i = 0, N = hashBuckets(); i < N; i++)
            hashTable[i] = nullptr;
        Data* wp = data;
        Data* end = data + dataLength;
        for (Data* rp = data; rp != end; rp++) {
            if (!Ops::isEmpty(Ops::getKey(rp->element))) {
                HashNumber h = prepareHash(Ops::getKey(rp->element)) >> hashShift;
                if (rp != wp)
                    wp->element = Move(rp->element);
                wp->chain = hashTable[h];
                hashTable[h] = wp;
                wp++;
            }
        }
        MOZ_ASSERT(wp == data + liveCount);

        while (wp != end)
            (--end)->~Data();
        dataLength = liveCount;
        compacted();
    }

    /*
     * Grow, shrink, or compact both |hashTable| and |data|.
     *
     * On success, this returns true, dataLength == liveCount, and there are no
     * empty elements in data[0:dataLength]. On allocation failure, this
     * leaves everything as it was and returns false.
     */
    MOZ_MUST_USE bool rehash(uint32_t newHashShift) {
        // If the size of the table is not changing, rehash in place to avoid
        // allocating memory.
        if (newHashShift == hashShift) {
            rehashInPlace();
            return true;
        }

        size_t newHashBuckets =
            size_t(1) << (HashNumberSizeBits - newHashShift);
        Data** newHashTable = alloc.template pod_malloc<Data*>(newHashBuckets);
        if (!newHashTable)
            return false;
        for (uint32_t i = 0; i < newHashBuckets; i++)
            newHashTable[i] = nullptr;

        uint32_t newCapacity = uint32_t(newHashBuckets * fillFactor());
        Data* newData = alloc.template pod_malloc<Data>(newCapacity);
        if (!newData) {
            alloc.free_(newHashTable);
            return false;
        }

        Data* wp = newData;
        Data* end = data + dataLength;
        for (Data* p = data; p != end; p++) {
            if (!Ops::isEmpty(Ops::getKey(p->element))) {
                HashNumber h = prepareHash(Ops::getKey(p->element)) >> newHashShift;
                new (wp) Data(Move(p->element), newHashTable[h]);
                newHashTable[h] = wp;
                wp++;
            }
        }
        MOZ_ASSERT(wp == newData + liveCount);

        alloc.free_(hashTable);
        freeData(data, dataLength);

        hashTable = newHashTable;
        data = newData;
        dataLength = liveCount;
        dataCapacity = newCapacity;
        hashShift = newHashShift;
        MOZ_ASSERT(hashBuckets() == newHashBuckets);

        compacted();
        return true;
    }

    // Not copyable.
    OrderedHashTable& operator=(const OrderedHashTable&) = delete;
    OrderedHashTable(const OrderedHashTable&) = delete;
};

}  // namespace detail

template <class Key, class Value, class OrderedHashPolicy, class AllocPolicy>
class OrderedHashMap
{
  public:
    class Entry
    {
        template <class, class, class> friend class detail::OrderedHashTable;
        void operator=(const Entry& rhs) {
            const_cast<Key&>(key) = rhs.key;
            value = rhs.value;
        }

        void operator=(Entry&& rhs) {
            MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
            const_cast<Key&>(key) = Move(rhs.key);
            value = Move(rhs.value);
        }

      public:
        Entry() : key(), value() {}
        template <typename V>
        Entry(const Key& k, V&& v) : key(k), value(Forward<V>(v)) {}
        Entry(Entry&& rhs) : key(Move(rhs.key)), value(Move(rhs.value)) {}

        const Key key;
        Value value;

        static size_t offsetOfKey() {
            return offsetof(Entry, key);
        }
        static size_t offsetOfValue() {
            return offsetof(Entry, value);
        }
    };

  private:
    struct MapOps : OrderedHashPolicy
    {
        typedef Key KeyType;
        static void makeEmpty(Entry* e) {
            OrderedHashPolicy::makeEmpty(const_cast<Key*>(&e->key));

            // Clear the value. Destroying it is another possibility, but that
            // would complicate class Entry considerably.
            e->value = Value();
        }
        static const Key& getKey(const Entry& e) { return e.key; }
        static void setKey(Entry& e, const Key& k) { const_cast<Key&>(e.key) = k; }
    };

    typedef detail::OrderedHashTable<Entry, MapOps, AllocPolicy> Impl;
    Impl impl;

  public:
    typedef typename Impl::Range Range;

    OrderedHashMap(AllocPolicy ap, mozilla::HashCodeScrambler hcs) : impl(ap, hcs) {}
    MOZ_MUST_USE bool init()                        { return impl.init(); }
    uint32_t count() const                          { return impl.count(); }
    bool has(const Key& key) const                  { return impl.has(key); }
    Range all()                                     { return impl.all(); }
    const Entry* get(const Key& key) const          { return impl.get(key); }
    Entry* get(const Key& key)                      { return impl.get(key); }
    bool remove(const Key& key, bool* foundp)       { return impl.remove(key, foundp); }
    MOZ_MUST_USE bool clear()                       { return impl.clear(); }

    template <typename V>
    MOZ_MUST_USE bool put(const Key& key, V&& value) {
        return impl.put(Entry(key, Forward<V>(value)));
    }

    HashNumber hash(const Key& key) const { return impl.prepareHash(key); }

    void rekeyOneEntry(const Key& current, const Key& newKey) {
        const Entry* e = get(current);
        if (!e)
            return;
        return impl.rekeyOneEntry(current, newKey, Entry(newKey, e->value));
    }

    static size_t offsetOfEntryKey() {
        return Entry::offsetOfKey();
    }
    static size_t offsetOfImplDataLength() {
        return Impl::offsetOfDataLength();
    }
    static size_t offsetOfImplData() {
        return Impl::offsetOfData();
    }
    static constexpr size_t offsetOfImplDataElement() {
        return Impl::offsetOfDataElement();
    }
    static constexpr size_t sizeofImplData() {
        return Impl::sizeofData();
    }
};

template <class T, class OrderedHashPolicy, class AllocPolicy>
class OrderedHashSet
{
  private:
    struct SetOps : OrderedHashPolicy
    {
        typedef const T KeyType;
        static const T& getKey(const T& v) { return v; }
        static void setKey(const T& e, const T& v) { const_cast<T&>(e) = v; }
    };

    typedef detail::OrderedHashTable<T, SetOps, AllocPolicy> Impl;
    Impl impl;

  public:
    typedef typename Impl::Range Range;

    explicit OrderedHashSet(AllocPolicy ap, mozilla::HashCodeScrambler hcs) : impl(ap, hcs) {}
    MOZ_MUST_USE bool init()                        { return impl.init(); }
    uint32_t count() const                          { return impl.count(); }
    bool has(const T& value) const                  { return impl.has(value); }
    Range all()                                     { return impl.all(); }
    MOZ_MUST_USE bool put(const T& value)           { return impl.put(value); }
    bool remove(const T& value, bool* foundp)       { return impl.remove(value, foundp); }
    MOZ_MUST_USE bool clear()                       { return impl.clear(); }

    HashNumber hash(const T& value) const { return impl.prepareHash(value); }

    void rekeyOneEntry(const T& current, const T& newKey) {
        return impl.rekeyOneEntry(current, newKey, newKey);
    }

    static size_t offsetOfEntryKey() {
        return 0;
    }
    static size_t offsetOfImplDataLength() {
        return Impl::offsetOfDataLength();
    }
    static size_t offsetOfImplData() {
        return Impl::offsetOfData();
    }
    static constexpr size_t offsetOfImplDataElement() {
        return Impl::offsetOfDataElement();
    }
    static constexpr size_t sizeofImplData() {
        return Impl::sizeofData();
    }
};

}  // namespace js

#endif /* ds_OrderedHashTable_h */