summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c')
-rw-r--r--third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c1064
1 files changed, 1064 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c b/third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c
new file mode 100644
index 000000000..d7dbefd7d
--- /dev/null
+++ b/third_party/aom/aom_dsp/x86/masked_variance_intrin_ssse3.c
@@ -0,0 +1,1064 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <stdlib.h>
+#include <string.h>
+#include <tmmintrin.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+
+#include "aom/aom_integer.h"
+#include "aom_dsp/aom_filter.h"
+#include "aom_dsp/blend.h"
+#include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
+#include "aom_dsp/x86/synonyms.h"
+#include "aom_ports/mem.h"
+
+// For width a multiple of 16
+static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int w, int h);
+
+static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int h);
+
+static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int h);
+
+// For width a multiple of 16
+static void masked_variance(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, int a_stride,
+ const uint8_t *b_ptr, int b_stride,
+ const uint8_t *m_ptr, int m_stride, int width,
+ int height, unsigned int *sse, int *sum_);
+
+static void masked_variance8xh(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, const uint8_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride, int height,
+ unsigned int *sse, int *sum_);
+
+static void masked_variance4xh(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, const uint8_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride, int height,
+ unsigned int *sse, int *sum_);
+
+#define MASK_SUBPIX_VAR_SSSE3(W, H) \
+ unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \
+ const uint8_t *src, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
+ const uint8_t *msk, int msk_stride, int invert_mask, \
+ unsigned int *sse) { \
+ int sum; \
+ uint8_t temp[(H + 1) * W]; \
+ \
+ bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
+ \
+ if (!invert_mask) \
+ masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
+ msk_stride, W, H, sse, &sum); \
+ else \
+ masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
+ msk_stride, W, H, sse, &sum); \
+ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
+ }
+
+#define MASK_SUBPIX_VAR8XH_SSSE3(H) \
+ unsigned int aom_masked_sub_pixel_variance8x##H##_ssse3( \
+ const uint8_t *src, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
+ const uint8_t *msk, int msk_stride, int invert_mask, \
+ unsigned int *sse) { \
+ int sum; \
+ uint8_t temp[(H + 1) * 8]; \
+ \
+ bilinear_filter8xh(src, src_stride, xoffset, yoffset, temp, H); \
+ \
+ if (!invert_mask) \
+ masked_variance8xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \
+ H, sse, &sum); \
+ else \
+ masked_variance8xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \
+ H, sse, &sum); \
+ return *sse - (uint32_t)(((int64_t)sum * sum) / (8 * H)); \
+ }
+
+#define MASK_SUBPIX_VAR4XH_SSSE3(H) \
+ unsigned int aom_masked_sub_pixel_variance4x##H##_ssse3( \
+ const uint8_t *src, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
+ const uint8_t *msk, int msk_stride, int invert_mask, \
+ unsigned int *sse) { \
+ int sum; \
+ uint8_t temp[(H + 1) * 4]; \
+ \
+ bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
+ \
+ if (!invert_mask) \
+ masked_variance4xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \
+ H, sse, &sum); \
+ else \
+ masked_variance4xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \
+ H, sse, &sum); \
+ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \
+ }
+
+MASK_SUBPIX_VAR_SSSE3(128, 128)
+MASK_SUBPIX_VAR_SSSE3(128, 64)
+MASK_SUBPIX_VAR_SSSE3(64, 128)
+MASK_SUBPIX_VAR_SSSE3(64, 64)
+MASK_SUBPIX_VAR_SSSE3(64, 32)
+MASK_SUBPIX_VAR_SSSE3(32, 64)
+MASK_SUBPIX_VAR_SSSE3(32, 32)
+MASK_SUBPIX_VAR_SSSE3(32, 16)
+MASK_SUBPIX_VAR_SSSE3(16, 32)
+MASK_SUBPIX_VAR_SSSE3(16, 16)
+MASK_SUBPIX_VAR_SSSE3(16, 8)
+MASK_SUBPIX_VAR8XH_SSSE3(16)
+MASK_SUBPIX_VAR8XH_SSSE3(8)
+MASK_SUBPIX_VAR8XH_SSSE3(4)
+MASK_SUBPIX_VAR4XH_SSSE3(8)
+MASK_SUBPIX_VAR4XH_SSSE3(4)
+MASK_SUBPIX_VAR4XH_SSSE3(16)
+MASK_SUBPIX_VAR_SSSE3(16, 4)
+MASK_SUBPIX_VAR8XH_SSSE3(32)
+MASK_SUBPIX_VAR_SSSE3(32, 8)
+MASK_SUBPIX_VAR_SSSE3(64, 16)
+MASK_SUBPIX_VAR_SSSE3(16, 64)
+
+static INLINE __m128i filter_block(const __m128i a, const __m128i b,
+ const __m128i filter) {
+ __m128i v0 = _mm_unpacklo_epi8(a, b);
+ v0 = _mm_maddubs_epi16(v0, filter);
+ v0 = xx_roundn_epu16(v0, FILTER_BITS);
+
+ __m128i v1 = _mm_unpackhi_epi8(a, b);
+ v1 = _mm_maddubs_epi16(v1, filter);
+ v1 = xx_roundn_epu16(v1, FILTER_BITS);
+
+ return _mm_packus_epi16(v0, v1);
+}
+
+static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int w, int h) {
+ int i, j;
+ // Horizontal filter
+ if (xoffset == 0) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 16) {
+ __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ _mm_storeu_si128((__m128i *)&b[j], x);
+ }
+ src += src_stride;
+ b += w;
+ }
+ } else if (xoffset == 4) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 16) {
+ __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]);
+ __m128i z = _mm_alignr_epi8(y, x, 1);
+ _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu8(x, z));
+ }
+ src += src_stride;
+ b += w;
+ }
+ } else {
+ uint8_t *b = dst;
+ const uint8_t *hfilter = bilinear_filters_2t[xoffset];
+ const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 16) {
+ const __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]);
+ const __m128i z = _mm_alignr_epi8(y, x, 1);
+ const __m128i res = filter_block(x, z, hfilter_vec);
+ _mm_storeu_si128((__m128i *)&b[j], res);
+ }
+
+ src += src_stride;
+ b += w;
+ }
+ }
+
+ // Vertical filter
+ if (yoffset == 0) {
+ // The data is already in 'dst', so no need to filter
+ } else if (yoffset == 4) {
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; j += 16) {
+ __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
+ __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
+ _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu8(x, y));
+ }
+ dst += w;
+ }
+ } else {
+ const uint8_t *vfilter = bilinear_filters_2t[yoffset];
+ const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; j += 16) {
+ const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
+ const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
+ const __m128i res = filter_block(x, y, vfilter_vec);
+ _mm_storeu_si128((__m128i *)&dst[j], res);
+ }
+
+ dst += w;
+ }
+ }
+}
+
+static INLINE __m128i filter_block_2rows(const __m128i a0, const __m128i b0,
+ const __m128i a1, const __m128i b1,
+ const __m128i filter) {
+ __m128i v0 = _mm_unpacklo_epi8(a0, b0);
+ v0 = _mm_maddubs_epi16(v0, filter);
+ v0 = xx_roundn_epu16(v0, FILTER_BITS);
+
+ __m128i v1 = _mm_unpacklo_epi8(a1, b1);
+ v1 = _mm_maddubs_epi16(v1, filter);
+ v1 = xx_roundn_epu16(v1, FILTER_BITS);
+
+ return _mm_packus_epi16(v0, v1);
+}
+
+static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int h) {
+ int i;
+ // Horizontal filter
+ if (xoffset == 0) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = _mm_loadl_epi64((__m128i *)src);
+ _mm_storel_epi64((__m128i *)b, x);
+ src += src_stride;
+ b += 8;
+ }
+ } else if (xoffset == 4) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = _mm_loadu_si128((__m128i *)src);
+ __m128i z = _mm_srli_si128(x, 1);
+ _mm_storel_epi64((__m128i *)b, _mm_avg_epu8(x, z));
+ src += src_stride;
+ b += 8;
+ }
+ } else {
+ uint8_t *b = dst;
+ const uint8_t *hfilter = bilinear_filters_2t[xoffset];
+ const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
+ for (i = 0; i < h; i += 2) {
+ const __m128i x0 = _mm_loadu_si128((__m128i *)src);
+ const __m128i z0 = _mm_srli_si128(x0, 1);
+ const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]);
+ const __m128i z1 = _mm_srli_si128(x1, 1);
+ const __m128i res = filter_block_2rows(x0, z0, x1, z1, hfilter_vec);
+ _mm_storeu_si128((__m128i *)b, res);
+
+ src += src_stride * 2;
+ b += 16;
+ }
+ // Handle i = h separately
+ const __m128i x0 = _mm_loadu_si128((__m128i *)src);
+ const __m128i z0 = _mm_srli_si128(x0, 1);
+
+ __m128i v0 = _mm_unpacklo_epi8(x0, z0);
+ v0 = _mm_maddubs_epi16(v0, hfilter_vec);
+ v0 = xx_roundn_epu16(v0, FILTER_BITS);
+
+ _mm_storel_epi64((__m128i *)b, _mm_packus_epi16(v0, v0));
+ }
+
+ // Vertical filter
+ if (yoffset == 0) {
+ // The data is already in 'dst', so no need to filter
+ } else if (yoffset == 4) {
+ for (i = 0; i < h; ++i) {
+ __m128i x = _mm_loadl_epi64((__m128i *)dst);
+ __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]);
+ _mm_storel_epi64((__m128i *)dst, _mm_avg_epu8(x, y));
+ dst += 8;
+ }
+ } else {
+ const uint8_t *vfilter = bilinear_filters_2t[yoffset];
+ const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
+ for (i = 0; i < h; i += 2) {
+ const __m128i x = _mm_loadl_epi64((__m128i *)dst);
+ const __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]);
+ const __m128i z = _mm_loadl_epi64((__m128i *)&dst[16]);
+ const __m128i res = filter_block_2rows(x, y, y, z, vfilter_vec);
+ _mm_storeu_si128((__m128i *)dst, res);
+
+ dst += 16;
+ }
+ }
+}
+
+static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset,
+ int yoffset, uint8_t *dst, int h) {
+ int i;
+ // Horizontal filter
+ if (xoffset == 0) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = xx_loadl_32((__m128i *)src);
+ xx_storel_32((__m128i *)b, x);
+ src += src_stride;
+ b += 4;
+ }
+ } else if (xoffset == 4) {
+ uint8_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = _mm_loadl_epi64((__m128i *)src);
+ __m128i z = _mm_srli_si128(x, 1);
+ xx_storel_32((__m128i *)b, _mm_avg_epu8(x, z));
+ src += src_stride;
+ b += 4;
+ }
+ } else {
+ uint8_t *b = dst;
+ const uint8_t *hfilter = bilinear_filters_2t[xoffset];
+ const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
+ for (i = 0; i < h; i += 4) {
+ const __m128i x0 = _mm_loadl_epi64((__m128i *)src);
+ const __m128i z0 = _mm_srli_si128(x0, 1);
+ const __m128i x1 = _mm_loadl_epi64((__m128i *)&src[src_stride]);
+ const __m128i z1 = _mm_srli_si128(x1, 1);
+ const __m128i x2 = _mm_loadl_epi64((__m128i *)&src[src_stride * 2]);
+ const __m128i z2 = _mm_srli_si128(x2, 1);
+ const __m128i x3 = _mm_loadl_epi64((__m128i *)&src[src_stride * 3]);
+ const __m128i z3 = _mm_srli_si128(x3, 1);
+
+ const __m128i a0 = _mm_unpacklo_epi32(x0, x1);
+ const __m128i b0 = _mm_unpacklo_epi32(z0, z1);
+ const __m128i a1 = _mm_unpacklo_epi32(x2, x3);
+ const __m128i b1 = _mm_unpacklo_epi32(z2, z3);
+ const __m128i res = filter_block_2rows(a0, b0, a1, b1, hfilter_vec);
+ _mm_storeu_si128((__m128i *)b, res);
+
+ src += src_stride * 4;
+ b += 16;
+ }
+ // Handle i = h separately
+ const __m128i x = _mm_loadl_epi64((__m128i *)src);
+ const __m128i z = _mm_srli_si128(x, 1);
+
+ __m128i v0 = _mm_unpacklo_epi8(x, z);
+ v0 = _mm_maddubs_epi16(v0, hfilter_vec);
+ v0 = xx_roundn_epu16(v0, FILTER_BITS);
+
+ xx_storel_32((__m128i *)b, _mm_packus_epi16(v0, v0));
+ }
+
+ // Vertical filter
+ if (yoffset == 0) {
+ // The data is already in 'dst', so no need to filter
+ } else if (yoffset == 4) {
+ for (i = 0; i < h; ++i) {
+ __m128i x = xx_loadl_32((__m128i *)dst);
+ __m128i y = xx_loadl_32((__m128i *)&dst[4]);
+ xx_storel_32((__m128i *)dst, _mm_avg_epu8(x, y));
+ dst += 4;
+ }
+ } else {
+ const uint8_t *vfilter = bilinear_filters_2t[yoffset];
+ const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
+ for (i = 0; i < h; i += 4) {
+ const __m128i a = xx_loadl_32((__m128i *)dst);
+ const __m128i b = xx_loadl_32((__m128i *)&dst[4]);
+ const __m128i c = xx_loadl_32((__m128i *)&dst[8]);
+ const __m128i d = xx_loadl_32((__m128i *)&dst[12]);
+ const __m128i e = xx_loadl_32((__m128i *)&dst[16]);
+
+ const __m128i a0 = _mm_unpacklo_epi32(a, b);
+ const __m128i b0 = _mm_unpacklo_epi32(b, c);
+ const __m128i a1 = _mm_unpacklo_epi32(c, d);
+ const __m128i b1 = _mm_unpacklo_epi32(d, e);
+ const __m128i res = filter_block_2rows(a0, b0, a1, b1, vfilter_vec);
+ _mm_storeu_si128((__m128i *)dst, res);
+
+ dst += 16;
+ }
+ }
+}
+
+static INLINE void accumulate_block(const __m128i src, const __m128i a,
+ const __m128i b, const __m128i m,
+ __m128i *sum, __m128i *sum_sq) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i one = _mm_set1_epi16(1);
+ const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
+ const __m128i m_inv = _mm_sub_epi8(mask_max, m);
+
+ // Calculate 16 predicted pixels.
+ // Note that the maximum value of any entry of 'pred_l' or 'pred_r'
+ // is 64 * 255, so we have plenty of space to add rounding constants.
+ const __m128i data_l = _mm_unpacklo_epi8(a, b);
+ const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv);
+ __m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
+ pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i data_r = _mm_unpackhi_epi8(a, b);
+ const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv);
+ __m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
+ pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i src_l = _mm_unpacklo_epi8(src, zero);
+ const __m128i src_r = _mm_unpackhi_epi8(src, zero);
+ const __m128i diff_l = _mm_sub_epi16(pred_l, src_l);
+ const __m128i diff_r = _mm_sub_epi16(pred_r, src_r);
+
+ // Update partial sums and partial sums of squares
+ *sum =
+ _mm_add_epi32(*sum, _mm_madd_epi16(_mm_add_epi16(diff_l, diff_r), one));
+ *sum_sq =
+ _mm_add_epi32(*sum_sq, _mm_add_epi32(_mm_madd_epi16(diff_l, diff_l),
+ _mm_madd_epi16(diff_r, diff_r)));
+}
+
+static void masked_variance(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, int a_stride,
+ const uint8_t *b_ptr, int b_stride,
+ const uint8_t *m_ptr, int m_stride, int width,
+ int height, unsigned int *sse, int *sum_) {
+ int x, y;
+ __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x += 16) {
+ const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
+ const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
+ const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
+ const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]);
+ accumulate_block(src, a, b, m, &sum, &sum_sq);
+ }
+
+ src_ptr += src_stride;
+ a_ptr += a_stride;
+ b_ptr += b_stride;
+ m_ptr += m_stride;
+ }
+ // Reduce down to a single sum and sum of squares
+ sum = _mm_hadd_epi32(sum, sum_sq);
+ sum = _mm_hadd_epi32(sum, sum);
+ *sum_ = _mm_cvtsi128_si32(sum);
+ *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
+}
+
+static void masked_variance8xh(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, const uint8_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride, int height,
+ unsigned int *sse, int *sum_) {
+ int y;
+ __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
+
+ for (y = 0; y < height; y += 2) {
+ __m128i src = _mm_unpacklo_epi64(
+ _mm_loadl_epi64((const __m128i *)src_ptr),
+ _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
+ const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
+ const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
+ const __m128i m =
+ _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr),
+ _mm_loadl_epi64((const __m128i *)&m_ptr[m_stride]));
+ accumulate_block(src, a, b, m, &sum, &sum_sq);
+
+ src_ptr += src_stride * 2;
+ a_ptr += 16;
+ b_ptr += 16;
+ m_ptr += m_stride * 2;
+ }
+ // Reduce down to a single sum and sum of squares
+ sum = _mm_hadd_epi32(sum, sum_sq);
+ sum = _mm_hadd_epi32(sum, sum);
+ *sum_ = _mm_cvtsi128_si32(sum);
+ *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
+}
+
+static void masked_variance4xh(const uint8_t *src_ptr, int src_stride,
+ const uint8_t *a_ptr, const uint8_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride, int height,
+ unsigned int *sse, int *sum_) {
+ int y;
+ __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
+
+ for (y = 0; y < height; y += 4) {
+ // Load four rows at a time
+ __m128i src =
+ _mm_setr_epi32(*(uint32_t *)src_ptr, *(uint32_t *)&src_ptr[src_stride],
+ *(uint32_t *)&src_ptr[src_stride * 2],
+ *(uint32_t *)&src_ptr[src_stride * 3]);
+ const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
+ const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
+ const __m128i m = _mm_setr_epi32(
+ *(uint32_t *)m_ptr, *(uint32_t *)&m_ptr[m_stride],
+ *(uint32_t *)&m_ptr[m_stride * 2], *(uint32_t *)&m_ptr[m_stride * 3]);
+ accumulate_block(src, a, b, m, &sum, &sum_sq);
+
+ src_ptr += src_stride * 4;
+ a_ptr += 16;
+ b_ptr += 16;
+ m_ptr += m_stride * 4;
+ }
+ // Reduce down to a single sum and sum of squares
+ sum = _mm_hadd_epi32(sum, sum_sq);
+ sum = _mm_hadd_epi32(sum, sum);
+ *sum_ = _mm_cvtsi128_si32(sum);
+ *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
+}
+
+// For width a multiple of 8
+static void highbd_bilinear_filter(const uint16_t *src, int src_stride,
+ int xoffset, int yoffset, uint16_t *dst,
+ int w, int h);
+
+static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride,
+ int xoffset, int yoffset, uint16_t *dst,
+ int h);
+
+// For width a multiple of 8
+static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride,
+ const uint16_t *a_ptr, int a_stride,
+ const uint16_t *b_ptr, int b_stride,
+ const uint8_t *m_ptr, int m_stride,
+ int width, int height, uint64_t *sse,
+ int *sum_);
+
+static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride,
+ const uint16_t *a_ptr,
+ const uint16_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride,
+ int height, int *sse, int *sum_);
+
+#define HIGHBD_MASK_SUBPIX_VAR_SSSE3(W, H) \
+ unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ uint64_t sse64; \
+ int sum; \
+ uint16_t temp[(H + 1) * W]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ else \
+ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ *sse = (uint32_t)sse64; \
+ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
+ } \
+ unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ uint64_t sse64; \
+ int sum; \
+ int64_t var; \
+ uint16_t temp[(H + 1) * W]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ else \
+ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 4); \
+ sum = ROUND_POWER_OF_TWO(sum, 2); \
+ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
+ return (var >= 0) ? (uint32_t)var : 0; \
+ } \
+ unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ uint64_t sse64; \
+ int sum; \
+ int64_t var; \
+ uint16_t temp[(H + 1) * W]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ else \
+ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
+ msk_stride, W, H, &sse64, &sum); \
+ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 8); \
+ sum = ROUND_POWER_OF_TWO(sum, 4); \
+ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
+ return (var >= 0) ? (uint32_t)var : 0; \
+ }
+
+#define HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(H) \
+ unsigned int aom_highbd_8_masked_sub_pixel_variance4x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ int sse_; \
+ int sum; \
+ uint16_t temp[(H + 1) * 4]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
+ msk_stride, H, &sse_, &sum); \
+ else \
+ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
+ msk_stride, H, &sse_, &sum); \
+ *sse = (uint32_t)sse_; \
+ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \
+ } \
+ unsigned int aom_highbd_10_masked_sub_pixel_variance4x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ int sse_; \
+ int sum; \
+ int64_t var; \
+ uint16_t temp[(H + 1) * 4]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
+ msk_stride, H, &sse_, &sum); \
+ else \
+ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
+ msk_stride, H, &sse_, &sum); \
+ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 4); \
+ sum = ROUND_POWER_OF_TWO(sum, 2); \
+ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \
+ return (var >= 0) ? (uint32_t)var : 0; \
+ } \
+ unsigned int aom_highbd_12_masked_sub_pixel_variance4x##H##_ssse3( \
+ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
+ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
+ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
+ int sse_; \
+ int sum; \
+ int64_t var; \
+ uint16_t temp[(H + 1) * 4]; \
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
+ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
+ \
+ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
+ \
+ if (!invert_mask) \
+ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
+ msk_stride, H, &sse_, &sum); \
+ else \
+ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
+ msk_stride, H, &sse_, &sum); \
+ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 8); \
+ sum = ROUND_POWER_OF_TWO(sum, 4); \
+ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \
+ return (var >= 0) ? (uint32_t)var : 0; \
+ }
+
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 128)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 64)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 128)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 64)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 32)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 64)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 32)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 16)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 32)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 16)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 8)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 16)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 8)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 4)
+HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(8)
+HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(4)
+HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(16)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 4)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 32)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 8)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 64)
+HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 16)
+
+static INLINE __m128i highbd_filter_block(const __m128i a, const __m128i b,
+ const __m128i filter) {
+ __m128i v0 = _mm_unpacklo_epi16(a, b);
+ v0 = _mm_madd_epi16(v0, filter);
+ v0 = xx_roundn_epu32(v0, FILTER_BITS);
+
+ __m128i v1 = _mm_unpackhi_epi16(a, b);
+ v1 = _mm_madd_epi16(v1, filter);
+ v1 = xx_roundn_epu32(v1, FILTER_BITS);
+
+ return _mm_packs_epi32(v0, v1);
+}
+
+static void highbd_bilinear_filter(const uint16_t *src, int src_stride,
+ int xoffset, int yoffset, uint16_t *dst,
+ int w, int h) {
+ int i, j;
+ // Horizontal filter
+ if (xoffset == 0) {
+ uint16_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 8) {
+ __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ _mm_storeu_si128((__m128i *)&b[j], x);
+ }
+ src += src_stride;
+ b += w;
+ }
+ } else if (xoffset == 4) {
+ uint16_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 8) {
+ __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]);
+ __m128i z = _mm_alignr_epi8(y, x, 2);
+ _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu16(x, z));
+ }
+ src += src_stride;
+ b += w;
+ }
+ } else {
+ uint16_t *b = dst;
+ const uint8_t *hfilter = bilinear_filters_2t[xoffset];
+ const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16));
+ for (i = 0; i < h + 1; ++i) {
+ for (j = 0; j < w; j += 8) {
+ const __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
+ const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]);
+ const __m128i z = _mm_alignr_epi8(y, x, 2);
+ const __m128i res = highbd_filter_block(x, z, hfilter_vec);
+ _mm_storeu_si128((__m128i *)&b[j], res);
+ }
+
+ src += src_stride;
+ b += w;
+ }
+ }
+
+ // Vertical filter
+ if (yoffset == 0) {
+ // The data is already in 'dst', so no need to filter
+ } else if (yoffset == 4) {
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; j += 8) {
+ __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
+ __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
+ _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu16(x, y));
+ }
+ dst += w;
+ }
+ } else {
+ const uint8_t *vfilter = bilinear_filters_2t[yoffset];
+ const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16));
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; j += 8) {
+ const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
+ const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
+ const __m128i res = highbd_filter_block(x, y, vfilter_vec);
+ _mm_storeu_si128((__m128i *)&dst[j], res);
+ }
+
+ dst += w;
+ }
+ }
+}
+
+static INLINE __m128i highbd_filter_block_2rows(const __m128i a0,
+ const __m128i b0,
+ const __m128i a1,
+ const __m128i b1,
+ const __m128i filter) {
+ __m128i v0 = _mm_unpacklo_epi16(a0, b0);
+ v0 = _mm_madd_epi16(v0, filter);
+ v0 = xx_roundn_epu32(v0, FILTER_BITS);
+
+ __m128i v1 = _mm_unpacklo_epi16(a1, b1);
+ v1 = _mm_madd_epi16(v1, filter);
+ v1 = xx_roundn_epu32(v1, FILTER_BITS);
+
+ return _mm_packs_epi32(v0, v1);
+}
+
+static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride,
+ int xoffset, int yoffset, uint16_t *dst,
+ int h) {
+ int i;
+ // Horizontal filter
+ if (xoffset == 0) {
+ uint16_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = _mm_loadl_epi64((__m128i *)src);
+ _mm_storel_epi64((__m128i *)b, x);
+ src += src_stride;
+ b += 4;
+ }
+ } else if (xoffset == 4) {
+ uint16_t *b = dst;
+ for (i = 0; i < h + 1; ++i) {
+ __m128i x = _mm_loadu_si128((__m128i *)src);
+ __m128i z = _mm_srli_si128(x, 2);
+ _mm_storel_epi64((__m128i *)b, _mm_avg_epu16(x, z));
+ src += src_stride;
+ b += 4;
+ }
+ } else {
+ uint16_t *b = dst;
+ const uint8_t *hfilter = bilinear_filters_2t[xoffset];
+ const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16));
+ for (i = 0; i < h; i += 2) {
+ const __m128i x0 = _mm_loadu_si128((__m128i *)src);
+ const __m128i z0 = _mm_srli_si128(x0, 2);
+ const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]);
+ const __m128i z1 = _mm_srli_si128(x1, 2);
+ const __m128i res =
+ highbd_filter_block_2rows(x0, z0, x1, z1, hfilter_vec);
+ _mm_storeu_si128((__m128i *)b, res);
+
+ src += src_stride * 2;
+ b += 8;
+ }
+ // Process i = h separately
+ __m128i x = _mm_loadu_si128((__m128i *)src);
+ __m128i z = _mm_srli_si128(x, 2);
+
+ __m128i v0 = _mm_unpacklo_epi16(x, z);
+ v0 = _mm_madd_epi16(v0, hfilter_vec);
+ v0 = xx_roundn_epu32(v0, FILTER_BITS);
+
+ _mm_storel_epi64((__m128i *)b, _mm_packs_epi32(v0, v0));
+ }
+
+ // Vertical filter
+ if (yoffset == 0) {
+ // The data is already in 'dst', so no need to filter
+ } else if (yoffset == 4) {
+ for (i = 0; i < h; ++i) {
+ __m128i x = _mm_loadl_epi64((__m128i *)dst);
+ __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]);
+ _mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(x, y));
+ dst += 4;
+ }
+ } else {
+ const uint8_t *vfilter = bilinear_filters_2t[yoffset];
+ const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16));
+ for (i = 0; i < h; i += 2) {
+ const __m128i x = _mm_loadl_epi64((__m128i *)dst);
+ const __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]);
+ const __m128i z = _mm_loadl_epi64((__m128i *)&dst[8]);
+ const __m128i res = highbd_filter_block_2rows(x, y, y, z, vfilter_vec);
+ _mm_storeu_si128((__m128i *)dst, res);
+
+ dst += 8;
+ }
+ }
+}
+
+static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride,
+ const uint16_t *a_ptr, int a_stride,
+ const uint16_t *b_ptr, int b_stride,
+ const uint8_t *m_ptr, int m_stride,
+ int width, int height, uint64_t *sse,
+ int *sum_) {
+ int x, y;
+ // Note on bit widths:
+ // The maximum value of 'sum' is (2^12 - 1) * 128 * 128 =~ 2^26,
+ // so this can be kept as four 32-bit values.
+ // But the maximum value of 'sum_sq' is (2^12 - 1)^2 * 128 * 128 =~ 2^38,
+ // so this must be stored as two 64-bit values.
+ __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
+ const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
+ const __m128i round_const =
+ _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
+ const __m128i zero = _mm_setzero_si128();
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x += 8) {
+ const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
+ const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
+ const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
+ const __m128i m =
+ _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)&m_ptr[x]), zero);
+ const __m128i m_inv = _mm_sub_epi16(mask_max, m);
+
+ // Calculate 8 predicted pixels.
+ const __m128i data_l = _mm_unpacklo_epi16(a, b);
+ const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
+ __m128i pred_l = _mm_madd_epi16(data_l, mask_l);
+ pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
+ AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i data_r = _mm_unpackhi_epi16(a, b);
+ const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
+ __m128i pred_r = _mm_madd_epi16(data_r, mask_r);
+ pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
+ AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i src_l = _mm_unpacklo_epi16(src, zero);
+ const __m128i src_r = _mm_unpackhi_epi16(src, zero);
+ __m128i diff_l = _mm_sub_epi32(pred_l, src_l);
+ __m128i diff_r = _mm_sub_epi32(pred_r, src_r);
+
+ // Update partial sums and partial sums of squares
+ sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r));
+ // A trick: Now each entry of diff_l and diff_r is stored in a 32-bit
+ // field, but the range of values is only [-(2^12 - 1), 2^12 - 1].
+ // So we can re-pack into 16-bit fields and use _mm_madd_epi16
+ // to calculate the squares and partially sum them.
+ const __m128i tmp = _mm_packs_epi32(diff_l, diff_r);
+ const __m128i prod = _mm_madd_epi16(tmp, tmp);
+ // Then we want to sign-extend to 64 bits and accumulate
+ const __m128i sign = _mm_srai_epi32(prod, 31);
+ const __m128i tmp_0 = _mm_unpacklo_epi32(prod, sign);
+ const __m128i tmp_1 = _mm_unpackhi_epi32(prod, sign);
+ sum_sq = _mm_add_epi64(sum_sq, _mm_add_epi64(tmp_0, tmp_1));
+ }
+
+ src_ptr += src_stride;
+ a_ptr += a_stride;
+ b_ptr += b_stride;
+ m_ptr += m_stride;
+ }
+ // Reduce down to a single sum and sum of squares
+ sum = _mm_hadd_epi32(sum, zero);
+ sum = _mm_hadd_epi32(sum, zero);
+ *sum_ = _mm_cvtsi128_si32(sum);
+ sum_sq = _mm_add_epi64(sum_sq, _mm_srli_si128(sum_sq, 8));
+ _mm_storel_epi64((__m128i *)sse, sum_sq);
+}
+
+static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride,
+ const uint16_t *a_ptr,
+ const uint16_t *b_ptr,
+ const uint8_t *m_ptr, int m_stride,
+ int height, int *sse, int *sum_) {
+ int y;
+ // Note: For this function, h <= 8 (or maybe 16 if we add 4:1 partitions).
+ // So the maximum value of sum is (2^12 - 1) * 4 * 16 =~ 2^18
+ // and the maximum value of sum_sq is (2^12 - 1)^2 * 4 * 16 =~ 2^30.
+ // So we can safely pack sum_sq into 32-bit fields, which is slightly more
+ // convenient.
+ __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
+ const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
+ const __m128i round_const =
+ _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
+ const __m128i zero = _mm_setzero_si128();
+
+ for (y = 0; y < height; y += 2) {
+ __m128i src = _mm_unpacklo_epi64(
+ _mm_loadl_epi64((const __m128i *)src_ptr),
+ _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
+ const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
+ const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
+ const __m128i m = _mm_unpacklo_epi8(
+ _mm_unpacklo_epi32(
+ _mm_cvtsi32_si128(*(const uint32_t *)m_ptr),
+ _mm_cvtsi32_si128(*(const uint32_t *)&m_ptr[m_stride])),
+ zero);
+ const __m128i m_inv = _mm_sub_epi16(mask_max, m);
+
+ const __m128i data_l = _mm_unpacklo_epi16(a, b);
+ const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
+ __m128i pred_l = _mm_madd_epi16(data_l, mask_l);
+ pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
+ AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i data_r = _mm_unpackhi_epi16(a, b);
+ const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
+ __m128i pred_r = _mm_madd_epi16(data_r, mask_r);
+ pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
+ AOM_BLEND_A64_ROUND_BITS);
+
+ const __m128i src_l = _mm_unpacklo_epi16(src, zero);
+ const __m128i src_r = _mm_unpackhi_epi16(src, zero);
+ __m128i diff_l = _mm_sub_epi32(pred_l, src_l);
+ __m128i diff_r = _mm_sub_epi32(pred_r, src_r);
+
+ // Update partial sums and partial sums of squares
+ sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r));
+ const __m128i tmp = _mm_packs_epi32(diff_l, diff_r);
+ const __m128i prod = _mm_madd_epi16(tmp, tmp);
+ sum_sq = _mm_add_epi32(sum_sq, prod);
+
+ src_ptr += src_stride * 2;
+ a_ptr += 8;
+ b_ptr += 8;
+ m_ptr += m_stride * 2;
+ }
+ // Reduce down to a single sum and sum of squares
+ sum = _mm_hadd_epi32(sum, sum_sq);
+ sum = _mm_hadd_epi32(sum, zero);
+ *sum_ = _mm_cvtsi128_si32(sum);
+ *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
+}
+
+void aom_comp_mask_pred_ssse3(uint8_t *comp_pred, const uint8_t *pred,
+ int width, int height, const uint8_t *ref,
+ int ref_stride, const uint8_t *mask,
+ int mask_stride, int invert_mask) {
+ const uint8_t *src0 = invert_mask ? pred : ref;
+ const uint8_t *src1 = invert_mask ? ref : pred;
+ const int stride0 = invert_mask ? width : ref_stride;
+ const int stride1 = invert_mask ? ref_stride : width;
+ assert(height % 2 == 0);
+ int i = 0;
+ if (width == 8) {
+ comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1,
+ mask, mask_stride);
+ } else if (width == 16) {
+ do {
+ comp_mask_pred_16_ssse3(src0, src1, mask, comp_pred);
+ comp_mask_pred_16_ssse3(src0 + stride0, src1 + stride1,
+ mask + mask_stride, comp_pred + width);
+ comp_pred += (width << 1);
+ src0 += (stride0 << 1);
+ src1 += (stride1 << 1);
+ mask += (mask_stride << 1);
+ i += 2;
+ } while (i < height);
+ } else { // width == 32
+ assert(width == 32);
+ do {
+ comp_mask_pred_16_ssse3(src0, src1, mask, comp_pred);
+ comp_mask_pred_16_ssse3(src0 + 16, src1 + 16, mask + 16, comp_pred + 16);
+ comp_pred += (width);
+ src0 += (stride0);
+ src1 += (stride1);
+ mask += (mask_stride);
+ i += 1;
+ } while (i < height);
+ }
+}