summaryrefslogtreecommitdiffstats
path: root/media/libaom/src/av1/encoder/temporal_filter.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libaom/src/av1/encoder/temporal_filter.c')
-rw-r--r--media/libaom/src/av1/encoder/temporal_filter.c602
1 files changed, 602 insertions, 0 deletions
diff --git a/media/libaom/src/av1/encoder/temporal_filter.c b/media/libaom/src/av1/encoder/temporal_filter.c
new file mode 100644
index 000000000..75fdf02a5
--- /dev/null
+++ b/media/libaom/src/av1/encoder/temporal_filter.c
@@ -0,0 +1,602 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <math.h>
+#include <limits.h>
+
+#include "config/aom_config.h"
+
+#include "av1/common/alloccommon.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/odintrin.h"
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/temporal_filter.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/aom_timer.h"
+#include "aom_scale/aom_scale.h"
+
+static void temporal_filter_predictors_mb_c(
+ MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr,
+ int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col,
+ uint8_t *pred, struct scale_factors *scale, int x, int y,
+ int can_use_previous, int num_planes) {
+ const MV mv = { mv_row, mv_col };
+ enum mv_precision mv_precision_uv;
+ int uv_stride;
+ // TODO(angiebird): change plane setting accordingly
+ ConvolveParams conv_params = get_conv_params(0, 0, xd->bd);
+ const InterpFilters interp_filters = xd->mi[0]->interp_filters;
+ WarpTypesAllowed warp_types;
+ memset(&warp_types, 0, sizeof(WarpTypesAllowed));
+
+ if (uv_block_width == 8) {
+ uv_stride = (stride + 1) >> 1;
+ mv_precision_uv = MV_PRECISION_Q4;
+ } else {
+ uv_stride = stride;
+ mv_precision_uv = MV_PRECISION_Q3;
+ }
+ av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16,
+ &conv_params, interp_filters, &warp_types, x, y, 0,
+ 0, MV_PRECISION_Q3, x, y, xd, can_use_previous);
+
+ if (num_planes > 1) {
+ av1_build_inter_predictor(
+ u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale,
+ uv_block_width, uv_block_height, &conv_params, interp_filters,
+ &warp_types, x, y, 1, 0, mv_precision_uv, x, y, xd, can_use_previous);
+
+ av1_build_inter_predictor(
+ v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale,
+ uv_block_width, uv_block_height, &conv_params, interp_filters,
+ &warp_types, x, y, 2, 0, mv_precision_uv, x, y, xd, can_use_previous);
+ }
+}
+
+void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride,
+ uint8_t *frame2, unsigned int block_width,
+ unsigned int block_height, int strength,
+ int filter_weight, unsigned int *accumulator,
+ uint16_t *count) {
+ unsigned int i, j, k;
+ int modifier;
+ int byte = 0;
+ const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+ for (i = 0, k = 0; i < block_height; i++) {
+ for (j = 0; j < block_width; j++, k++) {
+ int pixel_value = *frame2;
+
+ // non-local mean approach
+ int diff_sse[9] = { 0 };
+ int idx, idy, index = 0;
+
+ for (idy = -1; idy <= 1; ++idy) {
+ for (idx = -1; idx <= 1; ++idx) {
+ int row = (int)i + idy;
+ int col = (int)j + idx;
+
+ if (row >= 0 && row < (int)block_height && col >= 0 &&
+ col < (int)block_width) {
+ int diff = frame1[byte + idy * (int)stride + idx] -
+ frame2[idy * (int)block_width + idx];
+ diff_sse[index] = diff * diff;
+ ++index;
+ }
+ }
+ }
+
+ assert(index > 0);
+
+ modifier = 0;
+ for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
+
+ modifier *= 3;
+ modifier /= index;
+
+ ++frame2;
+
+ modifier += rounding;
+ modifier >>= strength;
+
+ if (modifier > 16) modifier = 16;
+
+ modifier = 16 - modifier;
+ modifier *= filter_weight;
+
+ count[k] += modifier;
+ accumulator[k] += modifier * pixel_value;
+
+ byte++;
+ }
+
+ byte += stride - block_width;
+ }
+}
+
+void av1_highbd_temporal_filter_apply_c(
+ uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8,
+ unsigned int block_width, unsigned int block_height, int strength,
+ int filter_weight, unsigned int *accumulator, uint16_t *count) {
+ uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
+ uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
+ unsigned int i, j, k;
+ int modifier;
+ int byte = 0;
+ const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+ for (i = 0, k = 0; i < block_height; i++) {
+ for (j = 0; j < block_width; j++, k++) {
+ int pixel_value = *frame2;
+
+ // non-local mean approach
+ int diff_sse[9] = { 0 };
+ int idx, idy, index = 0;
+
+ for (idy = -1; idy <= 1; ++idy) {
+ for (idx = -1; idx <= 1; ++idx) {
+ int row = (int)i + idy;
+ int col = (int)j + idx;
+
+ if (row >= 0 && row < (int)block_height && col >= 0 &&
+ col < (int)block_width) {
+ int diff = frame1[byte + idy * (int)stride + idx] -
+ frame2[idy * (int)block_width + idx];
+ diff_sse[index] = diff * diff;
+ ++index;
+ }
+ }
+ }
+
+ assert(index > 0);
+
+ modifier = 0;
+ for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
+
+ modifier *= 3;
+ modifier /= index;
+
+ ++frame2;
+
+ modifier += rounding;
+ modifier >>= strength;
+
+ if (modifier > 16) modifier = 16;
+
+ modifier = 16 - modifier;
+ modifier *= filter_weight;
+
+ count[k] += modifier;
+ accumulator[k] += modifier * pixel_value;
+
+ byte++;
+ }
+
+ byte += stride - block_width;
+ }
+}
+
+static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi,
+ uint8_t *arf_frame_buf,
+ uint8_t *frame_ptr_buf,
+ int stride, int x_pos,
+ int y_pos) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
+ int step_param;
+ int sadpb = x->sadperbit16;
+ int bestsme = INT_MAX;
+ int distortion;
+ unsigned int sse;
+ int cost_list[5];
+ MvLimits tmp_mv_limits = x->mv_limits;
+
+ MV best_ref_mv1 = kZeroMv;
+ MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
+
+ // Save input state
+ struct buf_2d src = x->plane[0].src;
+ struct buf_2d pre = xd->plane[0].pre[0];
+
+ best_ref_mv1_full.col = best_ref_mv1.col >> 3;
+ best_ref_mv1_full.row = best_ref_mv1.row >> 3;
+
+ // Setup frame pointers
+ x->plane[0].src.buf = arf_frame_buf;
+ x->plane[0].src.stride = stride;
+ xd->plane[0].pre[0].buf = frame_ptr_buf;
+ xd->plane[0].pre[0].stride = stride;
+
+ step_param = mv_sf->reduce_first_step_size;
+ step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+ av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1);
+
+ x->mvcost = x->mv_cost_stack;
+ x->nmvjointcost = x->nmv_vec_cost;
+
+ av1_full_pixel_search(cpi, x, BLOCK_16X16, &best_ref_mv1_full, step_param,
+ NSTEP, 1, sadpb, cond_cost_list(cpi, cost_list),
+ &best_ref_mv1, 0, 0, x_pos, y_pos, 0);
+ x->mv_limits = tmp_mv_limits;
+
+ // Ignore mv costing by sending NULL pointer instead of cost array
+ if (cpi->common.cur_frame_force_integer_mv == 1) {
+ const uint8_t *const src_address = x->plane[0].src.buf;
+ const int src_stride = x->plane[0].src.stride;
+ const uint8_t *const y = xd->plane[0].pre[0].buf;
+ const int y_stride = xd->plane[0].pre[0].stride;
+ const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col;
+
+ x->best_mv.as_mv.row *= 8;
+ x->best_mv.as_mv.col *= 8;
+
+ bestsme = cpi->fn_ptr[BLOCK_16X16].vf(y + offset, y_stride, src_address,
+ src_stride, &sse);
+ } else {
+ bestsme = cpi->find_fractional_mv_step(
+ x, &cpi->common, 0, 0, &best_ref_mv1,
+ cpi->common.allow_high_precision_mv, x->errorperbit,
+ &cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL,
+ NULL, 0, 0, 0, 0, 0);
+ }
+
+ x->e_mbd.mi[0]->mv[0] = x->best_mv;
+
+ // Restore input state
+ x->plane[0].src = src;
+ xd->plane[0].pre[0] = pre;
+
+ return bestsme;
+}
+
+static void temporal_filter_iterate_c(AV1_COMP *cpi,
+ YV12_BUFFER_CONFIG **frames,
+ int frame_count, int alt_ref_index,
+ int strength,
+ struct scale_factors *scale) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ int byte;
+ int frame;
+ int mb_col, mb_row;
+ unsigned int filter_weight;
+ int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
+ int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
+ int mb_y_offset = 0;
+ int mb_uv_offset = 0;
+ DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
+ DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
+ MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
+ YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
+ uint8_t *dst1, *dst2;
+ DECLARE_ALIGNED(32, uint16_t, predictor16[16 * 16 * 3]);
+ DECLARE_ALIGNED(32, uint8_t, predictor8[16 * 16 * 3]);
+ uint8_t *predictor;
+ const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
+ const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x;
+
+ // Save input state
+ uint8_t *input_buffer[MAX_MB_PLANE];
+ int i;
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ predictor = CONVERT_TO_BYTEPTR(predictor16);
+ } else {
+ predictor = predictor8;
+ }
+
+ for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf;
+
+ for (mb_row = 0; mb_row < mb_rows; mb_row++) {
+ // Source frames are extended to 16 pixels. This is different than
+ // L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS)
+ // A 6/8 tap filter is used for motion search. This requires 2 pixels
+ // before and 3 pixels after. So the largest Y mv on a border would
+ // then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the
+ // Y and therefore only extended by 8. The largest mv that a UV block
+ // can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv.
+ // (16 - AOM_INTERP_EXTEND) >> 1 which is greater than
+ // 8 - AOM_INTERP_EXTEND.
+ // To keep the mv in play for both Y and UV planes the max that it
+ // can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1).
+ cpi->td.mb.mv_limits.row_min =
+ -((mb_row * 16) + (17 - 2 * AOM_INTERP_EXTEND));
+ cpi->td.mb.mv_limits.row_max =
+ ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * AOM_INTERP_EXTEND);
+
+ for (mb_col = 0; mb_col < mb_cols; mb_col++) {
+ int j, k;
+ int stride;
+
+ memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
+ memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
+
+ cpi->td.mb.mv_limits.col_min =
+ -((mb_col * 16) + (17 - 2 * AOM_INTERP_EXTEND));
+ cpi->td.mb.mv_limits.col_max =
+ ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * AOM_INTERP_EXTEND);
+
+ for (frame = 0; frame < frame_count; frame++) {
+ const int thresh_low = 10000;
+ const int thresh_high = 20000;
+
+ if (frames[frame] == NULL) continue;
+
+ mbd->mi[0]->mv[0].as_mv.row = 0;
+ mbd->mi[0]->mv[0].as_mv.col = 0;
+ mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
+
+ if (frame == alt_ref_index) {
+ filter_weight = 2;
+ } else {
+ // Find best match in this frame by MC
+ int err = temporal_filter_find_matching_mb_c(
+ cpi, frames[alt_ref_index]->y_buffer + mb_y_offset,
+ frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride,
+ mb_col * 16, mb_row * 16);
+
+ // Assign higher weight to matching MB if it's error
+ // score is lower. If not applying MC default behavior
+ // is to weight all MBs equal.
+ filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
+ }
+
+ if (filter_weight != 0) {
+ // Construct the predictors
+ temporal_filter_predictors_mb_c(
+ mbd, frames[frame]->y_buffer + mb_y_offset,
+ frames[frame]->u_buffer + mb_uv_offset,
+ frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
+ mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row,
+ mbd->mi[0]->mv[0].as_mv.col, predictor, scale, mb_col * 16,
+ mb_row * 16, cm->allow_warped_motion, num_planes);
+
+ // Apply the filter (YUV)
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ int adj_strength = strength + 2 * (mbd->bd - 8);
+ av1_highbd_temporal_filter_apply(
+ f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16,
+ adj_strength, filter_weight, accumulator, count);
+ if (num_planes > 1) {
+ av1_highbd_temporal_filter_apply(
+ f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
+ mb_uv_width, mb_uv_height, adj_strength, filter_weight,
+ accumulator + 256, count + 256);
+ av1_highbd_temporal_filter_apply(
+ f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
+ mb_uv_width, mb_uv_height, adj_strength, filter_weight,
+ accumulator + 512, count + 512);
+ }
+ } else {
+ av1_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride,
+ predictor, 16, 16, strength,
+ filter_weight, accumulator, count);
+ if (num_planes > 1) {
+ av1_temporal_filter_apply_c(
+ f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
+ mb_uv_width, mb_uv_height, strength, filter_weight,
+ accumulator + 256, count + 256);
+ av1_temporal_filter_apply_c(
+ f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
+ mb_uv_width, mb_uv_height, strength, filter_weight,
+ accumulator + 512, count + 512);
+ }
+ }
+ }
+ }
+
+ // Normalize filter output to produce AltRef frame
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint16_t *dst1_16;
+ uint16_t *dst2_16;
+ dst1 = cpi->alt_ref_buffer.y_buffer;
+ dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+ stride = cpi->alt_ref_buffer.y_stride;
+ byte = mb_y_offset;
+ for (i = 0, k = 0; i < 16; i++) {
+ for (j = 0; j < 16; j++, k++) {
+ dst1_16[byte] =
+ (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+ // move to next pixel
+ byte++;
+ }
+
+ byte += stride - 16;
+ }
+ if (num_planes > 1) {
+ dst1 = cpi->alt_ref_buffer.u_buffer;
+ dst2 = cpi->alt_ref_buffer.v_buffer;
+ dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+ dst2_16 = CONVERT_TO_SHORTPTR(dst2);
+ stride = cpi->alt_ref_buffer.uv_stride;
+ byte = mb_uv_offset;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_width; j++, k++) {
+ int m = k + 256;
+ // U
+ dst1_16[byte] =
+ (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+ // V
+ dst2_16[byte] =
+ (uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - mb_uv_width;
+ }
+ }
+ } else {
+ dst1 = cpi->alt_ref_buffer.y_buffer;
+ stride = cpi->alt_ref_buffer.y_stride;
+ byte = mb_y_offset;
+ for (i = 0, k = 0; i < 16; i++) {
+ for (j = 0; j < 16; j++, k++) {
+ dst1[byte] =
+ (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - 16;
+ }
+ if (num_planes > 1) {
+ dst1 = cpi->alt_ref_buffer.u_buffer;
+ dst2 = cpi->alt_ref_buffer.v_buffer;
+ stride = cpi->alt_ref_buffer.uv_stride;
+ byte = mb_uv_offset;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_width; j++, k++) {
+ int m = k + 256;
+ // U
+ dst1[byte] =
+ (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+ // V
+ dst2[byte] =
+ (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - mb_uv_width;
+ }
+ }
+ }
+ mb_y_offset += 16;
+ mb_uv_offset += mb_uv_width;
+ }
+ mb_y_offset += 16 * (f->y_stride - mb_cols);
+ mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
+ }
+
+ // Restore input state
+ for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i];
+}
+
+// Apply buffer limits and context specific adjustments to arnr filter.
+static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost,
+ int *arnr_frames, int *arnr_strength) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const int frames_after_arf =
+ av1_lookahead_depth(cpi->lookahead) - distance - 1;
+ int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
+ int frames_bwd;
+ int q, frames, strength;
+
+ // Define the forward and backwards filter limits for this arnr group.
+ if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
+ if (frames_fwd > distance) frames_fwd = distance;
+
+ frames_bwd = frames_fwd;
+
+ // For even length filter there is one more frame backward
+ // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
+ if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;
+
+ // Set the baseline active filter size.
+ frames = frames_bwd + 1 + frames_fwd;
+
+ // Adjust the strength based on active max q.
+ if (cpi->common.current_video_frame > 1)
+ q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
+ cpi->common.seq_params.bit_depth));
+ else
+ q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME],
+ cpi->common.seq_params.bit_depth));
+ if (q > 16) {
+ strength = oxcf->arnr_strength;
+ } else {
+ strength = oxcf->arnr_strength - ((16 - q) / 2);
+ if (strength < 0) strength = 0;
+ }
+
+ // Adjust number of frames in filter and strength based on gf boost level.
+ if (frames > group_boost / 150) {
+ frames = group_boost / 150;
+ frames += !(frames & 1);
+ }
+
+ if (strength > group_boost / 300) {
+ strength = group_boost / 300;
+ }
+
+ *arnr_frames = frames;
+ *arnr_strength = strength;
+}
+
+void av1_temporal_filter(AV1_COMP *cpi, int distance) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int frame;
+ int frames_to_blur;
+ int start_frame;
+ int strength;
+ int frames_to_blur_backward;
+ int frames_to_blur_forward;
+ struct scale_factors sf;
+ YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+
+ // Apply context specific adjustments to the arnr filter parameters.
+ adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength);
+ // TODO(weitinglin): Currently, we enforce the filtering strength on
+ // extra ARFs' to be zeros. We should investigate in which
+ // case it is more beneficial to use non-zero strength
+ // filtering.
+ if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
+ strength = 0;
+ frames_to_blur = 1;
+ }
+
+ int which_arf = gf_group->arf_update_idx[gf_group->index];
+
+ // Set the temporal filtering status for the corresponding OVERLAY frame
+ if (strength == 0 && frames_to_blur == 1)
+ cpi->is_arf_filter_off[which_arf] = 1;
+ else
+ cpi->is_arf_filter_off[which_arf] = 0;
+ cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf];
+
+ frames_to_blur_backward = (frames_to_blur / 2);
+ frames_to_blur_forward = ((frames_to_blur - 1) / 2);
+ start_frame = distance + frames_to_blur_forward;
+
+ // Setup frame pointers, NULL indicates frame not included in filter.
+ for (frame = 0; frame < frames_to_blur; ++frame) {
+ const int which_buffer = start_frame - frame;
+ struct lookahead_entry *buf =
+ av1_lookahead_peek(cpi->lookahead, which_buffer);
+ frames[frames_to_blur - 1 - frame] = &buf->img;
+ }
+
+ if (frames_to_blur > 0) {
+ // Setup scaling factors. Scaling on each of the arnr frames is not
+ // supported.
+ // ARF is produced at the native frame size and resized when coded.
+ av1_setup_scale_factors_for_frame(
+ &sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
+ frames[0]->y_crop_width, frames[0]->y_crop_height);
+ }
+
+ temporal_filter_iterate_c(cpi, frames, frames_to_blur,
+ frames_to_blur_backward, strength, &sf);
+}