summaryrefslogtreecommitdiffstats
path: root/js/src/jit/x86/Lowering-x86.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/x86/Lowering-x86.cpp')
-rw-r--r--js/src/jit/x86/Lowering-x86.cpp658
1 files changed, 658 insertions, 0 deletions
diff --git a/js/src/jit/x86/Lowering-x86.cpp b/js/src/jit/x86/Lowering-x86.cpp
new file mode 100644
index 000000000..5dbaefe5b
--- /dev/null
+++ b/js/src/jit/x86/Lowering-x86.cpp
@@ -0,0 +1,658 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sts=4 et sw=4 tw=99:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/x86/Lowering-x86.h"
+
+#include "jit/MIR.h"
+#include "jit/x86/Assembler-x86.h"
+
+#include "jit/shared/Lowering-shared-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+LBoxAllocation
+LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1, Register reg2, bool useAtStart)
+{
+ MOZ_ASSERT(mir->type() == MIRType::Value);
+ MOZ_ASSERT(reg1 != reg2);
+
+ ensureDefined(mir);
+ return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
+ LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
+}
+
+LAllocation
+LIRGeneratorX86::useByteOpRegister(MDefinition* mir)
+{
+ return useFixed(mir, eax);
+}
+
+LAllocation
+LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir)
+{
+ return useFixedAtStart(mir, eax);
+}
+
+LAllocation
+LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir)
+{
+ return useFixed(mir, eax);
+}
+
+LDefinition
+LIRGeneratorX86::tempByteOpRegister()
+{
+ return tempFixed(eax);
+}
+
+void
+LIRGeneratorX86::visitBox(MBox* box)
+{
+ MDefinition* inner = box->getOperand(0);
+
+ // If the box wrapped a double, it needs a new register.
+ if (IsFloatingPointType(inner->type())) {
+ defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0),
+ inner->type()), box);
+ return;
+ }
+
+ if (box->canEmitAtUses()) {
+ emitAtUses(box);
+ return;
+ }
+
+ if (inner->isConstant()) {
+ defineBox(new(alloc()) LValue(inner->toConstant()->toJSValue()), box);
+ return;
+ }
+
+ LBox* lir = new(alloc()) LBox(use(inner), inner->type());
+
+ // Otherwise, we should not define a new register for the payload portion
+ // of the output, so bypass defineBox().
+ uint32_t vreg = getVirtualRegister();
+
+ // Note that because we're using BogusTemp(), we do not change the type of
+ // the definition. We also do not define the first output as "TYPE",
+ // because it has no corresponding payload at (vreg + 1). Also note that
+ // although we copy the input's original type for the payload half of the
+ // definition, this is only for clarity. BogusTemp() definitions are
+ // ignored.
+ lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
+ lir->setDef(1, LDefinition::BogusTemp());
+ box->setVirtualRegister(vreg);
+ add(lir);
+}
+
+void
+LIRGeneratorX86::visitUnbox(MUnbox* unbox)
+{
+ MDefinition* inner = unbox->getOperand(0);
+
+ if (inner->type() == MIRType::ObjectOrNull) {
+ LUnboxObjectOrNull* lir = new(alloc()) LUnboxObjectOrNull(useRegisterAtStart(inner));
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+ defineReuseInput(lir, unbox, 0);
+ return;
+ }
+
+ // An unbox on x86 reads in a type tag (either in memory or a register) and
+ // a payload. Unlike most instructions consuming a box, we ask for the type
+ // second, so that the result can re-use the first input.
+ MOZ_ASSERT(inner->type() == MIRType::Value);
+
+ ensureDefined(inner);
+
+ if (IsFloatingPointType(unbox->type())) {
+ LUnboxFloatingPoint* lir = new(alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+ define(lir, unbox);
+ return;
+ }
+
+ // Swap the order we use the box pieces so we can re-use the payload register.
+ LUnbox* lir = new(alloc()) LUnbox;
+ lir->setOperand(0, usePayloadInRegisterAtStart(inner));
+ lir->setOperand(1, useType(inner, LUse::ANY));
+
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+
+ // Types and payloads form two separate intervals. If the type becomes dead
+ // before the payload, it could be used as a Value without the type being
+ // recoverable. Unbox's purpose is to eagerly kill the definition of a type
+ // tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
+ // Instead, we create a new virtual register.
+ defineReuseInput(lir, unbox, 0);
+}
+
+void
+LIRGeneratorX86::visitReturn(MReturn* ret)
+{
+ MDefinition* opd = ret->getOperand(0);
+ MOZ_ASSERT(opd->type() == MIRType::Value);
+
+ LReturn* ins = new(alloc()) LReturn;
+ ins->setOperand(0, LUse(JSReturnReg_Type));
+ ins->setOperand(1, LUse(JSReturnReg_Data));
+ fillBoxUses(ins, 0, opd);
+ add(ins);
+}
+
+void
+LIRGeneratorX86::defineUntypedPhi(MPhi* phi, size_t lirIndex)
+{
+ LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);
+
+ uint32_t typeVreg = getVirtualRegister();
+
+ phi->setVirtualRegister(typeVreg);
+
+ uint32_t payloadVreg = getVirtualRegister();
+ MOZ_ASSERT(typeVreg + 1 == payloadVreg);
+
+ type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
+ payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
+ annotate(type);
+ annotate(payload);
+}
+
+void
+LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
+{
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
+ type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
+ payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
+}
+
+void
+LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex)
+{
+ LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
+
+ uint32_t lowVreg = getVirtualRegister();
+
+ phi->setVirtualRegister(lowVreg);
+
+ uint32_t highVreg = getVirtualRegister();
+ MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
+
+ low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
+ high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
+ annotate(high);
+ annotate(low);
+}
+
+void
+LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
+{
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
+ low->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
+ high->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
+}
+
+void
+LIRGeneratorX86::lowerForALUInt64(LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void
+LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ bool needsTemp = true;
+
+ if (rhs->isConstant()) {
+ int64_t constant = rhs->toConstant()->toInt64();
+ int32_t shift = mozilla::FloorLog2(constant);
+ // See special cases in CodeGeneratorX86Shared::visitMulI64.
+ if (constant >= -1 && constant <= 2)
+ needsTemp = false;
+ if (int64_t(1) << shift == constant)
+ needsTemp = false;
+ }
+
+ // MulI64 on x86 needs output to be in edx, eax;
+ ins->setInt64Operand(0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ if (needsTemp)
+ ins->setTemp(0, temp());
+
+ defineInt64Fixed(ins, mir, LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+}
+
+void
+LIRGeneratorX86::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins)
+{
+ lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true);
+}
+
+void
+LIRGeneratorX86::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins)
+{
+ lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/ true);
+}
+
+void
+LIRGeneratorX86::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins)
+{
+ lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true);
+}
+
+void
+LIRGeneratorX86::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins)
+{
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToDouble* lir = new(alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp());
+ define(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins)
+{
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToFloat32* lir = new(alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp());
+ define(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitWasmLoad(MWasmLoad* ins)
+{
+ if (ins->type() != MIRType::Int64) {
+ lowerWasmLoad(ins);
+ return;
+ }
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ auto* lir = new(alloc()) LWasmLoadI64(useRegisterOrZeroAtStart(base));
+
+ Scalar::Type accessType = ins->access().type();
+ if (accessType == Scalar::Int8 || accessType == Scalar::Int16 || accessType == Scalar::Int32) {
+ // We use cdq to sign-extend the result and cdq demands these registers.
+ defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ defineInt64(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitWasmStore(MWasmStore* ins)
+{
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ LAllocation baseAlloc = useRegisterOrZeroAtStart(base);
+
+ LAllocation valueAlloc;
+ switch (ins->access().type()) {
+ case Scalar::Int8: case Scalar::Uint8:
+ // See comment for LIRGeneratorX86::useByteOpRegister.
+ valueAlloc = useFixed(ins->value(), eax);
+ break;
+ case Scalar::Int16: case Scalar::Uint16:
+ case Scalar::Int32: case Scalar::Uint32:
+ case Scalar::Float32: case Scalar::Float64:
+ case Scalar::Float32x4:
+ case Scalar::Int8x16:
+ case Scalar::Int16x8:
+ case Scalar::Int32x4:
+ // For now, don't allow constant values. The immediate operand affects
+ // instruction layout which affects patching.
+ valueAlloc = useRegisterAtStart(ins->value());
+ break;
+ case Scalar::Int64: {
+ LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value());
+ auto* lir = new(alloc()) LWasmStoreI64(baseAlloc, valueAlloc);
+ add(lir, ins);
+ return;
+ }
+ case Scalar::Uint8Clamped:
+ case Scalar::MaxTypedArrayViewType:
+ MOZ_CRASH("unexpected array type");
+ }
+
+ auto* lir = new(alloc()) LWasmStore(baseAlloc, valueAlloc);
+ add(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins)
+{
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ // For simplicity, require a register if we're going to emit a bounds-check
+ // branch, so that we don't have special cases for constants.
+ LAllocation baseAlloc = ins->needsBoundsCheck()
+ ? useRegisterAtStart(base)
+ : useRegisterOrZeroAtStart(base);
+
+ define(new(alloc()) LAsmJSLoadHeap(baseAlloc), ins);
+}
+
+void
+LIRGeneratorX86::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins)
+{
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ // For simplicity, require a register if we're going to emit a bounds-check
+ // branch, so that we don't have special cases for constants.
+ LAllocation baseAlloc = ins->needsBoundsCheck()
+ ? useRegisterAtStart(base)
+ : useRegisterOrZeroAtStart(base);
+
+ LAsmJSStoreHeap* lir = nullptr;
+ switch (ins->access().type()) {
+ case Scalar::Int8: case Scalar::Uint8:
+ // See comment for LIRGeneratorX86::useByteOpRegister.
+ lir = new(alloc()) LAsmJSStoreHeap(baseAlloc, useFixed(ins->value(), eax));
+ break;
+ case Scalar::Int16: case Scalar::Uint16:
+ case Scalar::Int32: case Scalar::Uint32:
+ case Scalar::Float32: case Scalar::Float64:
+ case Scalar::Float32x4:
+ case Scalar::Int8x16:
+ case Scalar::Int16x8:
+ case Scalar::Int32x4:
+ // For now, don't allow constant values. The immediate operand affects
+ // instruction layout which affects patching.
+ lir = new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()));
+ break;
+ case Scalar::Int64:
+ MOZ_CRASH("NYI");
+ case Scalar::Uint8Clamped:
+ case Scalar::MaxTypedArrayViewType:
+ MOZ_CRASH("unexpected array type");
+ }
+ add(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins)
+{
+ // The code generated for StoreTypedArrayElementStatic is identical to that
+ // for AsmJSStoreHeap, and the same concerns apply.
+ LStoreTypedArrayElementStatic* lir;
+ switch (ins->accessType()) {
+ case Scalar::Int8: case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ lir = new(alloc()) LStoreTypedArrayElementStatic(useRegister(ins->ptr()),
+ useFixed(ins->value(), eax));
+ break;
+ case Scalar::Int16: case Scalar::Uint16:
+ case Scalar::Int32: case Scalar::Uint32:
+ case Scalar::Float32: case Scalar::Float64:
+ lir = new(alloc()) LStoreTypedArrayElementStatic(useRegisterAtStart(ins->ptr()),
+ useRegisterAtStart(ins->value()));
+ break;
+ default: MOZ_CRASH("unexpected array type");
+ }
+
+ add(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins)
+{
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ bool byteArray = byteSize(ins->access().type()) == 1;
+
+ // Register allocation:
+ //
+ // The output may not be used, but eax will be clobbered regardless
+ // so pin the output to eax.
+ //
+ // oldval must be in a register.
+ //
+ // newval must be in a register. If the source is a byte array
+ // then newval must be a register that has a byte size: this must
+ // be ebx, ecx, or edx (eax is taken).
+ //
+ // Bug #1077036 describes some optimization opportunities.
+
+ const LAllocation oldval = useRegister(ins->oldValue());
+ const LAllocation newval = byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue());
+
+ LAsmJSCompareExchangeHeap* lir =
+ new(alloc()) LAsmJSCompareExchangeHeap(useRegister(base), oldval, newval);
+
+ lir->setAddrTemp(temp());
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+}
+
+void
+LIRGeneratorX86::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins)
+{
+ MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
+
+ const LAllocation base = useRegister(ins->base());
+ const LAllocation value = useRegister(ins->value());
+
+ LAsmJSAtomicExchangeHeap* lir =
+ new(alloc()) LAsmJSAtomicExchangeHeap(base, value);
+
+ lir->setAddrTemp(temp());
+ if (byteSize(ins->access().type()) == 1)
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ else
+ define(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins)
+{
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ bool byteArray = byteSize(ins->access().type()) == 1;
+
+ // Case 1: the result of the operation is not used.
+ //
+ // We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
+ // LOCK OR, or LOCK XOR. These can all take an immediate.
+
+ if (!ins->hasUses()) {
+ LAllocation value;
+ if (byteArray && !ins->value()->isConstant())
+ value = useFixed(ins->value(), ebx);
+ else
+ value = useRegisterOrConstant(ins->value());
+ LAsmJSAtomicBinopHeapForEffect* lir =
+ new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(base), value);
+ lir->setAddrTemp(temp());
+ add(lir, ins);
+ return;
+ }
+
+ // Case 2: the result of the operation is used.
+ //
+ // For ADD and SUB we'll use XADD:
+ //
+ // movl value, output
+ // lock xaddl output, mem
+ //
+ // For the 8-bit variants XADD needs a byte register for the
+ // output only, we can still set up with movl; just pin the output
+ // to eax (or ebx / ecx / edx).
+ //
+ // For AND/OR/XOR we need to use a CMPXCHG loop:
+ //
+ // movl *mem, eax
+ // L: mov eax, temp
+ // andl value, temp
+ // lock cmpxchg temp, mem ; reads eax also
+ // jnz L
+ // ; result in eax
+ //
+ // Note the placement of L, cmpxchg will update eax with *mem if
+ // *mem does not have the expected value, so reloading it at the
+ // top of the loop would be redundant.
+ //
+ // We want to fix eax as the output. We also need a temp for
+ // the intermediate value.
+ //
+ // For the 8-bit variants the temp must have a byte register.
+ //
+ // There are optimization opportunities:
+ // - better 8-bit register allocation and instruction selection, Bug #1077036.
+
+ bool bitOp = !(ins->operation() == AtomicFetchAddOp || ins->operation() == AtomicFetchSubOp);
+ LDefinition tempDef = LDefinition::BogusTemp();
+ LAllocation value;
+
+ if (byteArray) {
+ value = useFixed(ins->value(), ebx);
+ if (bitOp)
+ tempDef = tempFixed(ecx);
+ } else if (bitOp || ins->value()->isConstant()) {
+ value = useRegisterOrConstant(ins->value());
+ if (bitOp)
+ tempDef = temp();
+ } else {
+ value = useRegisterAtStart(ins->value());
+ }
+
+ LAsmJSAtomicBinopHeap* lir =
+ new(alloc()) LAsmJSAtomicBinopHeap(useRegister(base), value, tempDef);
+
+ lir->setAddrTemp(temp());
+ if (byteArray || bitOp)
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ else if (ins->value()->isConstant())
+ define(lir, ins);
+ else
+ defineReuseInput(lir, ins, LAsmJSAtomicBinopHeap::valueOp);
+}
+
+void
+LIRGeneratorX86::lowerDivI64(MDiv* div)
+{
+ if (div->isUnsigned()) {
+ lowerUDivI64(div);
+ return;
+ }
+
+ LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(div->lhs()),
+ useInt64RegisterAtStart(div->rhs()));
+ defineReturn(lir, div);
+}
+
+void
+LIRGeneratorX86::lowerModI64(MMod* mod)
+{
+ if (mod->isUnsigned()) {
+ lowerUModI64(mod);
+ return;
+ }
+
+ LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
+ useInt64RegisterAtStart(mod->rhs()));
+ defineReturn(lir, mod);
+}
+
+void
+LIRGeneratorX86::lowerUDivI64(MDiv* div)
+{
+ LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()),
+ useInt64RegisterAtStart(div->rhs()));
+ defineReturn(lir, div);
+}
+
+void
+LIRGeneratorX86::lowerUModI64(MMod* mod)
+{
+ LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
+ useInt64RegisterAtStart(mod->rhs()));
+ defineReturn(lir, mod);
+}
+
+void
+LIRGeneratorX86::visitSubstr(MSubstr* ins)
+{
+ // Due to lack of registers on x86, we reuse the string register as
+ // temporary. As a result we only need two temporary registers and take a
+ // bugos temporary as fifth argument.
+ LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()),
+ useRegister(ins->begin()),
+ useRegister(ins->length()),
+ temp(),
+ LDefinition::BogusTemp(),
+ tempByteOpRegister());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void
+LIRGeneratorX86::visitRandom(MRandom* ins)
+{
+ LRandom *lir = new(alloc()) LRandom(temp(),
+ temp(),
+ temp(),
+ temp(),
+ temp());
+ defineFixed(lir, ins, LFloatReg(ReturnDoubleReg));
+}
+
+void
+LIRGeneratorX86::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins)
+{
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ LDefinition temp = tempDouble();
+ defineInt64(new(alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins);
+}
+
+void
+LIRGeneratorX86::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins)
+{
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Int64);
+ MOZ_ASSERT(IsFloatingPointType(ins->type()));
+
+ LDefinition maybeTemp =
+ (ins->isUnsigned() && AssemblerX86Shared::HasSSE3()) ? temp() : LDefinition::BogusTemp();
+
+ define(new(alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp), ins);
+}
+
+void
+LIRGeneratorX86::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins)
+{
+ if (ins->isUnsigned()) {
+ defineInt64(new(alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins);
+ } else {
+ LExtendInt32ToInt64* lir =
+ new(alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax));
+ defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ }
+}