1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Mutex.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Unused.h"
#include "nsAtomTable.h"
#include "nsStaticAtom.h"
#include "nsString.h"
#include "nsCRT.h"
#include "PLDHashTable.h"
#include "prenv.h"
#include "nsThreadUtils.h"
#include "nsDataHashtable.h"
#include "nsHashKeys.h"
#include "nsAutoPtr.h"
#include "nsUnicharUtils.h"
#include "nsPrintfCString.h"
// There are two kinds of atoms handled by this module.
//
// - DynamicAtom: the atom itself is heap allocated, as is the nsStringBuffer it
// points to. |gAtomTable| holds weak references to them DynamicAtoms. When
// the refcount of a DynamicAtom drops to zero, we increment a static counter.
// When that counter reaches a certain threshold, we iterate over the atom
// table, removing and deleting DynamicAtoms with refcount zero. This allows
// us to avoid acquiring the atom table lock during normal refcounting.
//
// - StaticAtom: the atom itself is heap allocated, but it points to a static
// nsStringBuffer. |gAtomTable| effectively owns StaticAtoms, because such
// atoms ignore all AddRef/Release calls, which ensures they stay alive until
// |gAtomTable| itself is destroyed whereupon they are explicitly deleted.
//
// Note that gAtomTable is used on multiple threads, and callers must
// acquire gAtomTableLock before touching it.
using namespace mozilla;
//----------------------------------------------------------------------
class CheckStaticAtomSizes
{
CheckStaticAtomSizes()
{
static_assert((sizeof(nsFakeStringBuffer<1>().mRefCnt) ==
sizeof(nsStringBuffer().mRefCount)) &&
(sizeof(nsFakeStringBuffer<1>().mSize) ==
sizeof(nsStringBuffer().mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mRefCnt) ==
offsetof(nsStringBuffer, mRefCount)) &&
(offsetof(nsFakeStringBuffer<1>, mSize) ==
offsetof(nsStringBuffer, mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mStringData) ==
sizeof(nsStringBuffer)),
"mocked-up strings' representations should be compatible");
}
};
//----------------------------------------------------------------------
static Atomic<uint32_t, ReleaseAcquire> gUnusedAtomCount(0);
class DynamicAtom final : public nsIAtom
{
public:
static already_AddRefed<DynamicAtom> Create(const nsAString& aString, uint32_t aHash)
{
// The refcount is appropriately initialized in the constructor.
return dont_AddRef(new DynamicAtom(aString, aHash));
}
static void GCAtomTable();
enum class GCKind {
RegularOperation,
Shutdown,
};
static void GCAtomTableLocked(const MutexAutoLock& aProofOfLock,
GCKind aKind);
private:
DynamicAtom(const nsAString& aString, uint32_t aHash)
: mRefCnt(1)
{
mLength = aString.Length();
mIsStatic = false;
RefPtr<nsStringBuffer> buf = nsStringBuffer::FromString(aString);
if (buf) {
mString = static_cast<char16_t*>(buf->Data());
} else {
const size_t size = (mLength + 1) * sizeof(char16_t);
buf = nsStringBuffer::Alloc(size);
if (MOZ_UNLIKELY(!buf)) {
// We OOM because atom allocations should be small and it's hard to
// handle them more gracefully in a constructor.
NS_ABORT_OOM(size);
}
mString = static_cast<char16_t*>(buf->Data());
CopyUnicodeTo(aString, 0, mString, mLength);
mString[mLength] = char16_t(0);
}
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
NS_ASSERTION(mString[mLength] == char16_t(0), "null terminated");
NS_ASSERTION(buf && buf->StorageSize() >= (mLength + 1) * sizeof(char16_t),
"enough storage");
NS_ASSERTION(Equals(aString), "correct data");
// Take ownership of buffer
mozilla::Unused << buf.forget();
}
private:
// We don't need a virtual destructor because we always delete via a
// DynamicAtom* pointer (in GCAtomTable()), not an nsIAtom* pointer.
~DynamicAtom();
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIATOM
};
class StaticAtom final : public nsIAtom
{
public:
StaticAtom(nsStringBuffer* aStringBuffer, uint32_t aLength, uint32_t aHash)
{
mLength = aLength;
mIsStatic = true;
mString = static_cast<char16_t*>(aStringBuffer->Data());
// Technically we could currently avoid doing this addref by instead making
// the static atom buffers have an initial refcount of 2.
aStringBuffer->AddRef();
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
MOZ_ASSERT(mString[mLength] == char16_t(0), "null terminated");
MOZ_ASSERT(aStringBuffer &&
aStringBuffer->StorageSize() == (mLength + 1) * sizeof(char16_t),
"correct storage");
}
// We don't need a virtual destructor because we always delete via a
// StaticAtom* pointer (in AtomTableClearEntry()), not an nsIAtom* pointer.
~StaticAtom() {}
NS_DECL_ISUPPORTS
NS_DECL_NSIATOM
};
NS_IMPL_QUERY_INTERFACE(StaticAtom, nsIAtom)
NS_IMETHODIMP_(MozExternalRefCountType)
StaticAtom::AddRef()
{
return 2;
}
NS_IMETHODIMP_(MozExternalRefCountType)
StaticAtom::Release()
{
return 1;
}
NS_IMETHODIMP
DynamicAtom::ScriptableToString(nsAString& aBuf)
{
nsStringBuffer::FromData(mString)->ToString(mLength, aBuf);
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ScriptableToString(nsAString& aBuf)
{
nsStringBuffer::FromData(mString)->ToString(mLength, aBuf);
return NS_OK;
}
NS_IMETHODIMP
DynamicAtom::ToUTF8String(nsACString& aBuf)
{
CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf);
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ToUTF8String(nsACString& aBuf)
{
CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf);
return NS_OK;
}
NS_IMETHODIMP
DynamicAtom::ScriptableEquals(const nsAString& aString, bool* aResult)
{
*aResult = aString.Equals(nsDependentString(mString, mLength));
return NS_OK;
}
NS_IMETHODIMP
StaticAtom::ScriptableEquals(const nsAString& aString, bool* aResult)
{
*aResult = aString.Equals(nsDependentString(mString, mLength));
return NS_OK;
}
NS_IMETHODIMP_(size_t)
DynamicAtom::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
n += nsStringBuffer::FromData(mString)->SizeOfIncludingThisIfUnshared(
aMallocSizeOf);
return n;
}
NS_IMETHODIMP_(size_t)
StaticAtom::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
// Don't measure the string buffer pointed to by the StaticAtom because it's
// in static memory.
return n;
}
//----------------------------------------------------------------------
/**
* The shared hash table for atom lookups.
*
* Callers must hold gAtomTableLock before manipulating the table.
*/
static PLDHashTable* gAtomTable;
static Mutex* gAtomTableLock;
struct AtomTableKey
{
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength, uint32_t aHash)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
, mHash(aHash)
{
MOZ_ASSERT(mHash == HashString(mUTF16String, mLength));
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t aHash)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
, mHash(aHash)
{
mozilla::DebugOnly<bool> err;
MOZ_ASSERT(aHash == HashUTF8AsUTF16(mUTF8String, mLength, &err));
}
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength,
uint32_t* aHashOut)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
{
mHash = HashString(mUTF16String, mLength);
*aHashOut = mHash;
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t* aHashOut)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
{
bool err;
mHash = HashUTF8AsUTF16(mUTF8String, mLength, &err);
if (err) {
mUTF8String = nullptr;
mLength = 0;
mHash = 0;
}
*aHashOut = mHash;
}
const char16_t* mUTF16String;
const char* mUTF8String;
uint32_t mLength;
uint32_t mHash;
};
struct AtomTableEntry : public PLDHashEntryHdr
{
// These references are either to DynamicAtoms, in which case they are
// non-owning, or they are to StaticAtoms, which aren't really refcounted.
// See the comment at the top of this file for more details.
nsIAtom* MOZ_NON_OWNING_REF mAtom;
};
static PLDHashNumber
AtomTableGetHash(const void* aKey)
{
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
return k->mHash;
}
static bool
AtomTableMatchKey(const PLDHashEntryHdr* aEntry, const void* aKey)
{
const AtomTableEntry* he = static_cast<const AtomTableEntry*>(aEntry);
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
if (k->mUTF8String) {
return
CompareUTF8toUTF16(nsDependentCSubstring(k->mUTF8String,
k->mUTF8String + k->mLength),
nsDependentAtomString(he->mAtom)) == 0;
}
return he->mAtom->Equals(k->mUTF16String, k->mLength);
}
static void
AtomTableClearEntry(PLDHashTable* aTable, PLDHashEntryHdr* aEntry)
{
auto entry = static_cast<AtomTableEntry*>(aEntry);
nsIAtom* atom = entry->mAtom;
if (atom->IsStaticAtom()) {
// This case -- when the entry being cleared holds a StaticAtom -- only
// occurs when gAtomTable is destroyed, whereupon all StaticAtoms within it
// must be explicitly deleted. The cast is required because StaticAtom
// doesn't have a virtual destructor.
delete static_cast<StaticAtom*>(atom);
}
}
static void
AtomTableInitEntry(PLDHashEntryHdr* aEntry, const void* aKey)
{
static_cast<AtomTableEntry*>(aEntry)->mAtom = nullptr;
}
static const PLDHashTableOps AtomTableOps = {
AtomTableGetHash,
AtomTableMatchKey,
PLDHashTable::MoveEntryStub,
AtomTableClearEntry,
AtomTableInitEntry
};
//----------------------------------------------------------------------
#define RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE 31
static nsIAtom*
sRecentlyUsedMainThreadAtoms[RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE] = {};
void
DynamicAtom::GCAtomTable()
{
if (NS_IsMainThread()) {
MutexAutoLock lock(*gAtomTableLock);
GCAtomTableLocked(lock, GCKind::RegularOperation);
}
}
void
DynamicAtom::GCAtomTableLocked(const MutexAutoLock& aProofOfLock,
GCKind aKind)
{
MOZ_ASSERT(NS_IsMainThread());
for (uint32_t i = 0; i < RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE; ++i) {
sRecentlyUsedMainThreadAtoms[i] = nullptr;
}
uint32_t removedCount = 0; // Use a non-atomic temporary for cheaper increments.
nsAutoCString nonZeroRefcountAtoms;
uint32_t nonZeroRefcountAtomsCount = 0;
for (auto i = gAtomTable->Iter(); !i.Done(); i.Next()) {
auto entry = static_cast<AtomTableEntry*>(i.Get());
if (entry->mAtom->IsStaticAtom()) {
continue;
}
auto atom = static_cast<DynamicAtom*>(entry->mAtom);
if (atom->mRefCnt == 0) {
i.Remove();
delete atom;
++removedCount;
}
#ifdef NS_FREE_PERMANENT_DATA
else if (aKind == GCKind::Shutdown && PR_GetEnv("XPCOM_MEM_BLOAT_LOG")) {
// Only report leaking atoms in leak-checking builds in a run
// where we are checking for leaks, during shutdown. If
// something is anomalous, then we'll assert later in this
// function.
nsAutoCString name;
atom->ToUTF8String(name);
if (nonZeroRefcountAtomsCount == 0) {
nonZeroRefcountAtoms = name;
} else if (nonZeroRefcountAtomsCount < 20) {
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",") + name;
} else if (nonZeroRefcountAtomsCount == 20) {
nonZeroRefcountAtoms += NS_LITERAL_CSTRING(",...");
}
nonZeroRefcountAtomsCount++;
}
#endif
}
if (nonZeroRefcountAtomsCount) {
nsPrintfCString msg("%d dynamic atom(s) with non-zero refcount: %s",
nonZeroRefcountAtomsCount, nonZeroRefcountAtoms.get());
NS_ASSERTION(nonZeroRefcountAtomsCount == 0, msg.get());
}
// During the course of this function, the atom table is locked. This means
// that, barring refcounting bugs in consumers, an atom can never go from
// refcount == 0 to refcount != 0 during a GC. However, an atom _can_ go from
// refcount != 0 to refcount == 0 if a Release() occurs in parallel with GC.
// This means that we cannot assert that gUnusedAtomCount == removedCount, and
// thus that there are no unused atoms at the end of a GC. We can and do,
// however, assert this after the last GC at shutdown.
if (aKind == GCKind::RegularOperation) {
MOZ_ASSERT(removedCount <= gUnusedAtomCount);
} else {
// Complain if somebody adds new GCKind enums.
MOZ_ASSERT(aKind == GCKind::Shutdown);
// Our unused atom count should be accurate.
MOZ_ASSERT(removedCount == gUnusedAtomCount);
}
gUnusedAtomCount -= removedCount;
}
NS_IMPL_QUERY_INTERFACE(DynamicAtom, nsIAtom)
NS_IMETHODIMP_(MozExternalRefCountType)
DynamicAtom::AddRef(void)
{
nsrefcnt count = ++mRefCnt;
if (count == 1) {
MOZ_ASSERT(gUnusedAtomCount > 0);
gUnusedAtomCount--;
}
return count;
}
#ifdef DEBUG
// We set a lower GC threshold for atoms in debug builds so that we exercise
// the GC machinery more often.
static const uint32_t kAtomGCThreshold = 20;
#else
static const uint32_t kAtomGCThreshold = 10000;
#endif
NS_IMETHODIMP_(MozExternalRefCountType)
DynamicAtom::Release(void)
{
MOZ_ASSERT(mRefCnt > 0);
nsrefcnt count = --mRefCnt;
if (count == 0) {
if (++gUnusedAtomCount >= kAtomGCThreshold) {
GCAtomTable();
}
}
return count;
}
DynamicAtom::~DynamicAtom()
{
nsStringBuffer::FromData(mString)->Release();
}
//----------------------------------------------------------------------
class StaticAtomEntry : public PLDHashEntryHdr
{
public:
typedef const nsAString& KeyType;
typedef const nsAString* KeyTypePointer;
explicit StaticAtomEntry(KeyTypePointer aKey) {}
StaticAtomEntry(const StaticAtomEntry& aOther) : mAtom(aOther.mAtom) {}
// We do not delete the atom because that's done when gAtomTable is
// destroyed -- which happens immediately after gStaticAtomTable is destroyed
// -- in NS_PurgeAtomTable().
~StaticAtomEntry() {}
bool KeyEquals(KeyTypePointer aKey) const
{
return mAtom->Equals(*aKey);
}
static KeyTypePointer KeyToPointer(KeyType aKey) { return &aKey; }
static PLDHashNumber HashKey(KeyTypePointer aKey)
{
return HashString(*aKey);
}
enum { ALLOW_MEMMOVE = true };
// StaticAtoms aren't really refcounted. Because these entries live in a
// global hashtable, this reference is essentially owning.
StaticAtom* MOZ_OWNING_REF mAtom;
};
/**
* A hashtable of static atoms that existed at app startup. This hashtable
* helps nsHtml5AtomTable.
*/
typedef nsTHashtable<StaticAtomEntry> StaticAtomTable;
static StaticAtomTable* gStaticAtomTable = nullptr;
/**
* Whether it is still OK to add atoms to gStaticAtomTable.
*/
static bool gStaticAtomTableSealed = false;
// The atom table very quickly gets 10,000+ entries in it (or even 100,000+).
// But choosing the best initial length has some subtleties: we add ~2700
// static atoms to the table at start-up, and then we start adding and removing
// dynamic atoms. If we make the table too big to start with, when the first
// dynamic atom gets removed the load factor will be < 25% and so we will
// shrink it to 4096 entries.
//
// By choosing an initial length of 4096, we get an initial capacity of 8192.
// That's the biggest initial capacity that will let us be > 25% full when the
// first dynamic atom is removed (when the count is ~2700), thus avoiding any
// shrinking.
#define ATOM_HASHTABLE_INITIAL_LENGTH 4096
void
NS_InitAtomTable()
{
MOZ_ASSERT(!gAtomTable);
gAtomTable = new PLDHashTable(&AtomTableOps, sizeof(AtomTableEntry),
ATOM_HASHTABLE_INITIAL_LENGTH);
gAtomTableLock = new Mutex("Atom Table Lock");
}
void
NS_ShutdownAtomTable()
{
delete gStaticAtomTable;
gStaticAtomTable = nullptr;
#ifdef NS_FREE_PERMANENT_DATA
// Do a final GC to satisfy leak checking. We skip this step in release
// builds.
{
MutexAutoLock lock(*gAtomTableLock);
DynamicAtom::GCAtomTableLocked(lock, DynamicAtom::GCKind::Shutdown);
}
#endif
delete gAtomTable;
gAtomTable = nullptr;
delete gAtomTableLock;
gAtomTableLock = nullptr;
}
void
NS_SizeOfAtomTablesIncludingThis(MallocSizeOf aMallocSizeOf,
size_t* aMain, size_t* aStatic)
{
MutexAutoLock lock(*gAtomTableLock);
*aMain = gAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf);
for (auto iter = gAtomTable->Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<AtomTableEntry*>(iter.Get());
*aMain += entry->mAtom->SizeOfIncludingThis(aMallocSizeOf);
}
// The atoms pointed to by gStaticAtomTable are also pointed to by gAtomTable,
// and they're measured by the loop above. So no need to measure them here.
*aStatic = gStaticAtomTable
? gStaticAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf)
: 0;
}
static inline AtomTableEntry*
GetAtomHashEntry(const char* aString, uint32_t aLength, uint32_t* aHashOut)
{
gAtomTableLock->AssertCurrentThreadOwns();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
static inline AtomTableEntry*
GetAtomHashEntry(const char16_t* aString, uint32_t aLength, uint32_t* aHashOut)
{
gAtomTableLock->AssertCurrentThreadOwns();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
void
RegisterStaticAtoms(const nsStaticAtom* aAtoms, uint32_t aAtomCount)
{
MutexAutoLock lock(*gAtomTableLock);
MOZ_RELEASE_ASSERT(!gStaticAtomTableSealed,
"Atom table has already been sealed!");
if (!gStaticAtomTable) {
gStaticAtomTable = new StaticAtomTable();
}
for (uint32_t i = 0; i < aAtomCount; ++i) {
nsStringBuffer* stringBuffer = aAtoms[i].mStringBuffer;
nsIAtom** atomp = aAtoms[i].mAtom;
MOZ_ASSERT(nsCRT::IsAscii(static_cast<char16_t*>(stringBuffer->Data())));
uint32_t stringLen = stringBuffer->StorageSize() / sizeof(char16_t) - 1;
uint32_t hash;
AtomTableEntry* he =
GetAtomHashEntry(static_cast<char16_t*>(stringBuffer->Data()),
stringLen, &hash);
nsIAtom* atom = he->mAtom;
if (atom) {
// Disallow creating a dynamic atom, and then later, while the
// dynamic atom is still alive, registering that same atom as a
// static atom. It causes subtle bugs, and we're programming in
// C++ here, not Smalltalk.
if (!atom->IsStaticAtom()) {
nsAutoCString name;
atom->ToUTF8String(name);
MOZ_CRASH_UNSAFE_PRINTF(
"Static atom registration for %s should be pushed back", name.get());
}
} else {
atom = new StaticAtom(stringBuffer, stringLen, hash);
he->mAtom = atom;
}
*atomp = atom;
if (!gStaticAtomTableSealed) {
StaticAtomEntry* entry =
gStaticAtomTable->PutEntry(nsDependentAtomString(atom));
MOZ_ASSERT(atom->IsStaticAtom());
entry->mAtom = static_cast<StaticAtom*>(atom);
}
}
}
already_AddRefed<nsIAtom>
NS_Atomize(const char* aUTF8String)
{
return NS_Atomize(nsDependentCString(aUTF8String));
}
already_AddRefed<nsIAtom>
NS_Atomize(const nsACString& aUTF8String)
{
MutexAutoLock lock(*gAtomTableLock);
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF8String.Data(),
aUTF8String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
// This results in an extra addref/release of the nsStringBuffer.
// Unfortunately there doesn't seem to be any APIs to avoid that.
// Actually, now there is, sort of: ForgetSharedBuffer.
nsString str;
CopyUTF8toUTF16(aUTF8String, str);
RefPtr<DynamicAtom> atom = DynamicAtom::Create(str, hash);
he->mAtom = atom;
return atom.forget();
}
already_AddRefed<nsIAtom>
NS_Atomize(const char16_t* aUTF16String)
{
return NS_Atomize(nsDependentString(aUTF16String));
}
already_AddRefed<nsIAtom>
NS_Atomize(const nsAString& aUTF16String)
{
MutexAutoLock lock(*gAtomTableLock);
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF16String.Data(),
aUTF16String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
RefPtr<DynamicAtom> atom = DynamicAtom::Create(aUTF16String, hash);
he->mAtom = atom;
return atom.forget();
}
already_AddRefed<nsIAtom>
NS_AtomizeMainThread(const nsAString& aUTF16String)
{
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIAtom> retVal;
uint32_t hash;
AtomTableKey key(aUTF16String.Data(), aUTF16String.Length(), &hash);
uint32_t index = hash % RECENTLY_USED_MAIN_THREAD_ATOM_CACHE_SIZE;
nsIAtom* atom =
sRecentlyUsedMainThreadAtoms[index];
if (atom) {
uint32_t length = atom->GetLength();
if (length == key.mLength &&
(memcmp(atom->GetUTF16String(),
key.mUTF16String, length * sizeof(char16_t)) == 0)) {
retVal = atom;
return retVal.forget();
}
}
MutexAutoLock lock(*gAtomTableLock);
AtomTableEntry* he = static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
if (he->mAtom) {
retVal = he->mAtom;
} else {
retVal = DynamicAtom::Create(aUTF16String, hash);
he->mAtom = retVal;
}
sRecentlyUsedMainThreadAtoms[index] = retVal;
return retVal.forget();
}
nsrefcnt
NS_GetNumberOfAtoms(void)
{
DynamicAtom::GCAtomTable(); // Trigger a GC so that we return a deterministic result.
MutexAutoLock lock(*gAtomTableLock);
return gAtomTable->EntryCount();
}
nsIAtom*
NS_GetStaticAtom(const nsAString& aUTF16String)
{
NS_PRECONDITION(gStaticAtomTable, "Static atom table not created yet.");
NS_PRECONDITION(gStaticAtomTableSealed, "Static atom table not sealed yet.");
StaticAtomEntry* entry = gStaticAtomTable->GetEntry(aUTF16String);
return entry ? entry->mAtom : nullptr;
}
void
NS_SealStaticAtomTable()
{
gStaticAtomTableSealed = true;
}
|