1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "LulMain.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm> // std::sort
#include <string>
#include "mozilla/Assertions.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MemoryChecking.h"
#include "mozilla/Sprintf.h"
#include "LulCommonExt.h"
#include "LulElfExt.h"
#include "LulMainInt.h"
#include "platform-linux-lul.h" // for gettid()
// Set this to 1 for verbose logging
#define DEBUG_MAIN 0
namespace lul {
using std::string;
using std::vector;
using std::pair;
using mozilla::CheckedInt;
using mozilla::DebugOnly;
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
//
// Some functions in this file are marked RUNS IN NO-MALLOC CONTEXT.
// Any such function -- and, hence, the transitive closure of those
// reachable from it -- must not do any dynamic memory allocation.
// Doing so risks deadlock. There is exactly one root function for
// the transitive closure: Lul::Unwind.
//
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
////////////////////////////////////////////////////////////////
// RuleSet //
////////////////////////////////////////////////////////////////
static const char*
NameOf_DW_REG(int16_t aReg)
{
switch (aReg) {
case DW_REG_CFA: return "cfa";
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
case DW_REG_INTEL_XBP: return "xbp";
case DW_REG_INTEL_XSP: return "xsp";
case DW_REG_INTEL_XIP: return "xip";
#elif defined(LUL_ARCH_arm)
case DW_REG_ARM_R7: return "r7";
case DW_REG_ARM_R11: return "r11";
case DW_REG_ARM_R12: return "r12";
case DW_REG_ARM_R13: return "r13";
case DW_REG_ARM_R14: return "r14";
case DW_REG_ARM_R15: return "r15";
#else
# error "Unsupported arch"
#endif
default: return "???";
}
}
string
LExpr::ShowRule(const char* aNewReg) const
{
char buf[64];
string res = string(aNewReg) + "=";
switch (mHow) {
case UNKNOWN:
res += "Unknown";
break;
case NODEREF:
SprintfLiteral(buf, "%s+%d",
NameOf_DW_REG(mReg), (int)mOffset);
res += buf;
break;
case DEREF:
SprintfLiteral(buf, "*(%s+%d)",
NameOf_DW_REG(mReg), (int)mOffset);
res += buf;
break;
case PFXEXPR:
SprintfLiteral(buf, "PfxExpr-at-%d", (int)mOffset);
res += buf;
break;
default:
res += "???";
break;
}
return res;
}
void
RuleSet::Print(void(*aLog)(const char*)) const
{
char buf[96];
SprintfLiteral(buf, "[%llx .. %llx]: let ",
(unsigned long long int)mAddr,
(unsigned long long int)(mAddr + mLen - 1));
string res = string(buf);
res += mCfaExpr.ShowRule("cfa");
res += " in";
// For each reg we care about, print the recovery expression.
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
res += mXipExpr.ShowRule(" RA");
res += mXspExpr.ShowRule(" SP");
res += mXbpExpr.ShowRule(" BP");
#elif defined(LUL_ARCH_arm)
res += mR15expr.ShowRule(" R15");
res += mR7expr .ShowRule(" R7" );
res += mR11expr.ShowRule(" R11");
res += mR12expr.ShowRule(" R12");
res += mR13expr.ShowRule(" R13");
res += mR14expr.ShowRule(" R14");
#else
# error "Unsupported arch"
#endif
aLog(res.c_str());
}
LExpr*
RuleSet::ExprForRegno(DW_REG_NUMBER aRegno) {
switch (aRegno) {
case DW_REG_CFA: return &mCfaExpr;
# if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
case DW_REG_INTEL_XIP: return &mXipExpr;
case DW_REG_INTEL_XSP: return &mXspExpr;
case DW_REG_INTEL_XBP: return &mXbpExpr;
# elif defined(LUL_ARCH_arm)
case DW_REG_ARM_R15: return &mR15expr;
case DW_REG_ARM_R14: return &mR14expr;
case DW_REG_ARM_R13: return &mR13expr;
case DW_REG_ARM_R12: return &mR12expr;
case DW_REG_ARM_R11: return &mR11expr;
case DW_REG_ARM_R7: return &mR7expr;
# else
# error "Unknown arch"
# endif
default: return nullptr;
}
}
RuleSet::RuleSet()
{
mAddr = 0;
mLen = 0;
// The only other fields are of type LExpr and those are initialised
// by LExpr::LExpr().
}
////////////////////////////////////////////////////////////////
// SecMap //
////////////////////////////////////////////////////////////////
// See header file LulMainInt.h for comments about invariants.
SecMap::SecMap(void(*aLog)(const char*))
: mSummaryMinAddr(1)
, mSummaryMaxAddr(0)
, mUsable(true)
, mLog(aLog)
{}
SecMap::~SecMap() {
mRuleSets.clear();
}
// RUNS IN NO-MALLOC CONTEXT
RuleSet*
SecMap::FindRuleSet(uintptr_t ia) {
// Binary search mRuleSets to find one that brackets |ia|.
// lo and hi need to be signed, else the loop termination tests
// don't work properly. Note that this works correctly even when
// mRuleSets.size() == 0.
// Can't do this until the array has been sorted and preened.
MOZ_ASSERT(mUsable);
long int lo = 0;
long int hi = (long int)mRuleSets.size() - 1;
while (true) {
// current unsearched space is from lo to hi, inclusive.
if (lo > hi) {
// not found
return nullptr;
}
long int mid = lo + ((hi - lo) / 2);
RuleSet* mid_ruleSet = &mRuleSets[mid];
uintptr_t mid_minAddr = mid_ruleSet->mAddr;
uintptr_t mid_maxAddr = mid_minAddr + mid_ruleSet->mLen - 1;
if (ia < mid_minAddr) { hi = mid-1; continue; }
if (ia > mid_maxAddr) { lo = mid+1; continue; }
MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr);
return mid_ruleSet;
}
// NOTREACHED
}
// Add a RuleSet to the collection. The rule is copied in. Calling
// this makes the map non-searchable.
void
SecMap::AddRuleSet(const RuleSet* rs) {
mUsable = false;
mRuleSets.push_back(*rs);
}
// Add a PfxInstr to the vector of such instrs, and return the index
// in the vector. Calling this makes the map non-searchable.
uint32_t
SecMap::AddPfxInstr(PfxInstr pfxi) {
mUsable = false;
mPfxInstrs.push_back(pfxi);
return mPfxInstrs.size() - 1;
}
static bool
CmpRuleSetsByAddrLE(const RuleSet& rs1, const RuleSet& rs2) {
return rs1.mAddr < rs2.mAddr;
}
// Prepare the map for searching. Completely remove any which don't
// fall inside the specified range [start, +len).
void
SecMap::PrepareRuleSets(uintptr_t aStart, size_t aLen)
{
if (mRuleSets.empty()) {
return;
}
MOZ_ASSERT(aLen > 0);
if (aLen == 0) {
// This should never happen.
mRuleSets.clear();
return;
}
// Sort by start addresses.
std::sort(mRuleSets.begin(), mRuleSets.end(), CmpRuleSetsByAddrLE);
// Detect any entry not completely contained within [start, +len).
// Set its length to zero, so that the next pass will remove it.
for (size_t i = 0; i < mRuleSets.size(); ++i) {
RuleSet* rs = &mRuleSets[i];
if (rs->mLen > 0 &&
(rs->mAddr < aStart || rs->mAddr + rs->mLen > aStart + aLen)) {
rs->mLen = 0;
}
}
// Iteratively truncate any overlaps and remove any zero length
// entries that might result, or that may have been present
// initially. Unless the input is seriously screwy, this is
// expected to iterate only once.
while (true) {
size_t i;
size_t n = mRuleSets.size();
size_t nZeroLen = 0;
if (n == 0) {
break;
}
for (i = 1; i < n; ++i) {
RuleSet* prev = &mRuleSets[i-1];
RuleSet* here = &mRuleSets[i];
MOZ_ASSERT(prev->mAddr <= here->mAddr);
if (prev->mAddr + prev->mLen > here->mAddr) {
prev->mLen = here->mAddr - prev->mAddr;
}
if (prev->mLen == 0)
nZeroLen++;
}
if (mRuleSets[n-1].mLen == 0) {
nZeroLen++;
}
// At this point, the entries are in-order and non-overlapping.
// If none of them are zero-length, we are done.
if (nZeroLen == 0) {
break;
}
// Slide back the entries to remove the zero length ones.
size_t j = 0; // The write-point.
for (i = 0; i < n; ++i) {
if (mRuleSets[i].mLen == 0) {
continue;
}
if (j != i) mRuleSets[j] = mRuleSets[i];
++j;
}
MOZ_ASSERT(i == n);
MOZ_ASSERT(nZeroLen <= n);
MOZ_ASSERT(j == n - nZeroLen);
while (nZeroLen > 0) {
mRuleSets.pop_back();
nZeroLen--;
}
MOZ_ASSERT(mRuleSets.size() == j);
}
size_t n = mRuleSets.size();
#ifdef DEBUG
// Do a final check on the rules: their address ranges must be
// ascending, non overlapping, non zero sized.
if (n > 0) {
MOZ_ASSERT(mRuleSets[0].mLen > 0);
for (size_t i = 1; i < n; ++i) {
RuleSet* prev = &mRuleSets[i-1];
RuleSet* here = &mRuleSets[i];
MOZ_ASSERT(prev->mAddr < here->mAddr);
MOZ_ASSERT(here->mLen > 0);
MOZ_ASSERT(prev->mAddr + prev->mLen <= here->mAddr);
}
}
#endif
// Set the summary min and max address values.
if (n == 0) {
// Use the values defined in comments in the class declaration.
mSummaryMinAddr = 1;
mSummaryMaxAddr = 0;
} else {
mSummaryMinAddr = mRuleSets[0].mAddr;
mSummaryMaxAddr = mRuleSets[n-1].mAddr + mRuleSets[n-1].mLen - 1;
}
char buf[150];
SprintfLiteral(buf,
"PrepareRuleSets: %d entries, smin/smax 0x%llx, 0x%llx\n",
(int)n, (unsigned long long int)mSummaryMinAddr,
(unsigned long long int)mSummaryMaxAddr);
buf[sizeof(buf)-1] = 0;
mLog(buf);
// Is now usable for binary search.
mUsable = true;
if (0) {
mLog("\nRulesets after preening\n");
for (size_t i = 0; i < mRuleSets.size(); ++i) {
mRuleSets[i].Print(mLog);
mLog("\n");
}
mLog("\n");
}
}
bool SecMap::IsEmpty() {
return mRuleSets.empty();
}
////////////////////////////////////////////////////////////////
// SegArray //
////////////////////////////////////////////////////////////////
// A SegArray holds a set of address ranges that together exactly
// cover an address range, with no overlaps or holes. Each range has
// an associated value, which in this case has been specialised to be
// a simple boolean. The representation is kept to minimal canonical
// form in which adjacent ranges with the same associated value are
// merged together. Each range is represented by a |struct Seg|.
//
// SegArrays are used to keep track of which parts of the address
// space are known to contain instructions.
class SegArray {
public:
void add(uintptr_t lo, uintptr_t hi, bool val) {
if (lo > hi) {
return;
}
split_at(lo);
if (hi < UINTPTR_MAX) {
split_at(hi+1);
}
std::vector<Seg>::size_type iLo, iHi, i;
iLo = find(lo);
iHi = find(hi);
for (i = iLo; i <= iHi; ++i) {
mSegs[i].val = val;
}
preen();
}
// RUNS IN NO-MALLOC CONTEXT
bool getBoundingCodeSegment(/*OUT*/uintptr_t* rx_min,
/*OUT*/uintptr_t* rx_max, uintptr_t addr) {
std::vector<Seg>::size_type i = find(addr);
if (!mSegs[i].val) {
return false;
}
*rx_min = mSegs[i].lo;
*rx_max = mSegs[i].hi;
return true;
}
SegArray() {
Seg s(0, UINTPTR_MAX, false);
mSegs.push_back(s);
}
private:
struct Seg {
Seg(uintptr_t lo, uintptr_t hi, bool val) : lo(lo), hi(hi), val(val) {}
uintptr_t lo;
uintptr_t hi;
bool val;
};
void preen() {
for (std::vector<Seg>::iterator iter = mSegs.begin();
iter < mSegs.end()-1;
++iter) {
if (iter[0].val != iter[1].val) {
continue;
}
iter[0].hi = iter[1].hi;
mSegs.erase(iter+1);
// Back up one, so as not to miss an opportunity to merge
// with the entry after this one.
--iter;
}
}
// RUNS IN NO-MALLOC CONTEXT
std::vector<Seg>::size_type find(uintptr_t a) {
long int lo = 0;
long int hi = (long int)mSegs.size();
while (true) {
// The unsearched space is lo .. hi inclusive.
if (lo > hi) {
// Not found. This can't happen.
return (std::vector<Seg>::size_type)(-1);
}
long int mid = lo + ((hi - lo) / 2);
uintptr_t mid_lo = mSegs[mid].lo;
uintptr_t mid_hi = mSegs[mid].hi;
if (a < mid_lo) { hi = mid-1; continue; }
if (a > mid_hi) { lo = mid+1; continue; }
return (std::vector<Seg>::size_type)mid;
}
}
void split_at(uintptr_t a) {
std::vector<Seg>::size_type i = find(a);
if (mSegs[i].lo == a) {
return;
}
mSegs.insert( mSegs.begin()+i+1, mSegs[i] );
mSegs[i].hi = a-1;
mSegs[i+1].lo = a;
}
void show() {
printf("<< %d entries:\n", (int)mSegs.size());
for (std::vector<Seg>::iterator iter = mSegs.begin();
iter < mSegs.end();
++iter) {
printf(" %016llx %016llx %s\n",
(unsigned long long int)(*iter).lo,
(unsigned long long int)(*iter).hi,
(*iter).val ? "true" : "false");
}
printf(">>\n");
}
std::vector<Seg> mSegs;
};
////////////////////////////////////////////////////////////////
// PriMap //
////////////////////////////////////////////////////////////////
class PriMap {
public:
explicit PriMap(void (*aLog)(const char*))
: mLog(aLog)
{}
~PriMap() {
for (std::vector<SecMap*>::iterator iter = mSecMaps.begin();
iter != mSecMaps.end();
++iter) {
delete *iter;
}
mSecMaps.clear();
}
// RUNS IN NO-MALLOC CONTEXT
pair<const RuleSet*, const vector<PfxInstr>*>
Lookup(uintptr_t ia)
{
SecMap* sm = FindSecMap(ia);
return pair<const RuleSet*, const vector<PfxInstr>*>
(sm ? sm->FindRuleSet(ia) : nullptr,
sm ? sm->GetPfxInstrs() : nullptr);
}
// Add a secondary map. No overlaps allowed w.r.t. existing
// secondary maps.
void AddSecMap(SecMap* aSecMap) {
// We can't add an empty SecMap to the PriMap. But that's OK
// since we'd never be able to find anything in it anyway.
if (aSecMap->IsEmpty()) {
return;
}
// Iterate through the SecMaps and find the right place for this
// one. At the same time, ensure that the in-order
// non-overlapping invariant is preserved (and, generally, holds).
// FIXME: this gives a cost that is O(N^2) in the total number of
// shared objects in the system. ToDo: better.
MOZ_ASSERT(aSecMap->mSummaryMinAddr <= aSecMap->mSummaryMaxAddr);
size_t num_secMaps = mSecMaps.size();
uintptr_t i;
for (i = 0; i < num_secMaps; ++i) {
SecMap* sm_i = mSecMaps[i];
MOZ_ASSERT(sm_i->mSummaryMinAddr <= sm_i->mSummaryMaxAddr);
if (aSecMap->mSummaryMinAddr < sm_i->mSummaryMaxAddr) {
// |aSecMap| needs to be inserted immediately before mSecMaps[i].
break;
}
}
MOZ_ASSERT(i <= num_secMaps);
if (i == num_secMaps) {
// It goes at the end.
mSecMaps.push_back(aSecMap);
} else {
std::vector<SecMap*>::iterator iter = mSecMaps.begin() + i;
mSecMaps.insert(iter, aSecMap);
}
char buf[100];
SprintfLiteral(buf, "AddSecMap: now have %d SecMaps\n",
(int)mSecMaps.size());
buf[sizeof(buf)-1] = 0;
mLog(buf);
}
// Remove and delete any SecMaps in the mapping, that intersect
// with the specified address range.
void RemoveSecMapsInRange(uintptr_t avma_min, uintptr_t avma_max) {
MOZ_ASSERT(avma_min <= avma_max);
size_t num_secMaps = mSecMaps.size();
if (num_secMaps > 0) {
intptr_t i;
// Iterate from end to start over the vector, so as to ensure
// that the special case where |avma_min| and |avma_max| denote
// the entire address space, can be completed in time proportional
// to the number of elements in the map.
for (i = (intptr_t)num_secMaps-1; i >= 0; i--) {
SecMap* sm_i = mSecMaps[i];
if (sm_i->mSummaryMaxAddr < avma_min ||
avma_max < sm_i->mSummaryMinAddr) {
// There's no overlap. Move on.
continue;
}
// We need to remove mSecMaps[i] and slide all those above it
// downwards to cover the hole.
mSecMaps.erase(mSecMaps.begin() + i);
delete sm_i;
}
}
}
// Return the number of currently contained SecMaps.
size_t CountSecMaps() {
return mSecMaps.size();
}
// Assess heuristically whether the given address is an instruction
// immediately following a call instruction.
// RUNS IN NO-MALLOC CONTEXT
bool MaybeIsReturnPoint(TaggedUWord aInstrAddr, SegArray* aSegArray) {
if (!aInstrAddr.Valid()) {
return false;
}
uintptr_t ia = aInstrAddr.Value();
// Assume that nobody would be crazy enough to put code in the
// first or last page.
if (ia < 4096 || ((uintptr_t)(-ia)) < 4096) {
return false;
}
// See if it falls inside a known r-x mapped area. Poking around
// outside such places risks segfaulting.
uintptr_t insns_min, insns_max;
bool b = aSegArray->getBoundingCodeSegment(&insns_min, &insns_max, ia);
if (!b) {
// no code (that we know about) at this address
return false;
}
// |ia| falls within an r-x range. So we can
// safely poke around in [insns_min, insns_max].
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
// Is the previous instruction recognisably a CALL? This is
// common for the 32- and 64-bit versions, except for the
// simm32(%rip) case, which is 64-bit only.
//
// For all other cases, the 64 bit versions are either identical
// to the 32 bit versions, or have an optional extra leading REX.W
// byte (0x41). Since the extra 0x41 is optional we have to
// ignore it, with the convenient result that the same matching
// logic works for both 32- and 64-bit cases.
uint8_t* p = (uint8_t*)ia;
# if defined(LUL_ARCH_x64)
// CALL simm32(%rip) == FF15 simm32
if (ia - 6 >= insns_min && p[-6] == 0xFF && p[-5] == 0x15) {
return true;
}
# endif
// CALL rel32 == E8 rel32 (both 32- and 64-bit)
if (ia - 5 >= insns_min && p[-5] == 0xE8) {
return true;
}
// CALL *%eax .. CALL *%edi == FFD0 .. FFD7 (32-bit)
// CALL *%rax .. CALL *%rdi == FFD0 .. FFD7 (64-bit)
// CALL *%r8 .. CALL *%r15 == 41FFD0 .. 41FFD7 (64-bit)
if (ia - 2 >= insns_min &&
p[-2] == 0xFF && p[-1] >= 0xD0 && p[-1] <= 0xD7) {
return true;
}
// Almost all of the remaining cases that occur in practice are
// of the form CALL *simm8(reg) or CALL *simm32(reg).
//
// 64 bit cases:
//
// call *simm8(%rax) FF50 simm8
// call *simm8(%rcx) FF51 simm8
// call *simm8(%rdx) FF52 simm8
// call *simm8(%rbx) FF53 simm8
// call *simm8(%rsp) FF5424 simm8
// call *simm8(%rbp) FF55 simm8
// call *simm8(%rsi) FF56 simm8
// call *simm8(%rdi) FF57 simm8
//
// call *simm8(%r8) 41FF50 simm8
// call *simm8(%r9) 41FF51 simm8
// call *simm8(%r10) 41FF52 simm8
// call *simm8(%r11) 41FF53 simm8
// call *simm8(%r12) 41FF5424 simm8
// call *simm8(%r13) 41FF55 simm8
// call *simm8(%r14) 41FF56 simm8
// call *simm8(%r15) 41FF57 simm8
//
// call *simm32(%rax) FF90 simm32
// call *simm32(%rcx) FF91 simm32
// call *simm32(%rdx) FF92 simm32
// call *simm32(%rbx) FF93 simm32
// call *simm32(%rsp) FF9424 simm32
// call *simm32(%rbp) FF95 simm32
// call *simm32(%rsi) FF96 simm32
// call *simm32(%rdi) FF97 simm32
//
// call *simm32(%r8) 41FF90 simm32
// call *simm32(%r9) 41FF91 simm32
// call *simm32(%r10) 41FF92 simm32
// call *simm32(%r11) 41FF93 simm32
// call *simm32(%r12) 41FF9424 simm32
// call *simm32(%r13) 41FF95 simm32
// call *simm32(%r14) 41FF96 simm32
// call *simm32(%r15) 41FF97 simm32
//
// 32 bit cases:
//
// call *simm8(%eax) FF50 simm8
// call *simm8(%ecx) FF51 simm8
// call *simm8(%edx) FF52 simm8
// call *simm8(%ebx) FF53 simm8
// call *simm8(%esp) FF5424 simm8
// call *simm8(%ebp) FF55 simm8
// call *simm8(%esi) FF56 simm8
// call *simm8(%edi) FF57 simm8
//
// call *simm32(%eax) FF90 simm32
// call *simm32(%ecx) FF91 simm32
// call *simm32(%edx) FF92 simm32
// call *simm32(%ebx) FF93 simm32
// call *simm32(%esp) FF9424 simm32
// call *simm32(%ebp) FF95 simm32
// call *simm32(%esi) FF96 simm32
// call *simm32(%edi) FF97 simm32
if (ia - 3 >= insns_min &&
p[-3] == 0xFF &&
(p[-2] >= 0x50 && p[-2] <= 0x57 && p[-2] != 0x54)) {
// imm8 case, not including %esp/%rsp
return true;
}
if (ia - 4 >= insns_min &&
p[-4] == 0xFF && p[-3] == 0x54 && p[-2] == 0x24) {
// imm8 case for %esp/%rsp
return true;
}
if (ia - 6 >= insns_min &&
p[-6] == 0xFF &&
(p[-5] >= 0x90 && p[-5] <= 0x97 && p[-5] != 0x94)) {
// imm32 case, not including %esp/%rsp
return true;
}
if (ia - 7 >= insns_min &&
p[-7] == 0xFF && p[-6] == 0x94 && p[-5] == 0x24) {
// imm32 case for %esp/%rsp
return true;
}
#elif defined(LUL_ARCH_arm)
if (ia & 1) {
uint16_t w0 = 0, w1 = 0;
// The return address has its lowest bit set, indicating a return
// to Thumb code.
ia &= ~(uintptr_t)1;
if (ia - 2 >= insns_min && ia - 1 <= insns_max) {
w1 = *(uint16_t*)(ia - 2);
}
if (ia - 4 >= insns_min && ia - 1 <= insns_max) {
w0 = *(uint16_t*)(ia - 4);
}
// Is it a 32-bit Thumb call insn?
// BL simm26 (Encoding T1)
if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) {
return true;
}
// BLX simm26 (Encoding T2)
if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) {
return true;
}
// Other possible cases:
// (BLX Rm, Encoding T1).
// BLX Rm (encoding T1, 16 bit, inspect w1 and ignore w0.)
// 0100 0111 1 Rm 000
} else {
// Returning to ARM code.
uint32_t a0 = 0;
if ((ia & 3) == 0 && ia - 4 >= insns_min && ia - 1 <= insns_max) {
a0 = *(uint32_t*)(ia - 4);
}
// Leading E forces unconditional only -- fix. It could be
// anything except F, which is the deprecated NV code.
// BL simm26 (Encoding A1)
if ((a0 & 0xFF000000) == 0xEB000000) {
return true;
}
// Other possible cases:
// BLX simm26 (Encoding A2)
//if ((a0 & 0xFE000000) == 0xFA000000)
// return true;
// BLX (register) (A1): BLX <c> <Rm>
// cond 0001 0010 1111 1111 1111 0011 Rm
// again, cond can be anything except NV (0xF)
}
#else
# error "Unsupported arch"
#endif
// Not an insn we recognise.
return false;
}
private:
// RUNS IN NO-MALLOC CONTEXT
SecMap* FindSecMap(uintptr_t ia) {
// Binary search mSecMaps to find one that brackets |ia|.
// lo and hi need to be signed, else the loop termination tests
// don't work properly.
long int lo = 0;
long int hi = (long int)mSecMaps.size() - 1;
while (true) {
// current unsearched space is from lo to hi, inclusive.
if (lo > hi) {
// not found
return nullptr;
}
long int mid = lo + ((hi - lo) / 2);
SecMap* mid_secMap = mSecMaps[mid];
uintptr_t mid_minAddr = mid_secMap->mSummaryMinAddr;
uintptr_t mid_maxAddr = mid_secMap->mSummaryMaxAddr;
if (ia < mid_minAddr) { hi = mid-1; continue; }
if (ia > mid_maxAddr) { lo = mid+1; continue; }
MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr);
return mid_secMap;
}
// NOTREACHED
}
private:
// sorted array of per-object ranges, non overlapping, non empty
std::vector<SecMap*> mSecMaps;
// a logging sink, for debugging.
void (*mLog)(const char*);
};
////////////////////////////////////////////////////////////////
// LUL //
////////////////////////////////////////////////////////////////
#define LUL_LOG(_str) \
do { \
char buf[200]; \
SprintfLiteral(buf, \
"LUL: pid %d tid %d lul-obj %p: %s", \
getpid(), gettid(), this, (_str)); \
buf[sizeof(buf)-1] = 0; \
mLog(buf); \
} while (0)
LUL::LUL(void (*aLog)(const char*))
: mLog(aLog)
, mAdminMode(true)
, mAdminThreadId(gettid())
, mPriMap(new PriMap(aLog))
, mSegArray(new SegArray())
, mUSU(new UniqueStringUniverse())
{
LUL_LOG("LUL::LUL: Created object");
}
LUL::~LUL()
{
LUL_LOG("LUL::~LUL: Destroyed object");
delete mPriMap;
delete mSegArray;
mLog = nullptr;
delete mUSU;
}
void
LUL::MaybeShowStats()
{
// This is racey in the sense that it can't guarantee that
// n_new == n_new_Context + n_new_CFI + n_new_Scanned
// if it should happen that mStats is updated by some other thread
// in between computation of n_new and n_new_{Context,CFI,Scanned}.
// But it's just stats printing, so we don't really care.
uint32_t n_new = mStats - mStatsPrevious;
if (n_new >= 5000) {
uint32_t n_new_Context = mStats.mContext - mStatsPrevious.mContext;
uint32_t n_new_CFI = mStats.mCFI - mStatsPrevious.mCFI;
uint32_t n_new_Scanned = mStats.mScanned - mStatsPrevious.mScanned;
mStatsPrevious = mStats;
char buf[200];
SprintfLiteral(buf,
"LUL frame stats: TOTAL %5u"
" CTX %4u CFI %4u SCAN %4u",
n_new, n_new_Context, n_new_CFI, n_new_Scanned);
buf[sizeof(buf)-1] = 0;
mLog(buf);
}
}
void
LUL::EnableUnwinding()
{
LUL_LOG("LUL::EnableUnwinding");
// Don't assert for Admin mode here. That is, tolerate a call here
// if we are already in Unwinding mode.
MOZ_ASSERT(gettid() == mAdminThreadId);
mAdminMode = false;
}
void
LUL::NotifyAfterMap(uintptr_t aRXavma, size_t aSize,
const char* aFileName, const void* aMappedImage)
{
MOZ_ASSERT(mAdminMode);
MOZ_ASSERT(gettid() == mAdminThreadId);
mLog(":\n");
char buf[200];
SprintfLiteral(buf, "NotifyMap %llx %llu %s\n",
(unsigned long long int)aRXavma, (unsigned long long int)aSize,
aFileName);
buf[sizeof(buf)-1] = 0;
mLog(buf);
// Ignore obviously-stupid notifications.
if (aSize > 0) {
// Here's a new mapping, for this object.
SecMap* smap = new SecMap(mLog);
// Read CFI or EXIDX unwind data into |smap|.
if (!aMappedImage) {
(void)lul::ReadSymbolData(
string(aFileName), std::vector<string>(), smap,
(void*)aRXavma, aSize, mUSU, mLog);
} else {
(void)lul::ReadSymbolDataInternal(
(const uint8_t*)aMappedImage,
string(aFileName), std::vector<string>(), smap,
(void*)aRXavma, aSize, mUSU, mLog);
}
mLog("NotifyMap .. preparing entries\n");
smap->PrepareRuleSets(aRXavma, aSize);
SprintfLiteral(buf,
"NotifyMap got %lld entries\n", (long long int)smap->Size());
buf[sizeof(buf)-1] = 0;
mLog(buf);
// Add it to the primary map (the top level set of mapped objects).
mPriMap->AddSecMap(smap);
// Tell the segment array about the mapping, so that the stack
// scan and __kernel_syscall mechanisms know where valid code is.
mSegArray->add(aRXavma, aRXavma + aSize - 1, true);
}
}
void
LUL::NotifyExecutableArea(uintptr_t aRXavma, size_t aSize)
{
MOZ_ASSERT(mAdminMode);
MOZ_ASSERT(gettid() == mAdminThreadId);
mLog(":\n");
char buf[200];
SprintfLiteral(buf, "NotifyExecutableArea %llx %llu\n",
(unsigned long long int)aRXavma, (unsigned long long int)aSize);
buf[sizeof(buf)-1] = 0;
mLog(buf);
// Ignore obviously-stupid notifications.
if (aSize > 0) {
// Tell the segment array about the mapping, so that the stack
// scan and __kernel_syscall mechanisms know where valid code is.
mSegArray->add(aRXavma, aRXavma + aSize - 1, true);
}
}
void
LUL::NotifyBeforeUnmap(uintptr_t aRXavmaMin, uintptr_t aRXavmaMax)
{
MOZ_ASSERT(mAdminMode);
MOZ_ASSERT(gettid() == mAdminThreadId);
mLog(":\n");
char buf[100];
SprintfLiteral(buf, "NotifyUnmap %016llx-%016llx\n",
(unsigned long long int)aRXavmaMin,
(unsigned long long int)aRXavmaMax);
buf[sizeof(buf)-1] = 0;
mLog(buf);
MOZ_ASSERT(aRXavmaMin <= aRXavmaMax);
// Remove from the primary map, any secondary maps that intersect
// with the address range. Also delete the secondary maps.
mPriMap->RemoveSecMapsInRange(aRXavmaMin, aRXavmaMax);
// Tell the segment array that the address range no longer
// contains valid code.
mSegArray->add(aRXavmaMin, aRXavmaMax, false);
SprintfLiteral(buf, "NotifyUnmap: now have %d SecMaps\n",
(int)mPriMap->CountSecMaps());
buf[sizeof(buf)-1] = 0;
mLog(buf);
}
size_t
LUL::CountMappings()
{
MOZ_ASSERT(mAdminMode);
MOZ_ASSERT(gettid() == mAdminThreadId);
return mPriMap->CountSecMaps();
}
// RUNS IN NO-MALLOC CONTEXT
static
TaggedUWord DerefTUW(TaggedUWord aAddr, const StackImage* aStackImg)
{
if (!aAddr.Valid()) {
return TaggedUWord();
}
// Lower limit check. |aAddr.Value()| is the lowest requested address
// and |aStackImg->mStartAvma| is the lowest address we actually have,
// so the comparison is straightforward.
if (aAddr.Value() < aStackImg->mStartAvma) {
return TaggedUWord();
}
// Upper limit check. We must compute the highest requested address
// and the highest address we actually have, but being careful to
// avoid overflow. In particular if |aAddr| is 0xFFF...FFF or the
// 3/7 values below that, then we will get overflow. See bug #1245477.
typedef CheckedInt<uintptr_t> CheckedUWord;
CheckedUWord highest_requested_plus_one
= CheckedUWord(aAddr.Value()) + CheckedUWord(sizeof(uintptr_t));
CheckedUWord highest_available_plus_one
= CheckedUWord(aStackImg->mStartAvma) + CheckedUWord(aStackImg->mLen);
if (!highest_requested_plus_one.isValid() // overflow?
|| !highest_available_plus_one.isValid() // overflow?
|| (highest_requested_plus_one.value()
> highest_available_plus_one.value())) { // in range?
return TaggedUWord();
}
return TaggedUWord(*(uintptr_t*)(aStackImg->mContents + aAddr.Value()
- aStackImg->mStartAvma));
}
// RUNS IN NO-MALLOC CONTEXT
static
TaggedUWord EvaluateReg(int16_t aReg, const UnwindRegs* aOldRegs,
TaggedUWord aCFA)
{
switch (aReg) {
case DW_REG_CFA: return aCFA;
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
case DW_REG_INTEL_XBP: return aOldRegs->xbp;
case DW_REG_INTEL_XSP: return aOldRegs->xsp;
case DW_REG_INTEL_XIP: return aOldRegs->xip;
#elif defined(LUL_ARCH_arm)
case DW_REG_ARM_R7: return aOldRegs->r7;
case DW_REG_ARM_R11: return aOldRegs->r11;
case DW_REG_ARM_R12: return aOldRegs->r12;
case DW_REG_ARM_R13: return aOldRegs->r13;
case DW_REG_ARM_R14: return aOldRegs->r14;
case DW_REG_ARM_R15: return aOldRegs->r15;
#else
# error "Unsupported arch"
#endif
default: MOZ_ASSERT(0); return TaggedUWord();
}
}
// RUNS IN NO-MALLOC CONTEXT
// See prototype for comment.
TaggedUWord EvaluatePfxExpr(int32_t start,
const UnwindRegs* aOldRegs,
TaggedUWord aCFA, const StackImage* aStackImg,
const vector<PfxInstr>& aPfxInstrs)
{
// A small evaluation stack, and a stack pointer, which points to
// the highest numbered in-use element.
const int N_STACK = 10;
TaggedUWord stack[N_STACK];
int stackPointer = -1;
for (int i = 0; i < N_STACK; i++)
stack[i] = TaggedUWord();
# define PUSH(_tuw) \
do { \
if (stackPointer >= N_STACK-1) goto fail; /* overflow */ \
stack[++stackPointer] = (_tuw); \
} while (0)
# define POP(_lval) \
do { \
if (stackPointer < 0) goto fail; /* underflow */ \
_lval = stack[stackPointer--]; \
} while (0)
// Cursor in the instruction sequence.
size_t curr = start + 1;
// Check the start point is sane.
size_t nInstrs = aPfxInstrs.size();
if (start < 0 || (size_t)start >= nInstrs)
goto fail;
{
// The instruction sequence must start with PX_Start. If not,
// something is seriously wrong.
PfxInstr first = aPfxInstrs[start];
if (first.mOpcode != PX_Start)
goto fail;
// Push the CFA on the stack to start with (or not), as required by
// the original DW_OP_*expression* CFI.
if (first.mOperand != 0)
PUSH(aCFA);
}
while (true) {
if (curr >= nInstrs)
goto fail; // ran off the end of the sequence
PfxInstr pfxi = aPfxInstrs[curr++];
if (pfxi.mOpcode == PX_End)
break; // we're done
switch (pfxi.mOpcode) {
case PX_Start:
// This should appear only at the start of the sequence.
goto fail;
case PX_End:
// We just took care of that, so we shouldn't see it again.
MOZ_ASSERT(0);
goto fail;
case PX_SImm32:
PUSH(TaggedUWord((intptr_t)pfxi.mOperand));
break;
case PX_DwReg: {
DW_REG_NUMBER reg = (DW_REG_NUMBER)pfxi.mOperand;
MOZ_ASSERT(reg != DW_REG_CFA);
PUSH(EvaluateReg(reg, aOldRegs, aCFA));
break;
}
case PX_Deref: {
TaggedUWord addr;
POP(addr);
PUSH(DerefTUW(addr, aStackImg));
break;
}
case PX_Add: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y + x);
break;
}
case PX_Sub: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y - x);
break;
}
case PX_And: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y & x);
break;
}
case PX_Or: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y | x);
break;
}
case PX_CmpGES: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y.CmpGEs(x));
break;
}
case PX_Shl: {
TaggedUWord x, y;
POP(x); POP(y); PUSH(y << x);
break;
}
default:
MOZ_ASSERT(0);
goto fail;
}
} // while (true)
// Evaluation finished. The top value on the stack is the result.
if (stackPointer >= 0) {
return stack[stackPointer];
}
// Else fall through
fail:
return TaggedUWord();
# undef PUSH
# undef POP
}
// RUNS IN NO-MALLOC CONTEXT
TaggedUWord LExpr::EvaluateExpr(const UnwindRegs* aOldRegs,
TaggedUWord aCFA, const StackImage* aStackImg,
const vector<PfxInstr>* aPfxInstrs) const
{
switch (mHow) {
case UNKNOWN:
return TaggedUWord();
case NODEREF: {
TaggedUWord tuw = EvaluateReg(mReg, aOldRegs, aCFA);
tuw = tuw + TaggedUWord((intptr_t)mOffset);
return tuw;
}
case DEREF: {
TaggedUWord tuw = EvaluateReg(mReg, aOldRegs, aCFA);
tuw = tuw + TaggedUWord((intptr_t)mOffset);
return DerefTUW(tuw, aStackImg);
}
case PFXEXPR: {
MOZ_ASSERT(aPfxInstrs);
if (!aPfxInstrs) {
return TaggedUWord();
}
return EvaluatePfxExpr(mOffset, aOldRegs, aCFA, aStackImg, *aPfxInstrs);
}
default:
MOZ_ASSERT(0);
return TaggedUWord();
}
}
// RUNS IN NO-MALLOC CONTEXT
static
void UseRuleSet(/*MOD*/UnwindRegs* aRegs,
const StackImage* aStackImg, const RuleSet* aRS,
const vector<PfxInstr>* aPfxInstrs)
{
// Take a copy of regs, since we'll need to refer to the old values
// whilst computing the new ones.
UnwindRegs old_regs = *aRegs;
// Mark all the current register values as invalid, so that the
// caller can see, on our return, which ones have been computed
// anew. If we don't even manage to compute a new PC value, then
// the caller will have to abandon the unwind.
// FIXME: Create and use instead: aRegs->SetAllInvalid();
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
aRegs->xbp = TaggedUWord();
aRegs->xsp = TaggedUWord();
aRegs->xip = TaggedUWord();
#elif defined(LUL_ARCH_arm)
aRegs->r7 = TaggedUWord();
aRegs->r11 = TaggedUWord();
aRegs->r12 = TaggedUWord();
aRegs->r13 = TaggedUWord();
aRegs->r14 = TaggedUWord();
aRegs->r15 = TaggedUWord();
#else
# error "Unsupported arch"
#endif
// This is generally useful.
const TaggedUWord inval = TaggedUWord();
// First, compute the CFA.
TaggedUWord cfa
= aRS->mCfaExpr.EvaluateExpr(&old_regs,
inval/*old cfa*/, aStackImg, aPfxInstrs);
// If we didn't manage to compute the CFA, well .. that's ungood,
// but keep going anyway. It'll be OK provided none of the register
// value rules mention the CFA. In any case, compute the new values
// for each register that we're tracking.
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
aRegs->xbp
= aRS->mXbpExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->xsp
= aRS->mXspExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->xip
= aRS->mXipExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
#elif defined(LUL_ARCH_arm)
aRegs->r7
= aRS->mR7expr .EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->r11
= aRS->mR11expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->r12
= aRS->mR12expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->r13
= aRS->mR13expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->r14
= aRS->mR14expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
aRegs->r15
= aRS->mR15expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs);
#else
# error "Unsupported arch"
#endif
// We're done. Any regs for which we didn't manage to compute a
// new value will now be marked as invalid.
}
// RUNS IN NO-MALLOC CONTEXT
void
LUL::Unwind(/*OUT*/uintptr_t* aFramePCs,
/*OUT*/uintptr_t* aFrameSPs,
/*OUT*/size_t* aFramesUsed,
/*OUT*/size_t* aScannedFramesAcquired,
size_t aFramesAvail,
size_t aScannedFramesAllowed,
UnwindRegs* aStartRegs, StackImage* aStackImg)
{
MOZ_ASSERT(!mAdminMode);
/////////////////////////////////////////////////////////
// BEGIN UNWIND
*aFramesUsed = 0;
UnwindRegs regs = *aStartRegs;
TaggedUWord last_valid_sp = TaggedUWord();
// Stack-scan control
unsigned int n_scanned_frames = 0; // # s-s frames recovered so far
static const int NUM_SCANNED_WORDS = 50; // max allowed scan length
while (true) {
if (DEBUG_MAIN) {
char buf[300];
mLog("\n");
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
SprintfLiteral(buf,
"LoopTop: rip %d/%llx rsp %d/%llx rbp %d/%llx\n",
(int)regs.xip.Valid(), (unsigned long long int)regs.xip.Value(),
(int)regs.xsp.Valid(), (unsigned long long int)regs.xsp.Value(),
(int)regs.xbp.Valid(), (unsigned long long int)regs.xbp.Value());
buf[sizeof(buf)-1] = 0;
mLog(buf);
#elif defined(LUL_ARCH_arm)
SprintfLiteral(buf,
"LoopTop: r15 %d/%llx r7 %d/%llx r11 %d/%llx"
" r12 %d/%llx r13 %d/%llx r14 %d/%llx\n",
(int)regs.r15.Valid(), (unsigned long long int)regs.r15.Value(),
(int)regs.r7.Valid(), (unsigned long long int)regs.r7.Value(),
(int)regs.r11.Valid(), (unsigned long long int)regs.r11.Value(),
(int)regs.r12.Valid(), (unsigned long long int)regs.r12.Value(),
(int)regs.r13.Valid(), (unsigned long long int)regs.r13.Value(),
(int)regs.r14.Valid(), (unsigned long long int)regs.r14.Value());
buf[sizeof(buf)-1] = 0;
mLog(buf);
#else
# error "Unsupported arch"
#endif
}
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
TaggedUWord ia = regs.xip;
TaggedUWord sp = regs.xsp;
#elif defined(LUL_ARCH_arm)
TaggedUWord ia = (*aFramesUsed == 0 ? regs.r15 : regs.r14);
TaggedUWord sp = regs.r13;
#else
# error "Unsupported arch"
#endif
if (*aFramesUsed >= aFramesAvail) {
break;
}
// If we don't have a valid value for the PC, give up.
if (!ia.Valid()) {
break;
}
// If this is the innermost frame, record the SP value, which
// presumably is valid. If this isn't the innermost frame, and we
// have a valid SP value, check that its SP value isn't less that
// the one we've seen so far, so as to catch potential SP value
// cycles.
if (*aFramesUsed == 0) {
last_valid_sp = sp;
} else {
MOZ_ASSERT(last_valid_sp.Valid());
if (sp.Valid()) {
if (sp.Value() < last_valid_sp.Value()) {
// Hmm, SP going in the wrong direction. Let's stop.
break;
}
// Remember where we got to.
last_valid_sp = sp;
}
}
// For the innermost frame, the IA value is what we need. For all
// other frames, it's actually the return address, so back up one
// byte so as to get it into the calling instruction.
aFramePCs[*aFramesUsed] = ia.Value() - (*aFramesUsed == 0 ? 0 : 1);
aFrameSPs[*aFramesUsed] = sp.Valid() ? sp.Value() : 0;
(*aFramesUsed)++;
// Find the RuleSet for the current IA, if any. This will also
// query the backing (secondary) maps if it isn't found in the
// thread-local cache.
// If this isn't the innermost frame, back up into the calling insn.
if (*aFramesUsed > 1) {
ia = ia + TaggedUWord((uintptr_t)(-1));
}
pair<const RuleSet*, const vector<PfxInstr>*> ruleset_and_pfxinstrs
= mPriMap->Lookup(ia.Value());
const RuleSet* ruleset = ruleset_and_pfxinstrs.first;
const vector<PfxInstr>* pfxinstrs = ruleset_and_pfxinstrs.second;
if (DEBUG_MAIN) {
char buf[100];
SprintfLiteral(buf, "ruleset for 0x%llx = %p\n",
(unsigned long long int)ia.Value(), ruleset);
buf[sizeof(buf)-1] = 0;
mLog(buf);
}
/////////////////////////////////////////////
////
// On 32 bit x86-linux, syscalls are often done via the VDSO
// function __kernel_vsyscall, which doesn't have a corresponding
// object that we can read debuginfo from. That effectively kills
// off all stack traces for threads blocked in syscalls. Hence
// special-case by looking at the code surrounding the program
// counter.
//
// 0xf7757420 <__kernel_vsyscall+0>: push %ecx
// 0xf7757421 <__kernel_vsyscall+1>: push %edx
// 0xf7757422 <__kernel_vsyscall+2>: push %ebp
// 0xf7757423 <__kernel_vsyscall+3>: mov %esp,%ebp
// 0xf7757425 <__kernel_vsyscall+5>: sysenter
// 0xf7757427 <__kernel_vsyscall+7>: nop
// 0xf7757428 <__kernel_vsyscall+8>: nop
// 0xf7757429 <__kernel_vsyscall+9>: nop
// 0xf775742a <__kernel_vsyscall+10>: nop
// 0xf775742b <__kernel_vsyscall+11>: nop
// 0xf775742c <__kernel_vsyscall+12>: nop
// 0xf775742d <__kernel_vsyscall+13>: nop
// 0xf775742e <__kernel_vsyscall+14>: int $0x80
// 0xf7757430 <__kernel_vsyscall+16>: pop %ebp
// 0xf7757431 <__kernel_vsyscall+17>: pop %edx
// 0xf7757432 <__kernel_vsyscall+18>: pop %ecx
// 0xf7757433 <__kernel_vsyscall+19>: ret
//
// In cases where the sampled thread is blocked in a syscall, its
// program counter will point at "pop %ebp". Hence we look for
// the sequence "int $0x80; pop %ebp; pop %edx; pop %ecx; ret", and
// the corresponding register-recovery actions are:
// new_ebp = *(old_esp + 0)
// new eip = *(old_esp + 12)
// new_esp = old_esp + 16
//
// It may also be the case that the program counter points two
// nops before the "int $0x80", viz, is __kernel_vsyscall+12, in
// the case where the syscall has been restarted but the thread
// hasn't been rescheduled. The code below doesn't handle that;
// it could easily be made to.
//
#if defined(LUL_PLAT_x86_android) || defined(LUL_PLAT_x86_linux)
if (!ruleset && *aFramesUsed == 1 && ia.Valid() && sp.Valid()) {
uintptr_t insns_min, insns_max;
uintptr_t eip = ia.Value();
bool b = mSegArray->getBoundingCodeSegment(&insns_min, &insns_max, eip);
if (b && eip - 2 >= insns_min && eip + 3 <= insns_max) {
uint8_t* eipC = (uint8_t*)eip;
if (eipC[-2] == 0xCD && eipC[-1] == 0x80 && eipC[0] == 0x5D &&
eipC[1] == 0x5A && eipC[2] == 0x59 && eipC[3] == 0xC3) {
TaggedUWord sp_plus_0 = sp;
TaggedUWord sp_plus_12 = sp;
TaggedUWord sp_plus_16 = sp;
sp_plus_12 = sp_plus_12 + TaggedUWord(12);
sp_plus_16 = sp_plus_16 + TaggedUWord(16);
TaggedUWord new_ebp = DerefTUW(sp_plus_0, aStackImg);
TaggedUWord new_eip = DerefTUW(sp_plus_12, aStackImg);
TaggedUWord new_esp = sp_plus_16;
if (new_ebp.Valid() && new_eip.Valid() && new_esp.Valid()) {
regs.xbp = new_ebp;
regs.xip = new_eip;
regs.xsp = new_esp;
continue;
}
}
}
}
#endif
////
/////////////////////////////////////////////
// So, do we have a ruleset for this address? If so, use it now.
if (ruleset) {
if (DEBUG_MAIN) {
ruleset->Print(mLog); mLog("\n");
}
// Use the RuleSet to compute the registers for the previous
// frame. |regs| is modified in-place.
UseRuleSet(®s, aStackImg, ruleset, pfxinstrs);
} else {
// There's no RuleSet for the specified address, so see if
// it's possible to get anywhere by stack-scanning.
// Use stack scanning frugally.
if (n_scanned_frames++ >= aScannedFramesAllowed) {
break;
}
// We can't scan the stack without a valid, aligned stack pointer.
if (!sp.IsAligned()) {
break;
}
bool scan_succeeded = false;
for (int i = 0; i < NUM_SCANNED_WORDS; ++i) {
TaggedUWord aWord = DerefTUW(sp, aStackImg);
// aWord is something we fished off the stack. It should be
// valid, unless we overran the stack bounds.
if (!aWord.Valid()) {
break;
}
// Now, does aWord point inside a text section and immediately
// after something that looks like a call instruction?
if (mPriMap->MaybeIsReturnPoint(aWord, mSegArray)) {
// Yes it does. Update the unwound registers heuristically,
// using the same schemes as Breakpad does.
scan_succeeded = true;
(*aScannedFramesAcquired)++;
#if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
// The same logic applies for the 32- and 64-bit cases.
// Register names of the form xsp etc refer to (eg) esp in
// the 32-bit case and rsp in the 64-bit case.
# if defined(LUL_ARCH_x64)
const int wordSize = 8;
# else
const int wordSize = 4;
# endif
// The return address -- at XSP -- will have been pushed by
// the CALL instruction. So the caller's XSP value
// immediately before and after that CALL instruction is the
// word above XSP.
regs.xsp = sp + TaggedUWord(wordSize);
// aWord points at the return point, so back up one byte
// to put it in the calling instruction.
regs.xip = aWord + TaggedUWord((uintptr_t)(-1));
// Computing a new value from the frame pointer is more tricky.
if (regs.xbp.Valid() &&
sp.Valid() && regs.xbp.Value() == sp.Value() - wordSize) {
// One possibility is that the callee begins with the standard
// preamble "push %xbp; mov %xsp, %xbp". In which case, the
// (1) caller's XBP value will be at the word below XSP, and
// (2) the current (callee's) XBP will point at that word:
regs.xbp = DerefTUW(regs.xbp, aStackImg);
} else if (regs.xbp.Valid() &&
sp.Valid() && regs.xbp.Value() >= sp.Value() + wordSize) {
// If that didn't work out, maybe the callee didn't change
// XBP, so it still holds the caller's value. For that to
// be plausible, XBP will need to have a value at least
// higher than XSP since that holds the purported return
// address. In which case do nothing, since XBP already
// holds the "right" value.
} else {
// Mark XBP as invalid, so that subsequent unwind iterations
// don't assume it holds valid data.
regs.xbp = TaggedUWord();
}
// Move on to the next word up the stack
sp = sp + TaggedUWord(wordSize);
#elif defined(LUL_ARCH_arm)
// Set all registers to be undefined, except for SP(R13) and
// PC(R15).
// aWord points either at the return point, if returning to
// ARM code, or one insn past the return point if returning
// to Thumb code. In both cases, aWord-2 is guaranteed to
// fall within the calling instruction.
regs.r15 = aWord + TaggedUWord((uintptr_t)(-2));
// Make SP be the word above the location where the return
// address was found.
regs.r13 = sp + TaggedUWord(4);
// All other regs are undefined.
regs.r7 = regs.r11 = regs.r12 = regs.r14 = TaggedUWord();
// Move on to the next word up the stack
sp = sp + TaggedUWord(4);
#else
# error "Unknown plat"
#endif
break;
}
} // for (int i = 0; i < NUM_SCANNED_WORDS; i++)
// We tried to make progress by scanning the stack, but failed.
// So give up -- fall out of the top level unwind loop.
if (!scan_succeeded) {
break;
}
}
} // top level unwind loop
// END UNWIND
/////////////////////////////////////////////////////////
}
////////////////////////////////////////////////////////////////
// LUL Unit Testing //
////////////////////////////////////////////////////////////////
static const int LUL_UNIT_TEST_STACK_SIZE = 16384;
// This function is innermost in the test call sequence. It uses LUL
// to unwind, and compares the result with the sequence specified in
// the director string. These need to agree in order for the test to
// pass. In order not to screw up the results, this function needs
// to have a not-very big stack frame, since we're only presenting
// the innermost LUL_UNIT_TEST_STACK_SIZE bytes of stack to LUL, and
// that chunk unavoidably includes the frame for this function.
//
// This function must not be inlined into its callers. Doing so will
// cause the expected-vs-actual backtrace consistency checking to
// fail. Prints summary results to |aLUL|'s logging sink and also
// returns a boolean indicating whether or not the test passed.
static __attribute__((noinline))
bool GetAndCheckStackTrace(LUL* aLUL, const char* dstring)
{
// Get hold of the current unwind-start registers.
UnwindRegs startRegs;
memset(&startRegs, 0, sizeof(startRegs));
#if defined(LUL_PLAT_x64_linux)
volatile uintptr_t block[3];
MOZ_ASSERT(sizeof(block) == 24);
__asm__ __volatile__(
"leaq 0(%%rip), %%r15" "\n\t"
"movq %%r15, 0(%0)" "\n\t"
"movq %%rsp, 8(%0)" "\n\t"
"movq %%rbp, 16(%0)" "\n"
: : "r"(&block[0]) : "memory", "r15"
);
startRegs.xip = TaggedUWord(block[0]);
startRegs.xsp = TaggedUWord(block[1]);
startRegs.xbp = TaggedUWord(block[2]);
const uintptr_t REDZONE_SIZE = 128;
uintptr_t start = block[1] - REDZONE_SIZE;
#elif defined(LUL_PLAT_x86_linux) || defined(LUL_PLAT_x86_android)
volatile uintptr_t block[3];
MOZ_ASSERT(sizeof(block) == 12);
__asm__ __volatile__(
".byte 0xE8,0x00,0x00,0x00,0x00"/*call next insn*/ "\n\t"
"popl %%edi" "\n\t"
"movl %%edi, 0(%0)" "\n\t"
"movl %%esp, 4(%0)" "\n\t"
"movl %%ebp, 8(%0)" "\n"
: : "r"(&block[0]) : "memory", "edi"
);
startRegs.xip = TaggedUWord(block[0]);
startRegs.xsp = TaggedUWord(block[1]);
startRegs.xbp = TaggedUWord(block[2]);
const uintptr_t REDZONE_SIZE = 0;
uintptr_t start = block[1] - REDZONE_SIZE;
#elif defined(LUL_PLAT_arm_android)
volatile uintptr_t block[6];
MOZ_ASSERT(sizeof(block) == 24);
__asm__ __volatile__(
"mov r0, r15" "\n\t"
"str r0, [%0, #0]" "\n\t"
"str r14, [%0, #4]" "\n\t"
"str r13, [%0, #8]" "\n\t"
"str r12, [%0, #12]" "\n\t"
"str r11, [%0, #16]" "\n\t"
"str r7, [%0, #20]" "\n"
: : "r"(&block[0]) : "memory", "r0"
);
startRegs.r15 = TaggedUWord(block[0]);
startRegs.r14 = TaggedUWord(block[1]);
startRegs.r13 = TaggedUWord(block[2]);
startRegs.r12 = TaggedUWord(block[3]);
startRegs.r11 = TaggedUWord(block[4]);
startRegs.r7 = TaggedUWord(block[5]);
const uintptr_t REDZONE_SIZE = 0;
uintptr_t start = block[1] - REDZONE_SIZE;
#else
# error "Unsupported platform"
#endif
// Get hold of the innermost LUL_UNIT_TEST_STACK_SIZE bytes of the
// stack.
uintptr_t end = start + LUL_UNIT_TEST_STACK_SIZE;
uintptr_t ws = sizeof(void*);
start &= ~(ws-1);
end &= ~(ws-1);
uintptr_t nToCopy = end - start;
if (nToCopy > lul::N_STACK_BYTES) {
nToCopy = lul::N_STACK_BYTES;
}
MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES);
StackImage* stackImg = new StackImage();
stackImg->mLen = nToCopy;
stackImg->mStartAvma = start;
if (nToCopy > 0) {
MOZ_MAKE_MEM_DEFINED((void*)start, nToCopy);
memcpy(&stackImg->mContents[0], (void*)start, nToCopy);
}
// Unwind it.
const int MAX_TEST_FRAMES = 64;
uintptr_t framePCs[MAX_TEST_FRAMES];
uintptr_t frameSPs[MAX_TEST_FRAMES];
size_t framesAvail = mozilla::ArrayLength(framePCs);
size_t framesUsed = 0;
size_t scannedFramesAllowed = 0;
size_t scannedFramesAcquired = 0;
aLUL->Unwind( &framePCs[0], &frameSPs[0],
&framesUsed, &scannedFramesAcquired,
framesAvail, scannedFramesAllowed,
&startRegs, stackImg );
delete stackImg;
//if (0) {
// // Show what we have.
// fprintf(stderr, "Got %d frames:\n", (int)framesUsed);
// for (size_t i = 0; i < framesUsed; i++) {
// fprintf(stderr, " [%2d] SP %p PC %p\n",
// (int)i, (void*)frameSPs[i], (void*)framePCs[i]);
// }
// fprintf(stderr, "\n");
//}
// Check to see if there's a consistent binding between digits in
// the director string ('1' .. '8') and the PC values acquired by
// the unwind. If there isn't, the unwinding has failed somehow.
uintptr_t binding[8]; // binding for '1' .. binding for '8'
memset((void*)binding, 0, sizeof(binding));
// The general plan is to work backwards along the director string
// and forwards along the framePCs array. Doing so corresponds to
// working outwards from the innermost frame of the recursive test set.
const char* cursor = dstring;
// Find the end. This leaves |cursor| two bytes past the first
// character we want to look at -- see comment below.
while (*cursor) cursor++;
// Counts the number of consistent frames.
size_t nConsistent = 0;
// Iterate back to the start of the director string. The starting
// points are a bit complex. We can't use framePCs[0] because that
// contains the PC in this frame (above). We can't use framePCs[1]
// because that will contain the PC at return point in the recursive
// test group (TestFn[1-8]) for their call "out" to this function,
// GetAndCheckStackTrace. Although LUL will compute a correct
// return address, that will not be the same return address as for a
// recursive call out of the the function to another function in the
// group. Hence we can only start consistency checking at
// framePCs[2].
//
// To be consistent, then, we must ignore the last element in the
// director string as that corresponds to framePCs[1]. Hence the
// start points are: framePCs[2] and the director string 2 bytes
// before the terminating zero.
//
// Also as a result of this, the number of consistent frames counted
// will always be one less than the length of the director string
// (not including its terminating zero).
size_t frameIx;
for (cursor = cursor-2, frameIx = 2;
cursor >= dstring && frameIx < framesUsed;
cursor--, frameIx++) {
char c = *cursor;
uintptr_t pc = framePCs[frameIx];
// If this doesn't hold, the director string is ill-formed.
MOZ_ASSERT(c >= '1' && c <= '8');
int n = ((int)c) - ((int)'1');
if (binding[n] == 0) {
// There's no binding for |c| yet, so install |pc| and carry on.
binding[n] = pc;
nConsistent++;
continue;
}
// There's a pre-existing binding for |c|. Check it's consistent.
if (binding[n] != pc) {
// Not consistent. Give up now.
break;
}
// Consistent. Keep going.
nConsistent++;
}
// So, did we succeed?
bool passed = nConsistent+1 == strlen(dstring);
// Show the results.
char buf[200];
SprintfLiteral(buf, "LULUnitTest: dstring = %s\n", dstring);
buf[sizeof(buf)-1] = 0;
aLUL->mLog(buf);
SprintfLiteral(buf,
"LULUnitTest: %d consistent, %d in dstring: %s\n",
(int)nConsistent, (int)strlen(dstring),
passed ? "PASS" : "FAIL");
buf[sizeof(buf)-1] = 0;
aLUL->mLog(buf);
return passed;
}
// Macro magic to create a set of 8 mutually recursive functions with
// varying frame sizes. These will recurse amongst themselves as
// specified by |strP|, the directory string, and call
// GetAndCheckStackTrace when the string becomes empty, passing it the
// original value of the string. This checks the result, printing
// results on |aLUL|'s logging sink, and also returns a boolean
// indicating whether or not the results are acceptable (correct).
#define DECL_TEST_FN(NAME) \
bool NAME(LUL* aLUL, const char* strPorig, const char* strP);
#define GEN_TEST_FN(NAME, FRAMESIZE) \
bool NAME(LUL* aLUL, const char* strPorig, const char* strP) { \
volatile char space[FRAMESIZE]; \
memset((char*)&space[0], 0, sizeof(space)); \
if (*strP == '\0') { \
/* We've come to the end of the director string. */ \
/* Take a stack snapshot. */ \
return GetAndCheckStackTrace(aLUL, strPorig); \
} else { \
/* Recurse onwards. This is a bit subtle. The obvious */ \
/* thing to do here is call onwards directly, from within the */ \
/* arms of the case statement. That gives a problem in that */ \
/* there will be multiple return points inside each function when */ \
/* unwinding, so it will be difficult to check for consistency */ \
/* against the director string. Instead, we make an indirect */ \
/* call, so as to guarantee that there is only one call site */ \
/* within each function. This does assume that the compiler */ \
/* won't transform it back to the simple direct-call form. */ \
/* To discourage it from doing so, the call is bracketed with */ \
/* __asm__ __volatile__ sections so as to make it not-movable. */ \
bool (*nextFn)(LUL*, const char*, const char*) = NULL; \
switch (*strP) { \
case '1': nextFn = TestFn1; break; \
case '2': nextFn = TestFn2; break; \
case '3': nextFn = TestFn3; break; \
case '4': nextFn = TestFn4; break; \
case '5': nextFn = TestFn5; break; \
case '6': nextFn = TestFn6; break; \
case '7': nextFn = TestFn7; break; \
case '8': nextFn = TestFn8; break; \
default: nextFn = TestFn8; break; \
} \
__asm__ __volatile__("":::"cc","memory"); \
bool passed = nextFn(aLUL, strPorig, strP+1); \
__asm__ __volatile__("":::"cc","memory"); \
return passed; \
} \
}
// The test functions are mutually recursive, so it is necessary to
// declare them before defining them.
DECL_TEST_FN(TestFn1)
DECL_TEST_FN(TestFn2)
DECL_TEST_FN(TestFn3)
DECL_TEST_FN(TestFn4)
DECL_TEST_FN(TestFn5)
DECL_TEST_FN(TestFn6)
DECL_TEST_FN(TestFn7)
DECL_TEST_FN(TestFn8)
GEN_TEST_FN(TestFn1, 123)
GEN_TEST_FN(TestFn2, 456)
GEN_TEST_FN(TestFn3, 789)
GEN_TEST_FN(TestFn4, 23)
GEN_TEST_FN(TestFn5, 47)
GEN_TEST_FN(TestFn6, 117)
GEN_TEST_FN(TestFn7, 1)
GEN_TEST_FN(TestFn8, 99)
// This starts the test sequence going. Call here to generate a
// sequence of calls as directed by the string |dstring|. The call
// sequence will, from its innermost frame, finish by calling
// GetAndCheckStackTrace() and passing it |dstring|.
// GetAndCheckStackTrace() will unwind the stack, check consistency
// of those results against |dstring|, and print a pass/fail message
// to aLUL's logging sink. It also updates the counters in *aNTests
// and aNTestsPassed.
__attribute__((noinline)) void
TestUnw(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed,
LUL* aLUL, const char* dstring)
{
// Ensure that the stack has at least this much space on it. This
// makes it safe to saw off the top LUL_UNIT_TEST_STACK_SIZE bytes
// and hand it to LUL. Safe in the sense that no segfault can
// happen because the stack is at least this big. This is all
// somewhat dubious in the sense that a sufficiently clever compiler
// (clang, for one) can figure out that space[] is unused and delete
// it from the frame. Hence the somewhat elaborate hoop jumping to
// fill it up before the call and to at least appear to use the
// value afterwards.
int i;
volatile char space[LUL_UNIT_TEST_STACK_SIZE];
for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) {
space[i] = (char)(i & 0x7F);
}
// Really run the test.
bool passed = TestFn1(aLUL, dstring, dstring);
// Appear to use space[], by visiting the value to compute some kind
// of checksum, and then (apparently) using the checksum.
int sum = 0;
for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) {
// If this doesn't fool LLVM, I don't know what will.
sum += space[i] - 3*i;
}
__asm__ __volatile__("" : : "r"(sum));
// Update the counters.
(*aNTests)++;
if (passed) {
(*aNTestsPassed)++;
}
}
void
RunLulUnitTests(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, LUL* aLUL)
{
aLUL->mLog(":\n");
aLUL->mLog("LULUnitTest: BEGIN\n");
*aNTests = *aNTestsPassed = 0;
TestUnw(aNTests, aNTestsPassed, aLUL, "11111111");
TestUnw(aNTests, aNTestsPassed, aLUL, "11222211");
TestUnw(aNTests, aNTestsPassed, aLUL, "111222333");
TestUnw(aNTests, aNTestsPassed, aLUL, "1212121231212331212121212121212");
TestUnw(aNTests, aNTestsPassed, aLUL, "31415827271828325332173258");
TestUnw(aNTests, aNTestsPassed, aLUL,
"123456781122334455667788777777777777777777777");
aLUL->mLog("LULUnitTest: END\n");
aLUL->mLog(":\n");
}
} // namespace lul
|