1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "LulDwarfSummariser.h"
#include "mozilla/Assertions.h"
// Set this to 1 for verbose logging
#define DEBUG_SUMMARISER 0
namespace lul {
// Do |s64|'s lowest 32 bits sign extend back to |s64| itself?
static inline bool fitsIn32Bits(int64 s64) {
return s64 == ((s64 & 0xffffffff) ^ 0x80000000) - 0x80000000;
}
// Check a LExpr prefix expression, starting at pfxInstrs[start] up to
// the next PX_End instruction, to ensure that:
// * It only mentions registers that are tracked on this target
// * The start point is sane
// If the expression is ok, return NULL. Else return a pointer
// a const char* holding a bit of text describing the problem.
static const char*
checkPfxExpr(const vector<PfxInstr>* pfxInstrs, int64_t start)
{
size_t nInstrs = pfxInstrs->size();
if (start < 0 || start >= (ssize_t)nInstrs) {
return "bogus start point";
}
size_t i;
for (i = start; i < nInstrs; i++) {
PfxInstr pxi = (*pfxInstrs)[i];
if (pxi.mOpcode == PX_End)
break;
if (pxi.mOpcode == PX_DwReg &&
!registerIsTracked((DW_REG_NUMBER)pxi.mOperand)) {
return "uses untracked reg";
}
}
return nullptr; // success
}
Summariser::Summariser(SecMap* aSecMap, uintptr_t aTextBias,
void(*aLog)(const char*))
: mSecMap(aSecMap)
, mTextBias(aTextBias)
, mLog(aLog)
{
mCurrAddr = 0;
mMax1Addr = 0; // Gives an empty range.
// Initialise the running RuleSet to "haven't got a clue" status.
new (&mCurrRules) RuleSet();
}
void
Summariser::Entry(uintptr_t aAddress, uintptr_t aLength)
{
aAddress += mTextBias;
if (DEBUG_SUMMARISER) {
char buf[100];
SprintfLiteral(buf,
"LUL Entry(%llx, %llu)\n",
(unsigned long long int)aAddress,
(unsigned long long int)aLength);
mLog(buf);
}
// This throws away any previous summary, that is, assumes
// that the previous summary, if any, has been properly finished
// by a call to End().
mCurrAddr = aAddress;
mMax1Addr = aAddress + aLength;
new (&mCurrRules) RuleSet();
}
void
Summariser::Rule(uintptr_t aAddress, int aNewReg,
LExprHow how, int16_t oldReg, int64_t offset)
{
aAddress += mTextBias;
if (DEBUG_SUMMARISER) {
char buf[100];
if (how == NODEREF || how == DEREF) {
bool deref = how == DEREF;
SprintfLiteral(buf,
"LUL 0x%llx old-r%d = %sr%d + %lld%s\n",
(unsigned long long int)aAddress, aNewReg,
deref ? "*(" : "", (int)oldReg, (long long int)offset,
deref ? ")" : "");
} else if (how == PFXEXPR) {
SprintfLiteral(buf,
"LUL 0x%llx old-r%d = pfx-expr-at %lld\n",
(unsigned long long int)aAddress, aNewReg,
(long long int)offset);
} else {
SprintfLiteral(buf,
"LUL 0x%llx old-r%d = (invalid LExpr!)\n",
(unsigned long long int)aAddress, aNewReg);
}
mLog(buf);
}
if (mCurrAddr < aAddress) {
// Flush the existing summary first.
mCurrRules.mAddr = mCurrAddr;
mCurrRules.mLen = aAddress - mCurrAddr;
mSecMap->AddRuleSet(&mCurrRules);
if (DEBUG_SUMMARISER) {
mLog("LUL "); mCurrRules.Print(mLog);
mLog("\n");
}
mCurrAddr = aAddress;
}
// If for some reason summarisation fails, either or both of these
// become non-null and point at constant text describing the
// problem. Using two rather than just one avoids complications of
// having to concatenate two strings to produce a complete error message.
const char* reason1 = nullptr;
const char* reason2 = nullptr;
// |offset| needs to be a 32 bit value that sign extends to 64 bits
// on a 64 bit target. We will need to incorporate |offset| into
// any LExpr made here. So we may as well check it right now.
if (!fitsIn32Bits(offset)) {
reason1 = "offset not in signed 32-bit range";
goto cant_summarise;
}
// FIXME: factor out common parts of the arch-dependent summarisers.
#if defined(LUL_ARCH_arm)
// ----------------- arm ----------------- //
// Now, can we add the rule to our summary? This depends on whether
// the registers and the overall expression are representable. This
// is the heart of the summarisation process.
switch (aNewReg) {
case DW_REG_CFA:
// This is a rule that defines the CFA. The only forms we
// choose to represent are: r7/11/12/13 + offset. The offset
// must fit into 32 bits since 'uintptr_t' is 32 bit on ARM,
// hence there is no need to check it for overflow.
if (how != NODEREF) {
reason1 = "rule for DW_REG_CFA: invalid |how|";
goto cant_summarise;
}
switch (oldReg) {
case DW_REG_ARM_R7: case DW_REG_ARM_R11:
case DW_REG_ARM_R12: case DW_REG_ARM_R13:
break;
default:
reason1 = "rule for DW_REG_CFA: invalid |oldReg|";
goto cant_summarise;
}
mCurrRules.mCfaExpr = LExpr(how, oldReg, offset);
break;
case DW_REG_ARM_R7: case DW_REG_ARM_R11: case DW_REG_ARM_R12:
case DW_REG_ARM_R13: case DW_REG_ARM_R14: case DW_REG_ARM_R15: {
// This is a new rule for R7, R11, R12, R13 (SP), R14 (LR) or
// R15 (the return address).
switch (how) {
case NODEREF: case DEREF:
// Check the old register is one we're tracking.
if (!registerIsTracked((DW_REG_NUMBER)oldReg) &&
oldReg != DW_REG_CFA) {
reason1 = "rule for R7/11/12/13/14/15: uses untracked reg";
goto cant_summarise;
}
break;
case PFXEXPR: {
// Check that the prefix expression only mentions tracked registers.
const vector<PfxInstr>* pfxInstrs = mSecMap->GetPfxInstrs();
reason2 = checkPfxExpr(pfxInstrs, offset);
if (reason2) {
reason1 = "rule for R7/11/12/13/14/15: ";
goto cant_summarise;
}
break;
}
default:
goto cant_summarise;
}
LExpr expr = LExpr(how, oldReg, offset);
switch (aNewReg) {
case DW_REG_ARM_R7: mCurrRules.mR7expr = expr; break;
case DW_REG_ARM_R11: mCurrRules.mR11expr = expr; break;
case DW_REG_ARM_R12: mCurrRules.mR12expr = expr; break;
case DW_REG_ARM_R13: mCurrRules.mR13expr = expr; break;
case DW_REG_ARM_R14: mCurrRules.mR14expr = expr; break;
case DW_REG_ARM_R15: mCurrRules.mR15expr = expr; break;
default: MOZ_ASSERT(0);
}
break;
}
default:
// Leave |reason1| and |reason2| unset here. This program point
// is reached so often that it causes a flood of "Can't
// summarise" messages. In any case, we don't really care about
// the fact that this summary would produce a new value for a
// register that we're not tracking. We do on the other hand
// care if the summary's expression *uses* a register that we're
// not tracking. But in that case one of the above failures
// should tell us which.
goto cant_summarise;
}
// Mark callee-saved registers (r4 .. r11) as unchanged, if there is
// no other information about them. FIXME: do this just once, at
// the point where the ruleset is committed.
if (mCurrRules.mR7expr.mHow == UNKNOWN) {
mCurrRules.mR7expr = LExpr(NODEREF, DW_REG_ARM_R7, 0);
}
if (mCurrRules.mR11expr.mHow == UNKNOWN) {
mCurrRules.mR11expr = LExpr(NODEREF, DW_REG_ARM_R11, 0);
}
if (mCurrRules.mR12expr.mHow == UNKNOWN) {
mCurrRules.mR12expr = LExpr(NODEREF, DW_REG_ARM_R12, 0);
}
// The old r13 (SP) value before the call is always the same as the
// CFA.
mCurrRules.mR13expr = LExpr(NODEREF, DW_REG_CFA, 0);
// If there's no information about R15 (the return address), say
// it's a copy of R14 (the link register).
if (mCurrRules.mR15expr.mHow == UNKNOWN) {
mCurrRules.mR15expr = LExpr(NODEREF, DW_REG_ARM_R14, 0);
}
#elif defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
// ---------------- x64/x86 ---------------- //
// Now, can we add the rule to our summary? This depends on whether
// the registers and the overall expression are representable. This
// is the heart of the summarisation process.
switch (aNewReg) {
case DW_REG_CFA:
// This is a rule that defines the CFA. The only forms we can
// represent are: = SP+offset or = FP+offset.
if (how != NODEREF) {
reason1 = "rule for DW_REG_CFA: invalid |how|";
goto cant_summarise;
}
if (oldReg != DW_REG_INTEL_XSP && oldReg != DW_REG_INTEL_XBP) {
reason1 = "rule for DW_REG_CFA: invalid |oldReg|";
goto cant_summarise;
}
mCurrRules.mCfaExpr = LExpr(how, oldReg, offset);
break;
case DW_REG_INTEL_XSP: case DW_REG_INTEL_XBP: case DW_REG_INTEL_XIP: {
// This is a new rule for XSP, XBP or XIP (the return address).
switch (how) {
case NODEREF: case DEREF:
// Check the old register is one we're tracking.
if (!registerIsTracked((DW_REG_NUMBER)oldReg) &&
oldReg != DW_REG_CFA) {
reason1 = "rule for XSP/XBP/XIP: uses untracked reg";
goto cant_summarise;
}
break;
case PFXEXPR: {
// Check that the prefix expression only mentions tracked registers.
const vector<PfxInstr>* pfxInstrs = mSecMap->GetPfxInstrs();
reason2 = checkPfxExpr(pfxInstrs, offset);
if (reason2) {
reason1 = "rule for XSP/XBP/XIP: ";
goto cant_summarise;
}
break;
}
default:
goto cant_summarise;
}
LExpr expr = LExpr(how, oldReg, offset);
switch (aNewReg) {
case DW_REG_INTEL_XBP: mCurrRules.mXbpExpr = expr; break;
case DW_REG_INTEL_XSP: mCurrRules.mXspExpr = expr; break;
case DW_REG_INTEL_XIP: mCurrRules.mXipExpr = expr; break;
default: MOZ_CRASH("impossible value for aNewReg");
}
break;
}
default:
// Leave |reason1| and |reason2| unset here, for the reasons
// explained in the analogous point in the ARM case just above.
goto cant_summarise;
}
// On Intel, it seems the old SP value before the call is always the
// same as the CFA. Therefore, in the absence of any other way to
// recover the SP, specify that the CFA should be copied.
if (mCurrRules.mXspExpr.mHow == UNKNOWN) {
mCurrRules.mXspExpr = LExpr(NODEREF, DW_REG_CFA, 0);
}
// Also, gcc says "Undef" for BP when it is unchanged.
if (mCurrRules.mXbpExpr.mHow == UNKNOWN) {
mCurrRules.mXbpExpr = LExpr(NODEREF, DW_REG_INTEL_XBP, 0);
}
#else
# error "Unsupported arch"
#endif
return;
cant_summarise:
if (reason1 || reason2) {
char buf[200];
SprintfLiteral(buf, "LUL can't summarise: "
"SVMA=0x%llx: %s%s, expr=LExpr(%s,%u,%lld)\n",
(unsigned long long int)(aAddress - mTextBias),
reason1 ? reason1 : "", reason2 ? reason2 : "",
NameOf_LExprHow(how),
(unsigned int)oldReg, (long long int)offset);
mLog(buf);
}
}
uint32_t
Summariser::AddPfxInstr(PfxInstr pfxi)
{
return mSecMap->AddPfxInstr(pfxi);
}
void
Summariser::End()
{
if (DEBUG_SUMMARISER) {
mLog("LUL End\n");
}
if (mCurrAddr < mMax1Addr) {
mCurrRules.mAddr = mCurrAddr;
mCurrRules.mLen = mMax1Addr - mCurrAddr;
mSecMap->AddRuleSet(&mCurrRules);
if (DEBUG_SUMMARISER) {
mLog("LUL "); mCurrRules.Print(mLog);
mLog("\n");
}
}
}
} // namespace lul
|