1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/entropy.h"
#include "av1/common/scan.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_ports/msvc.h" // for round()
using libaom_test::ACMRandom;
namespace {
const int kNumCoeffs = 256;
const double C1 = 0.995184726672197;
const double C2 = 0.98078528040323;
const double C3 = 0.956940335732209;
const double C4 = 0.923879532511287;
const double C5 = 0.881921264348355;
const double C6 = 0.831469612302545;
const double C7 = 0.773010453362737;
const double C8 = 0.707106781186548;
const double C9 = 0.634393284163646;
const double C10 = 0.555570233019602;
const double C11 = 0.471396736825998;
const double C12 = 0.38268343236509;
const double C13 = 0.290284677254462;
const double C14 = 0.195090322016128;
const double C15 = 0.098017140329561;
void butterfly_16x16_dct_1d(double input[16], double output[16]) {
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[0] = input[0] + input[15];
step[1] = input[1] + input[14];
step[2] = input[2] + input[13];
step[3] = input[3] + input[12];
step[4] = input[4] + input[11];
step[5] = input[5] + input[10];
step[6] = input[6] + input[9];
step[7] = input[7] + input[8];
step[8] = input[7] - input[8];
step[9] = input[6] - input[9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[8] * C7;
temp2 = step[15] * C9;
output[8] = temp1 + temp2;
temp1 = step[9] * C11;
temp2 = step[14] * C5;
output[9] = temp1 - temp2;
temp1 = step[10] * C3;
temp2 = step[13] * C13;
output[10] = temp1 + temp2;
temp1 = step[11] * C15;
temp2 = step[12] * C1;
output[11] = temp1 - temp2;
temp1 = step[11] * C1;
temp2 = step[12] * C15;
output[12] = temp2 + temp1;
temp1 = step[10] * C13;
temp2 = step[13] * C3;
output[13] = temp2 - temp1;
temp1 = step[9] * C5;
temp2 = step[14] * C11;
output[14] = temp2 + temp1;
temp1 = step[8] * C9;
temp2 = step[15] * C7;
output[15] = temp2 - temp1;
// step 3
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
temp1 = output[4] * C14;
temp2 = output[7] * C2;
step[4] = temp1 + temp2;
temp1 = output[5] * C10;
temp2 = output[6] * C6;
step[5] = temp1 + temp2;
temp1 = output[5] * C6;
temp2 = output[6] * C10;
step[6] = temp2 - temp1;
temp1 = output[4] * C2;
temp2 = output[7] * C14;
step[7] = temp2 - temp1;
step[8] = output[8] + output[11];
step[9] = output[9] + output[10];
step[10] = output[9] - output[10];
step[11] = output[8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[0] = (step[0] + step[1]);
output[8] = (step[0] - step[1]);
temp1 = step[2] * C12;
temp2 = step[3] * C4;
temp1 = temp1 + temp2;
output[4] = 2 * (temp1 * C8);
temp1 = step[2] * C4;
temp2 = step[3] * C12;
temp1 = temp2 - temp1;
output[12] = 2 * (temp1 * C8);
output[2] = 2 * ((step[4] + step[5]) * C8);
output[14] = 2 * ((step[7] - step[6]) * C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8] * C12;
temp2 = intermediate[9] * C4;
temp1 = temp1 - temp2;
output[3] = 2 * (temp1 * C8);
temp1 = intermediate[8] * C4;
temp2 = intermediate[9] * C12;
temp1 = temp2 + temp1;
output[13] = 2 * (temp1 * C8);
output[9] = 2 * ((step[10] + step[11]) * C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[8] - step[14];
intermediate[15] = step[9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[1] = -(intermediate[11] - intermediate[12]);
output[7] = 2 * (intermediate[13] * C8);
temp1 = intermediate[14] * C12;
temp2 = intermediate[15] * C4;
temp1 = temp1 - temp2;
output[11] = -2 * (temp1 * C8);
temp1 = intermediate[14] * C4;
temp2 = intermediate[15] * C12;
temp1 = temp2 + temp1;
output[5] = 2 * (temp1 * C8);
}
void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
// First transform columns
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i];
butterfly_16x16_dct_1d(temp_in, temp_out);
for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16];
butterfly_16x16_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2;
}
}
typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param);
typedef std::tr1::tuple<FdctFunc, IdctFunc, TX_TYPE, aom_bit_depth_t>
Dct16x16Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, TX_TYPE, aom_bit_depth_t>
Ht16x16Param;
typedef std::tr1::tuple<IdctFunc, IdctFunc, TX_TYPE, aom_bit_depth_t>
Idct16x16Param;
void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride,
TxfmParam * /*txfm_param*/) {
aom_fdct16x16_c(in, out, stride);
}
void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
const TxfmParam * /*txfm_param*/) {
aom_idct16x16_256_add_c(in, dest, stride);
}
void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fht16x16_c(in, out, stride, txfm_param);
}
void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
av1_iht16x16_256_add_c(in, dest, stride, txfm_param);
}
#if CONFIG_HIGHBITDEPTH
void fht16x16_10(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fwd_txfm2d_16x16_c(in, out, stride, txfm_param->tx_type, 10);
}
void fht16x16_12(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fwd_txfm2d_16x16_c(in, out, stride, txfm_param->tx_type, 12);
}
void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param) {
av1_inv_txfm2d_add_16x16_c(in, CONVERT_TO_SHORTPTR(out), stride,
txfm_param->tx_type, 10);
}
void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param) {
av1_inv_txfm2d_add_16x16_c(in, CONVERT_TO_SHORTPTR(out), stride,
txfm_param->tx_type, 12);
}
#endif // CONFIG_HIGHBITDEPTH
class Trans16x16TestBase {
public:
virtual ~Trans16x16TestBase() {}
protected:
virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int32_t diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
<< "Error: 16x16 FHT/IHT has an individual round trip error > 1";
EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
<< "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
fwd_txfm_ref(input_block, output_ref_block, pitch_, &txfm_param_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j]);
}
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, &txfm_param_);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(input_extreme_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j]);
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
}
}
}
void RunQuantCheck(int dc_thred, int ac_thred) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
if (i == 1)
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, &txfm_param_);
// clear reconstructed pixel buffers
memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
#if CONFIG_HIGHBITDEPTH
memset(dst16, 0, kNumCoeffs * sizeof(uint16_t));
memset(ref16, 0, kNumCoeffs * sizeof(uint16_t));
#endif
// quantization with maximum allowed step sizes
output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
for (int j = 1; j < kNumCoeffs; ++j)
output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
if (bit_depth_ == AOM_BITS_8) {
inv_txfm_ref(output_ref_block, ref, pitch_, &txfm_param_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_,
&txfm_param_);
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(output_ref_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
if (bit_depth_ == AOM_BITS_8) {
for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]);
#if CONFIG_HIGHBITDEPTH
} else {
for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]);
#endif
}
}
}
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
#endif // CONFIG_HIGHBITDEPTH
}
}
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), 16));
#endif // CONFIG_HIGHBITDEPTH
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif // CONFIG_HIGHBITDEPTH
const uint32_t error = diff * diff;
EXPECT_GE(1u, error)
<< "Error: 16x16 IDCT has error " << error << " at index " << j;
}
}
}
void CompareInvReference(IdctFunc ref_txfm, int thresh) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 10000;
const int eob = 10;
const int16_t *scan = av1_default_scan_orders[TX_16X16].scan;
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j) {
if (j < eob) {
// Random values less than the threshold, either positive or negative
coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
} else {
coeff[scan[j]] = 0;
}
if (bit_depth_ == AOM_BITS_8) {
dst[j] = 0;
ref[j] = 0;
#if CONFIG_HIGHBITDEPTH
} else {
dst16[j] = 0;
ref16[j] = 0;
#endif // CONFIG_HIGHBITDEPTH
}
}
if (bit_depth_ == AOM_BITS_8) {
ref_txfm(coeff, ref, pitch_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
} else {
#if CONFIG_HIGHBITDEPTH
ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif // CONFIG_HIGHBITDEPTH
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
#else
const int diff = dst[j] - ref[j];
#endif // CONFIG_HIGHBITDEPTH
const uint32_t error = diff * diff;
EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error "
<< error << " at index " << j;
}
}
}
int pitch_;
aom_bit_depth_t bit_depth_;
int mask_;
FhtFunc fwd_txfm_ref;
IhtFunc inv_txfm_ref;
TxfmParam txfm_param_;
};
class Trans16x16DCT : public Trans16x16TestBase,
public ::testing::TestWithParam<Dct16x16Param> {
public:
virtual ~Trans16x16DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
fwd_txfm_ref = fdct16x16_ref;
inv_txfm_ref = idct16x16_ref;
mask_ = (1 << bit_depth_) - 1;
inv_txfm_ref = idct16x16_ref;
txfm_param_.tx_type = GET_PARAM(2);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); }
TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); }
TEST_P(Trans16x16DCT, QuantCheck) {
// Use maximally allowed quantization step sizes for DC and AC
// coefficients respectively.
RunQuantCheck(1336, 1828);
}
TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); }
class Trans16x16HT : public Trans16x16TestBase,
public ::testing::TestWithParam<Ht16x16Param> {
public:
virtual ~Trans16x16HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
mask_ = (1 << bit_depth_) - 1;
txfm_param_.tx_type = GET_PARAM(2);
#if CONFIG_HIGHBITDEPTH
switch (bit_depth_) {
case AOM_BITS_10:
fwd_txfm_ref = fht16x16_10;
inv_txfm_ref = iht16x16_10;
break;
case AOM_BITS_12:
fwd_txfm_ref = fht16x16_12;
inv_txfm_ref = iht16x16_12;
break;
default:
fwd_txfm_ref = fht16x16_ref;
inv_txfm_ref = iht16x16_ref;
break;
}
#else
fwd_txfm_ref = fht16x16_ref;
inv_txfm_ref = iht16x16_ref;
#endif
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride, &txfm_param_);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, &txfm_param_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); }
TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); }
TEST_P(Trans16x16HT, QuantCheck) {
// The encoder skips any non-DC intra prediction modes,
// when the quantization step size goes beyond 988.
RunQuantCheck(429, 729);
}
class InvTrans16x16DCT : public Trans16x16TestBase,
public ::testing::TestWithParam<Idct16x16Param> {
public:
virtual ~InvTrans16x16DCT() {}
virtual void SetUp() {
ref_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
thresh_ = GET_PARAM(2);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
IdctFunc ref_txfm_;
IdctFunc inv_txfm_;
int thresh_;
};
TEST_P(InvTrans16x16DCT, CompareReference) {
CompareInvReference(ref_txfm_, thresh_);
}
class PartialTrans16x16Test : public ::testing::TestWithParam<
std::tr1::tuple<FdctFunc, aom_bit_depth_t> > {
public:
virtual ~PartialTrans16x16Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
bit_depth_ = GET_PARAM(1);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
aom_bit_depth_t bit_depth_;
FdctFunc fwd_txfm_;
};
TEST_P(PartialTrans16x16Test, Extremes) {
#if CONFIG_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
const int minval = -maxval;
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ((maxval * kNumCoeffs) >> 1, output[0]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ((minval * kNumCoeffs) >> 1, output[0]);
}
TEST_P(PartialTrans16x16Test, Random) {
#if CONFIG_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
ACMRandom rnd(ACMRandom::DeterministicSeed());
int sum = 0;
for (int i = 0; i < kNumCoeffs; ++i) {
const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1);
input[i] = val;
sum += val;
}
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ(sum >> 1, output[0]);
}
using std::tr1::make_tuple;
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c,
&aom_idct16x16_256_add_c,
DCT_DCT, AOM_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c,
&aom_idct16x16_256_add_c,
DCT_DCT, AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(
make_tuple(&fht16x16_10, &iht16x16_10, DCT_DCT, AOM_BITS_10),
make_tuple(&fht16x16_10, &iht16x16_10, ADST_DCT, AOM_BITS_10),
make_tuple(&fht16x16_10, &iht16x16_10, DCT_ADST, AOM_BITS_10),
make_tuple(&fht16x16_10, &iht16x16_10, ADST_ADST, AOM_BITS_10),
make_tuple(&fht16x16_12, &iht16x16_12, DCT_DCT, AOM_BITS_12),
make_tuple(&fht16x16_12, &iht16x16_12, ADST_DCT, AOM_BITS_12),
make_tuple(&fht16x16_12, &iht16x16_12, DCT_ADST, AOM_BITS_12),
make_tuple(&fht16x16_12, &iht16x16_12, ADST_ADST, AOM_BITS_12),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, DCT_DCT,
AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, ADST_DCT,
AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, DCT_ADST,
AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, ADST_ADST,
AOM_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c,
ADST_ADST, AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
NEON, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_neon,
DCT_DCT, AOM_BITS_8)));
#endif
#if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(SSE2, Trans16x16DCT,
::testing::Values(make_tuple(
&aom_fdct16x16_sse2, &aom_idct16x16_256_add_sse2,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_DAALA_DCT16
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
ADST_ADST, AOM_BITS_8)));
#endif // CONFIG_DAALA_DCT16
#endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
#if HAVE_SSE2 && CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(SSE2, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_sse2,
&aom_idct16x16_256_add_c,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_DAALA_DCT16
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c,
ADST_ADST, AOM_BITS_8)));
#endif
#endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH
#if HAVE_MSA && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_msa,
&aom_idct16x16_256_add_msa,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_EXT_TX && !CONFIG_DAALA_DCT16
// TODO(yaowu): re-enable this after msa versions are updated to match C.
INSTANTIATE_TEST_CASE_P(
DISABLED_MSA, Trans16x16HT,
::testing::Values(make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa,
ADST_ADST, AOM_BITS_8)));
#endif // !CONFIG_EXT_TX && !CONFIG_DAALA_DCT16
#endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH
} // namespace
|