1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "aom/aom_integer.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitwriter.h"
using libaom_test::ACMRandom;
namespace {
const int num_tests = 10;
} // namespace
TEST(AV1, TestBitIO) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int n = 0; n < num_tests; ++n) {
for (int method = 0; method <= 7; ++method) { // we generate various proba
const int kBitsToTest = 1000;
uint8_t probas[kBitsToTest];
for (int i = 0; i < kBitsToTest; ++i) {
const int parity = i & 1;
/* clang-format off */
probas[i] =
(method == 0) ? 0 : (method == 1) ? 255 :
(method == 2) ? 128 :
(method == 3) ? rnd.Rand8() :
(method == 4) ? (parity ? 0 : 255) :
// alternate between low and high proba:
(method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) :
(method == 6) ?
(parity ? rnd(64) : 255 - rnd(64)) :
(parity ? rnd(32) : 255 - rnd(32));
/* clang-format on */
}
for (int bit_method = 0; bit_method <= 3; ++bit_method) {
const int random_seed = 6432;
const int kBufferSize = 10000;
ACMRandom bit_rnd(random_seed);
aom_writer bw;
uint8_t bw_buffer[kBufferSize];
aom_start_encode(&bw, bw_buffer);
int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0;
for (int i = 0; i < kBitsToTest; ++i) {
if (bit_method == 2) {
bit = (i & 1);
} else if (bit_method == 3) {
bit = bit_rnd(2);
}
aom_write(&bw, bit, static_cast<int>(probas[i]));
}
aom_stop_encode(&bw);
aom_reader br;
aom_reader_init(&br, bw_buffer, bw.pos, NULL, NULL);
bit_rnd.Reset(random_seed);
for (int i = 0; i < kBitsToTest; ++i) {
if (bit_method == 2) {
bit = (i & 1);
} else if (bit_method == 3) {
bit = bit_rnd(2);
}
GTEST_ASSERT_EQ(aom_read(&br, probas[i], NULL), bit)
<< "pos: " << i << " / " << kBitsToTest
<< " bit_method: " << bit_method << " method: " << method;
}
}
}
}
}
#define FRAC_DIFF_TOTAL_ERROR 0.16
TEST(AV1, TestTell) {
const int kBufferSize = 10000;
aom_writer bw;
uint8_t bw_buffer[kBufferSize];
const int kSymbols = 1024;
// Coders are noisier at low probabilities, so we start at p = 4.
for (int p = 4; p < 256; p++) {
double probability = p / 256.;
aom_start_encode(&bw, bw_buffer);
for (int i = 0; i < kSymbols; i++) {
aom_write(&bw, 0, p);
}
aom_stop_encode(&bw);
aom_reader br;
aom_reader_init(&br, bw_buffer, bw.pos, NULL, NULL);
uint32_t last_tell = aom_reader_tell(&br);
uint32_t last_tell_frac = aom_reader_tell_frac(&br);
double frac_diff_total = 0;
GTEST_ASSERT_GE(aom_reader_tell(&br), 0u);
GTEST_ASSERT_LE(aom_reader_tell(&br), 1u);
for (int i = 0; i < kSymbols; i++) {
aom_read(&br, p, NULL);
uint32_t tell = aom_reader_tell(&br);
uint32_t tell_frac = aom_reader_tell_frac(&br);
GTEST_ASSERT_GE(tell, last_tell)
<< "tell: " << tell << ", last_tell: " << last_tell;
GTEST_ASSERT_GE(tell_frac, last_tell_frac)
<< "tell_frac: " << tell_frac
<< ", last_tell_frac: " << last_tell_frac;
// Frac tell should round up to tell.
GTEST_ASSERT_EQ(tell, (tell_frac + 7) >> 3);
last_tell = tell;
frac_diff_total +=
fabs(((tell_frac - last_tell_frac) / 8.0) + log2(probability));
last_tell_frac = tell_frac;
}
const uint32_t expected = (uint32_t)(-kSymbols * log2(probability));
// Last tell should be close to the expected value.
GTEST_ASSERT_LE(last_tell, expected + 20) << " last_tell: " << last_tell;
// The average frac_diff error should be pretty small.
GTEST_ASSERT_LE(frac_diff_total / kSymbols, FRAC_DIFF_TOTAL_ERROR)
<< " frac_diff_total: " << frac_diff_total;
}
}
|