summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/av1_txfm_test.cc
blob: 4545de10085228bcd824778d0b76c47f8d9561f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdio.h>
#include "test/av1_txfm_test.h"

namespace libaom_test {

int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; }

void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
  switch (txfm2d_type) {
    case DCT_DCT:
      *type0 = TYPE_DCT;
      *type1 = TYPE_DCT;
      break;
    case ADST_DCT:
      *type0 = TYPE_ADST;
      *type1 = TYPE_DCT;
      break;
    case DCT_ADST:
      *type0 = TYPE_DCT;
      *type1 = TYPE_ADST;
      break;
    case ADST_ADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
#if CONFIG_EXT_TX
    case FLIPADST_DCT:
      *type0 = TYPE_ADST;
      *type1 = TYPE_DCT;
      break;
    case DCT_FLIPADST:
      *type0 = TYPE_DCT;
      *type1 = TYPE_ADST;
      break;
    case FLIPADST_FLIPADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case ADST_FLIPADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
    case FLIPADST_ADST:
      *type0 = TYPE_ADST;
      *type1 = TYPE_ADST;
      break;
#endif  // CONFIG_EXT_TX
    default:
      *type0 = TYPE_DCT;
      *type1 = TYPE_DCT;
      assert(0);
      break;
  }
}

double invSqrt2 = 1 / pow(2, 0.5);

double dct_matrix(double n, double k, int size) {
  return cos(M_PI * (2 * n + 1) * k / (2 * size));
}

void reference_dct_1d(const double *in, double *out, int size) {
  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      out[k] += in[n] * dct_matrix(n, k, size);
    }
    if (k == 0) out[k] = out[k] * invSqrt2;
  }
}

void reference_idct_1d(const double *in, double *out, int size) {
  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      if (n == 0)
        out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size);
      else
        out[k] += in[n] * dct_matrix(k, n, size);
    }
  }
}

void reference_adst_1d(const double *in, double *out, int size) {
  for (int k = 0; k < size; ++k) {
    out[k] = 0;
    for (int n = 0; n < size; ++n) {
      out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
    }
  }
}

void reference_hybrid_1d(double *in, double *out, int size, int type) {
  if (type == TYPE_DCT)
    reference_dct_1d(in, out, size);
  else
    reference_adst_1d(in, out, size);
}

void reference_hybrid_2d(double *in, double *out, int size, int type0,
                         int type1) {
  double *tempOut = new double[size * size];

  for (int r = 0; r < size; r++) {
    // out ->tempOut
    for (int c = 0; c < size; c++) {
      tempOut[r * size + c] = in[c * size + r];
    }
  }

  // dct each row: in -> out
  for (int r = 0; r < size; r++) {
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type0);
  }

  for (int r = 0; r < size; r++) {
    // out ->tempOut
    for (int c = 0; c < size; c++) {
      tempOut[r * size + c] = out[c * size + r];
    }
  }

  for (int r = 0; r < size; r++) {
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type1);
  }
  delete[] tempOut;
}

template <typename Type>
void fliplr(Type *dest, int stride, int length) {
  int i, j;
  for (i = 0; i < length; ++i) {
    for (j = 0; j < length / 2; ++j) {
      const Type tmp = dest[i * stride + j];
      dest[i * stride + j] = dest[i * stride + length - 1 - j];
      dest[i * stride + length - 1 - j] = tmp;
    }
  }
}

template <typename Type>
void flipud(Type *dest, int stride, int length) {
  int i, j;
  for (j = 0; j < length; ++j) {
    for (i = 0; i < length / 2; ++i) {
      const Type tmp = dest[i * stride + j];
      dest[i * stride + j] = dest[(length - 1 - i) * stride + j];
      dest[(length - 1 - i) * stride + j] = tmp;
    }
  }
}

template <typename Type>
void fliplrud(Type *dest, int stride, int length) {
  int i, j;
  for (i = 0; i < length / 2; ++i) {
    for (j = 0; j < length; ++j) {
      const Type tmp = dest[i * stride + j];
      dest[i * stride + j] = dest[(length - 1 - i) * stride + length - 1 - j];
      dest[(length - 1 - i) * stride + length - 1 - j] = tmp;
    }
  }
}

template void fliplr<double>(double *dest, int stride, int length);
template void flipud<double>(double *dest, int stride, int length);
template void fliplrud<double>(double *dest, int stride, int length);

int bd_arr[BD_NUM] = { 8, 10, 12 };
int8_t low_range_arr[BD_NUM] = { 16, 32, 32 };
int8_t high_range_arr[BD_NUM] = { 32, 32, 32 };

void txfm_stage_range_check(const int8_t *stage_range, int stage_num,
                            const int8_t *cos_bit, int low_range,
                            int high_range) {
  for (int i = 0; i < stage_num; ++i) {
    EXPECT_LE(stage_range[i], low_range);
  }
  for (int i = 0; i < stage_num - 1; ++i) {
    // make sure there is no overflow while doing half_btf()
    EXPECT_LE(stage_range[i] + cos_bit[i], high_range);
    EXPECT_LE(stage_range[i + 1] + cos_bit[i], high_range);
  }
}
}  // namespace libaom_test