summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/ratectrl_xiph.c
blob: b9f827528fa142ac06f1dda2ebf13172276afc3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
/*
 * Copyright (c) 2001-2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "av1/common/odintrin.h"
#include "av1/encoder/ratectrl_xiph.h"

#define OD_Q57(v) ((int64_t)((uint64_t)(v) << 57))
#define OD_F_Q45(v) ((int64_t)(((v) * ((int64_t)1 << 45))))
#define OD_F_Q12(v) ((int32_t)(((v) * ((int32_t)1 << 12))))

/*A rough lookup table for tan(x), 0 <= x < pi/2.
  The values are Q12 fixed-point and spaced at 5 degree intervals.
  These decisions are somewhat arbitrary, but sufficient for the 2nd order
   Bessel follower below.
  Values of x larger than 85 degrees are extrapolated from the last interval,
   which is way off, but "good enough".*/
static uint16_t OD_ROUGH_TAN_LOOKUP[18] = { 0,     358,   722,  1098, 1491,
                                            1910,  2365,  2868, 3437, 4096,
                                            4881,  5850,  7094, 8784, 11254,
                                            15286, 23230, 46817 };

/*alpha is Q24 in the range [0,0.5).
  The return values is 5.12.*/
static int od_warp_alpha(int alpha) {
  int i;
  int d;
  int t0;
  int t1;
  i = alpha * 36 >> 24;
  if (i >= 17) i = 16;
  t0 = OD_ROUGH_TAN_LOOKUP[i];
  t1 = OD_ROUGH_TAN_LOOKUP[i + 1];
  d = alpha * 36 - (i << 24);
  return (int)((((int64_t)t0 << 32) + ((t1 - t0) << 8) * (int64_t)d) >> 32);
}

static const int64_t OD_ATANH_LOG2[32] = {
  0x32B803473F7AD0F4LL, 0x2F2A71BD4E25E916LL, 0x2E68B244BB93BA06LL,
  0x2E39FB9198CE62E4LL, 0x2E2E683F68565C8FLL, 0x2E2B850BE2077FC1LL,
  0x2E2ACC58FE7B78DBLL, 0x2E2A9E2DE52FD5F2LL, 0x2E2A92A338D53EECLL,
  0x2E2A8FC08F5E19B6LL, 0x2E2A8F07E51A485ELL, 0x2E2A8ED9BA8AF388LL,
  0x2E2A8ECE2FE7384ALL, 0x2E2A8ECB4D3E4B1ALL, 0x2E2A8ECA94940FE8LL,
  0x2E2A8ECA6669811DLL, 0x2E2A8ECA5ADEDD6ALL, 0x2E2A8ECA57FC347ELL,
  0x2E2A8ECA57438A43LL, 0x2E2A8ECA57155FB4LL, 0x2E2A8ECA5709D510LL,
  0x2E2A8ECA5706F267LL, 0x2E2A8ECA570639BDLL, 0x2E2A8ECA57060B92LL,
  0x2E2A8ECA57060008LL, 0x2E2A8ECA5705FD25LL, 0x2E2A8ECA5705FC6CLL,
  0x2E2A8ECA5705FC3ELL, 0x2E2A8ECA5705FC33LL, 0x2E2A8ECA5705FC30LL,
  0x2E2A8ECA5705FC2FLL, 0x2E2A8ECA5705FC2FLL
};

static int od_ilog64(int64_t v) {
  static const unsigned char OD_DEBRUIJN_IDX64[64] = {
    0,  1,  2,  7,  3,  13, 8,  19, 4,  25, 14, 28, 9,  34, 20, 40,
    5,  17, 26, 38, 15, 46, 29, 48, 10, 31, 35, 54, 21, 50, 41, 57,
    63, 6,  12, 18, 24, 27, 33, 39, 16, 37, 45, 47, 30, 53, 49, 56,
    62, 11, 23, 32, 36, 44, 52, 55, 61, 22, 43, 51, 60, 42, 59, 58
  };
  int ret;
  v |= v >> 1;
  v |= v >> 2;
  v |= v >> 4;
  v |= v >> 8;
  v |= v >> 16;
  v |= v >> 32;
  ret = (int)v & 1;
  v = (v >> 1) + 1;
  ret += OD_DEBRUIJN_IDX64[v * UINT64_C(0x218A392CD3D5DBF) >> 58 & 0x3F];
  return ret;
}

/*Computes the binary exponential of logq57.
  input: a log base 2 in Q57 format
  output: a 64 bit integer in Q0 (no fraction) */
static int64_t od_bexp64(int64_t logq57) {
  int64_t w;
  int64_t z;
  int ipart;
  ipart = (int)(logq57 >> 57);
  if (ipart < 0) return 0;
  if (ipart >= 63) return 0x7FFFFFFFFFFFFFFFLL;
  z = logq57 - OD_Q57(ipart);
  if (z) {
    int64_t mask;
    int64_t wlo;
    int i;
    /*C doesn't give us 64x64->128 muls, so we use CORDIC.
      This is not particularly fast, but it's not being used in time-critical
       code; it is very accurate.*/
    /*z is the fractional part of the log in Q62 format.
      We need 1 bit of headroom since the magnitude can get larger than 1
       during the iteration, and a sign bit.*/
    z <<= 5;
    /*w is the exponential in Q61 format (since it also needs headroom and can
       get as large as 2.0); we could get another bit if we dropped the sign,
       but we'll recover that bit later anyway.
      Ideally this should start out as
        \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}}
       but in order to guarantee convergence we have to repeat iterations 4,
        13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.*/
    w = 0x26A3D0E401DD846DLL;
    for (i = 0;; i++) {
      mask = -(z < 0);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z -= (OD_ATANH_LOG2[i] + mask) ^ mask;
      /*Repeat iteration 4.*/
      if (i >= 3) break;
      z *= 2;
    }
    for (;; i++) {
      mask = -(z < 0);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z -= (OD_ATANH_LOG2[i] + mask) ^ mask;
      /*Repeat iteration 13.*/
      if (i >= 12) break;
      z *= 2;
    }
    for (; i < 32; i++) {
      mask = -(z < 0);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z = (z - ((OD_ATANH_LOG2[i] + mask) ^ mask)) * 2;
    }
    wlo = 0;
    /*Skip the remaining iterations unless we really require that much
       precision.
      We could have bailed out earlier for smaller iparts, but that would
       require initializing w from a table, as the limit doesn't converge to
       61-bit precision until n=30.*/
    if (ipart > 30) {
      /*For these iterations, we just update the low bits, as the high bits
         can't possibly be affected.
        OD_ATANH_LOG2 has also converged (it actually did so one iteration
         earlier, but that's no reason for an extra special case).*/
      for (;; i++) {
        mask = -(z < 0);
        wlo += ((w >> i) + mask) ^ mask;
        z -= (OD_ATANH_LOG2[31] + mask) ^ mask;
        /*Repeat iteration 40.*/
        if (i >= 39) break;
        z <<= 1;
      }
      for (; i < 61; i++) {
        mask = -(z < 0);
        wlo += ((w >> i) + mask) ^ mask;
        z = (z - ((OD_ATANH_LOG2[31] + mask) ^ mask)) << 1;
      }
    }
    w = (w << 1) + wlo;
  } else {
    w = (int64_t)1 << 62;
  }
  if (ipart < 62) {
    w = ((w >> (61 - ipart)) + 1) >> 1;
  }
  return w;
}

/*Computes the binary log of w
  input: a 64-bit integer in Q0 (no fraction)
  output: a 64-bit log in Q57 */
static int64_t od_blog64(int64_t w) {
  int64_t z;
  int ipart;
  if (w <= 0) return -1;
  ipart = od_ilog64(w) - 1;
  if (ipart > 61) {
    w >>= ipart - 61;
  } else {
    w <<= 61 - ipart;
  }
  z = 0;
  if (w & (w - 1)) {
    int64_t x;
    int64_t y;
    int64_t u;
    int64_t mask;
    int i;
    /*C doesn't give us 64x64->128 muls, so we use CORDIC.
      This is not particularly fast, but it's not being used in time-critical
       code; it is very accurate.*/
    /*z is the fractional part of the log in Q61 format.*/
    /*x and y are the cosh() and sinh(), respectively, in Q61 format.
      We are computing z = 2*atanh(y/x) = 2*atanh((w - 1)/(w + 1)).*/
    x = w + ((int64_t)1 << 61);
    y = w - ((int64_t)1 << 61);
    for (i = 0; i < 4; i++) {
      mask = -(y < 0);
      z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask;
      u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    /*Repeat iteration 4.*/
    for (i--; i < 13; i++) {
      mask = -(y < 0);
      z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask;
      u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    /*Repeat iteration 13.*/
    for (i--; i < 32; i++) {
      mask = -(y < 0);
      z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask;
      u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    /*OD_ATANH_LOG2 has converged.*/
    for (; i < 40; i++) {
      mask = -(y < 0);
      z += ((OD_ATANH_LOG2[31] >> i) + mask) ^ mask;
      u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    /*Repeat iteration 40.*/
    for (i--; i < 62; i++) {
      mask = -(y < 0);
      z += ((OD_ATANH_LOG2[31] >> i) + mask) ^ mask;
      u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    z = (z + 8) >> 4;
  }
  return OD_Q57(ipart) + z;
}

/*Convenience function converts Q57 value to a clamped 32-bit Q24 value
  in: input in Q57 format.
  Return: same number in Q24 */
static int32_t od_q57_to_q24(int64_t in) {
  int64_t ret;
  ret = (in + ((int64_t)1 << 32)) >> 33;
  /*0x80000000 is automatically converted to unsigned on 32-bit systems.
    -0x7FFFFFFF-1 is needed to avoid "promoting" the whole expression to
    unsigned.*/
  return (int32_t)OD_CLAMPI(-0x7FFFFFFF - 1, ret, 0x7FFFFFFF);
}

/*Binary exponential of log_scale with 24-bit fractional precision and
   saturation.
  log_scale: A binary logarithm in Q57 format.
  Return: The binary exponential in Q24 format, saturated to 2**31-1 if
   log_scale was too large.*/
static int32_t od_bexp64_q24(int64_t log_scale) {
  if (log_scale < OD_Q57(8)) {
    int64_t ret;
    ret = od_bexp64(log_scale + OD_Q57(24));
    return ret < 0x7FFFFFFF ? (int32_t)ret : 0x7FFFFFFF;
  }
  return 0x7FFFFFFF;
}

/*Re-initialize Bessel filter coefficients with the specified delay.
  This does not alter the x/y state, but changes the reaction time of the
   filter.
  Altering the time constant of a reactive filter without alterning internal
   state is something that has to be done carefuly, but our design operates at
   high enough delays and with small enough time constant changes to make it
   safe.*/
static void od_iir_bessel2_reinit(od_iir_bessel2 *f, int delay) {
  int alpha;
  int64_t one48;
  int64_t warp;
  int64_t k1;
  int64_t k2;
  int64_t d;
  int64_t a;
  int64_t ik2;
  int64_t b1;
  int64_t b2;
  /*This borrows some code from an unreleased version of Postfish.
    See the recipe at http://unicorn.us.com/alex/2polefilters.html for details
     on deriving the filter coefficients.*/
  /*alpha is Q24*/
  alpha = (1 << 24) / delay;
  one48 = (int64_t)1 << 48;
  /*warp is 7.12*/
  warp = OD_MAXI(od_warp_alpha(alpha), 1);
  /*k1 is 9.12*/
  k1 = 3 * warp;
  /*k2 is 16.24.*/
  k2 = k1 * warp;
  /*d is 16.15.*/
  d = ((((1 << 12) + k1) << 12) + k2 + 256) >> 9;
  /*a is 0.32, since d is larger than both 1.0 and k2.*/
  a = (k2 << 23) / d;
  /*ik2 is 25.24.*/
  ik2 = one48 / k2;
  /*b1 is Q56; in practice, the integer ranges between -2 and 2.*/
  b1 = 2 * a * (ik2 - (1 << 24));
  /*b2 is Q56; in practice, the integer ranges between -2 and 2.*/
  b2 = (one48 << 8) - ((4 * a) << 24) - b1;
  /*All of the filter parameters are Q24.*/
  f->c[0] = (int32_t)((b1 + ((int64_t)1 << 31)) >> 32);
  f->c[1] = (int32_t)((b2 + ((int64_t)1 << 31)) >> 32);
  f->g = (int32_t)((a + 128) >> 8);
}

/*Initialize a 2nd order low-pass Bessel filter with the corresponding delay
   and initial value.
  value is Q24.*/
static void od_iir_bessel2_init(od_iir_bessel2 *f, int delay, int32_t value) {
  od_iir_bessel2_reinit(f, delay);
  f->y[1] = f->y[0] = f->x[1] = f->x[0] = value;
}

static int64_t od_iir_bessel2_update(od_iir_bessel2 *f, int32_t x) {
  int64_t c0;
  int64_t c1;
  int64_t g;
  int64_t x0;
  int64_t x1;
  int64_t y0;
  int64_t y1;
  int64_t ya;
  c0 = f->c[0];
  c1 = f->c[1];
  g = f->g;
  x0 = f->x[0];
  x1 = f->x[1];
  y0 = f->y[0];
  y1 = f->y[1];
  ya = ((x + x0 * 2 + x1) * g + y0 * c0 + y1 * c1 + (1 << 23)) >> 24;
  f->x[1] = (int32_t)x0;
  f->x[0] = x;
  f->y[1] = (int32_t)y0;
  f->y[0] = (int32_t)ya;
  return ya;
}

static void od_enc_rc_reset(od_rc_state *rc) {
  int64_t npixels;
  int64_t ibpp;
  rc->bits_per_frame = (int64_t)(rc->target_bitrate / rc->framerate);
  /*Insane framerates or frame sizes mean insane bitrates.
    Let's not get carried away.*/
  if (rc->bits_per_frame > 0x400000000000LL) {
    rc->bits_per_frame = (int64_t)0x400000000000LL;
  } else {
    if (rc->bits_per_frame < 32) {
      rc->bits_per_frame = 32;
    }
  }
  rc->reservoir_frame_delay = OD_MAXI(rc->reservoir_frame_delay, 12);
  rc->reservoir_max = rc->bits_per_frame * rc->reservoir_frame_delay;
  /*Start with a buffer fullness and fullness target of 50% */
  rc->reservoir_target = (rc->reservoir_max + 1) >> 1;
  rc->reservoir_fullness = rc->reservoir_target;
  /*Pick exponents and initial scales for quantizer selection.*/
  npixels = rc->frame_width * (int64_t)rc->frame_height;
  rc->log_npixels = od_blog64(npixels);
  ibpp = npixels / rc->bits_per_frame;
  /*All of these initial scale/exp values are from Theora, and have not yet
     been adapted to Daala, so they're certainly wrong.
    The B-frame values especially are simply copies of the P-frame values.*/
  if (ibpp < 1) {
    rc->exp[OD_I_FRAME] = 59;
    rc->log_scale[OD_I_FRAME] = od_blog64(1997) - OD_Q57(OD_COEFF_SHIFT);
  } else if (ibpp < 2) {
    rc->exp[OD_I_FRAME] = 55;
    rc->log_scale[OD_I_FRAME] = od_blog64(1604) - OD_Q57(OD_COEFF_SHIFT);
  } else {
    rc->exp[OD_I_FRAME] = 48;
    rc->log_scale[OD_I_FRAME] = od_blog64(834) - OD_Q57(OD_COEFF_SHIFT);
  }
  if (ibpp < 4) {
    rc->exp[OD_P_FRAME] = 100;
    rc->log_scale[OD_P_FRAME] = od_blog64(2249) - OD_Q57(OD_COEFF_SHIFT);
  } else if (ibpp < 8) {
    rc->exp[OD_P_FRAME] = 95;
    rc->log_scale[OD_P_FRAME] = od_blog64(1751) - OD_Q57(OD_COEFF_SHIFT);
  } else {
    rc->exp[OD_P_FRAME] = 73;
    rc->log_scale[OD_P_FRAME] = od_blog64(1260) - OD_Q57(OD_COEFF_SHIFT);
  }
  /*Golden P-frames both use the same log_scale and exp modeling
     values as regular P-frames and the same scale follower.
    For convenience in the rate calculation code, we maintain a copy of
    the scale and exp values in OD_GOLDEN_P_FRAME.*/
  rc->exp[OD_GOLDEN_P_FRAME] = rc->exp[OD_P_FRAME];
  rc->log_scale[OD_GOLDEN_P_FRAME] = rc->log_scale[OD_P_FRAME];
  rc->exp[OD_ALTREF_P_FRAME] = rc->exp[OD_P_FRAME];
  rc->log_scale[OD_ALTREF_P_FRAME] = rc->log_scale[OD_P_FRAME];
  /*We clamp the actual I and B frame delays to a minimum of 10 to work within
     the range of values where later incrementing the delay works as designed.
    10 is not an exact choice, but rather a good working trade-off.*/
  rc->inter_p_delay = 10;
  rc->inter_delay_target = rc->reservoir_frame_delay >> 1;
  memset(rc->frame_count, 0, sizeof(rc->frame_count));
  /*Drop-frame tracking is concerned with more than just the basic three frame
     types.
    It needs to track boosted and cut subtypes (of which there is only one
     right now, OD_GOLDEN_P_FRAME). */
  rc->prev_drop_count[OD_I_FRAME] = 0;
  rc->log_drop_scale[OD_I_FRAME] = OD_Q57(0);
  rc->prev_drop_count[OD_P_FRAME] = 0;
  rc->log_drop_scale[OD_P_FRAME] = OD_Q57(0);
  rc->prev_drop_count[OD_GOLDEN_P_FRAME] = 0;
  rc->log_drop_scale[OD_GOLDEN_P_FRAME] = OD_Q57(0);
  rc->prev_drop_count[OD_ALTREF_P_FRAME] = 0;
  rc->log_drop_scale[OD_ALTREF_P_FRAME] = OD_Q57(0);
  /*Set up second order followers, initialized according to corresponding
     time constants.*/
  od_iir_bessel2_init(&rc->scalefilter[OD_I_FRAME], 4,
                      od_q57_to_q24(rc->log_scale[OD_I_FRAME]));
  od_iir_bessel2_init(&rc->scalefilter[OD_P_FRAME], rc->inter_p_delay,
                      od_q57_to_q24(rc->log_scale[OD_P_FRAME]));
  od_iir_bessel2_init(&rc->vfrfilter[OD_I_FRAME], 4,
                      od_bexp64_q24(rc->log_drop_scale[OD_I_FRAME]));
  od_iir_bessel2_init(&rc->vfrfilter[OD_P_FRAME], 4,
                      od_bexp64_q24(rc->log_drop_scale[OD_P_FRAME]));
  od_iir_bessel2_init(&rc->vfrfilter[OD_GOLDEN_P_FRAME], 4,
                      od_bexp64_q24(rc->log_drop_scale[OD_GOLDEN_P_FRAME]));
  od_iir_bessel2_init(&rc->vfrfilter[OD_ALTREF_P_FRAME], 4,
                      od_bexp64_q24(rc->log_drop_scale[OD_ALTREF_P_FRAME]));
}

int od_enc_rc_resize(od_rc_state *rc) {
  /*If encoding has not yet begun, reset the buffer state.*/
  if (rc->cur_frame == 0) {
    od_enc_rc_reset(rc);
  } else {
    int idt;
    /*Otherwise, update the bounds on the buffer, but not the current
       fullness.*/
    rc->bits_per_frame = (int64_t)(rc->target_bitrate / rc->framerate);
    /*Insane framerates or frame sizes mean insane bitrates.
      Let's not get carried away.*/
    if (rc->bits_per_frame > 0x400000000000LL) {
      rc->bits_per_frame = (int64_t)0x400000000000LL;
    } else {
      if (rc->bits_per_frame < 32) {
        rc->bits_per_frame = 32;
      }
    }
    rc->reservoir_frame_delay = OD_MAXI(rc->reservoir_frame_delay, 12);
    rc->reservoir_max = rc->bits_per_frame * rc->reservoir_frame_delay;
    rc->reservoir_target =
        ((rc->reservoir_max + 1) >> 1) +
        ((rc->bits_per_frame + 2) >> 2) *
            OD_MINI(rc->keyframe_rate, rc->reservoir_frame_delay);
    /*Update the INTER-frame scale filter delay.
      We jump to it immediately if we've already seen enough frames; otherwise
       it is simply set as the new target.*/
    rc->inter_delay_target = idt = OD_MAXI(rc->reservoir_frame_delay >> 1, 10);
    if (idt < OD_MINI(rc->inter_p_delay, rc->frame_count[OD_P_FRAME])) {
      od_iir_bessel2_init(&rc->scalefilter[OD_P_FRAME], idt,
                          rc->scalefilter[OD_P_FRAME].y[0]);
      rc->inter_p_delay = idt;
    }
  }
  return 0;
}

int od_enc_rc_init(od_rc_state *rc, int64_t bitrate, int delay_ms) {
  if (rc->framerate <= 0) return 1;
  if (rc->target_bitrate > 0) {
    /*State has already been initialized; rather than reinitialize,
      adjust the buffering for the new target rate. */
    rc->target_bitrate = bitrate;
    return od_enc_rc_resize(rc);
  }
  rc->target_quantizer = 0;
  rc->target_bitrate = bitrate;
  rc->rate_bias = 0;
  if (bitrate > 0) {
    /* The buffer size is clamped between [12, 256], this interval is short
       enough to
       allow reaction, but long enough to allow looking into the next GOP
       (avoiding
       the case where the last frames before an I-frame get starved).
       The 12 frame minimum gives us some chance to distribute bit estimation
       errors in the worst case. The 256 frame maximum means we'll require 8-10
       seconds
       of pre-buffering at 24-30 fps, which is not unreasonable.*/
    rc->reservoir_frame_delay =
        (int)OD_MINI((delay_ms / 1000) * rc->framerate, 256);
    rc->drop_frames = 1;
    rc->cap_overflow = 1;
    rc->cap_underflow = 0;
    rc->twopass_state = 0;
    od_enc_rc_reset(rc);
  }
  return 0;
}

/*Scale the number of frames by the number of expected drops/duplicates.*/
static int od_rc_scale_drop(od_rc_state *rc, int frame_type, int nframes) {
  if (rc->prev_drop_count[frame_type] > 0 ||
      rc->log_drop_scale[frame_type] > OD_Q57(0)) {
    int64_t dup_scale;
    dup_scale = od_bexp64(((rc->log_drop_scale[frame_type] +
                            od_blog64(rc->prev_drop_count[frame_type] + 1)) >>
                           1) +
                          OD_Q57(8));
    if (dup_scale < nframes << 8) {
      int dup_scalei;
      dup_scalei = (int)dup_scale;
      if (dup_scalei > 0) {
        nframes = ((nframes << 8) + dup_scalei - 1) / dup_scalei;
      }
    } else {
      nframes = !!nframes;
    }
  }
  return nframes;
}

/*Closed form version of frame determination code.
  Used by rate control to predict frame types and subtypes into the future.
  No side effects, may be called any number of times.
  Note that it ignores end-of-file conditions; one-pass planning *should*
   ignore end-of-file. */
int od_frame_type(od_rc_state *rc, int64_t coding_frame_count, int *is_golden,
                  int *is_altref, int64_t *ip_count) {
  int frame_type;
  if (coding_frame_count == 0) {
    *is_golden = 1;
    *is_altref = 1;
    *ip_count = 0;
    frame_type = OD_I_FRAME;
  } else {
    int keyrate = rc->keyframe_rate;
    if (rc->closed_gop) {
      int ip_per_gop;
      int gop_n;
      int gop_i;
      ip_per_gop = (keyrate - 1) / 2;
      gop_n = coding_frame_count / keyrate;
      gop_i = coding_frame_count - gop_n * keyrate;
      *ip_count = gop_n * ip_per_gop + (gop_i > 0) + (gop_i - 1);
      frame_type = gop_i == 0 ? OD_I_FRAME : OD_P_FRAME;
    } else {
      int ip_per_gop;
      int gop_n;
      int gop_i;
      ip_per_gop = (keyrate);
      gop_n = (coding_frame_count - 1) / keyrate;
      gop_i = coding_frame_count - gop_n * keyrate - 1;
      *ip_count = (coding_frame_count > 0) + gop_n * ip_per_gop + (gop_i);
      frame_type = gop_i / 1 < ip_per_gop - 1 ? OD_P_FRAME : OD_I_FRAME;
    }
  }
  *is_golden =
      (*ip_count % rc->goldenframe_rate) == 0 || frame_type == OD_I_FRAME;
  *is_altref = (*ip_count % rc->altref_rate) == 0 || frame_type == OD_I_FRAME;
  return frame_type;
}

/*Count frames types forward from the current frame up to but not including
   the last I-frame in reservoir_frame_delay.
  If reservoir_frame_delay contains no I-frames (or the current frame is the
   only I-frame), count all reservoir_frame_delay frames.
  Returns the number of frames counted.
  Right now, this implementation is simple, brute-force, and expensive.
  It is also easy to understand and debug.
  TODO: replace with a virtual FIFO that keeps running totals as
   repeating the counting over-and-over will have a performance impact on
   whole-file 2pass usage.*/
static int frame_type_count(od_rc_state *rc, int nframes[OD_FRAME_NSUBTYPES]) {
  int i;
  int j;
  int acc[OD_FRAME_NSUBTYPES];
  int count;
  int reservoir_frames;
  int reservoir_frame_delay;
  memset(nframes, 0, OD_FRAME_NSUBTYPES * sizeof(*nframes));
  memset(acc, 0, sizeof(acc));
  count = 0;
  reservoir_frames = 0;
#if 1
  /*Go ahead and count past end-of-stream.
    We won't nail the exact bitrate on short files that end with a partial
     GOP, but we also won't [potentially] destroy the quality of the last few
     frames in that same case when we suddenly find out the stream is ending
     before the original planning horizon.*/
  reservoir_frame_delay = rc->reservoir_frame_delay;
#else
  /*Don't count past the end of the stream (once we know where end-of-stream
     is).*/
  reservoir_frame_delay =
      rc->end_of_input ? rc->input_size + 1 : rc->reservoir_frame_delay;
#endif
  for (i = 0; i < reservoir_frame_delay; i++) {
    int frame_type;
    int is_golden;
    int is_altref;
    int64_t dummy;
    frame_type =
        od_frame_type(rc, rc->cur_frame + i, &is_golden, &is_altref, &dummy);
    switch (frame_type) {
      case OD_I_FRAME: {
        for (j = 0; j < OD_FRAME_NSUBTYPES; j++) nframes[j] += acc[j];
        reservoir_frames += count;
        memset(acc, 0, sizeof(acc));
        acc[OD_I_FRAME] = 1;
        count = 1;
        break;
      }
      case OD_P_FRAME: {
        if (is_golden) {
          ++acc[OD_GOLDEN_P_FRAME];
          ++count;
        } else if (is_altref) {
          ++acc[OD_ALTREF_P_FRAME];
          ++count;
        } else {
          ++acc[OD_P_FRAME];
          ++count;
        }
        break;
      }
    }
  }
  /*If there were no I-frames at all, or only the first frame was an I-frame,
     the accumulators never flushed and still contain the counts for the
     entire buffer.
    In both these cases, we return these counts.
    Otherwise, we discard what remains in the accumulators as they contain
     the counts from and past the last I-frame.*/
  if (reservoir_frames == 0) {
    for (i = 0; i < OD_FRAME_NSUBTYPES; i++) nframes[i] = acc[i];
    reservoir_frames += count;
  }
  return reservoir_frames;
}

static int convert_to_ac_quant(int q, int bit_depth) {
  return lrint(av1_convert_qindex_to_q(q, bit_depth));
}

int od_enc_rc_select_quantizers_and_lambdas(od_rc_state *rc,
                                            int is_golden_frame,
                                            int is_altref_frame, int frame_type,
                                            int *bottom_idx, int *top_idx) {
  int frame_subtype;
  int64_t log_cur_scale;
  int lossy_quantizer_min;
  int lossy_quantizer_max;
  double mqp_i = OD_MQP_I;
  double mqp_p = OD_MQP_P;
  double mqp_gp = OD_MQP_GP;
  double mqp_ap = OD_MQP_AP;
  int reservoir_frames;
  int nframes[OD_FRAME_NSUBTYPES];
  int32_t mqp_Q12[OD_FRAME_NSUBTYPES];
  int64_t dqp_Q45[OD_FRAME_NSUBTYPES];
  /*Verify the closed-form frame type determination code matches what the
     input queue set.*/
  /*One pseudo-non-closed-form caveat:
    Once we've seen end-of-input, the batched frame determination code
     suppresses the last open-GOP's I-frame (since it would only be
     useful for the next GOP, which doesn't exist).
     Thus, don't check one the input queue is drained.*/
  if (!rc->end_of_input) {
    int closed_form_type;
    int closed_form_golden;
    int closed_form_altref;
    int64_t closed_form_cur_frame;
    closed_form_type =
        od_frame_type(rc, rc->cur_frame, &closed_form_golden,
                      &closed_form_altref, &closed_form_cur_frame);
    OD_UNUSED(closed_form_type);
    OD_UNUSED(is_altref_frame);
    assert(closed_form_type == frame_type);
    assert(closed_form_cur_frame == rc->cur_frame);
    assert(closed_form_altref == is_altref_frame);
    assert(closed_form_golden == is_golden_frame);
  }

  log_cur_scale = (int64_t)rc->scalefilter[frame_type].y[0] << 33;

  /*Count the various types and classes of frames.*/
  reservoir_frames = frame_type_count(rc, nframes);
  nframes[OD_I_FRAME] = od_rc_scale_drop(rc, OD_I_FRAME, nframes[OD_I_FRAME]);
  nframes[OD_P_FRAME] = od_rc_scale_drop(rc, OD_P_FRAME, nframes[OD_P_FRAME]);
  nframes[OD_GOLDEN_P_FRAME] =
      od_rc_scale_drop(rc, OD_GOLDEN_P_FRAME, nframes[OD_GOLDEN_P_FRAME]);
  nframes[OD_ALTREF_P_FRAME] =
      od_rc_scale_drop(rc, OD_ALTREF_P_FRAME, nframes[OD_ALTREF_P_FRAME]);

  switch (rc->twopass_state) {
    default: break;
    case 1: {
      /*Pass 1 mode: use a fixed qi value.*/
      return rc->firstpass_quant;
    } break;
    case 2: {
      int i;
      int64_t scale_sum[OD_FRAME_NSUBTYPES];
      int qti;
      /*Pass 2 mode: we know exactly how much of each frame type there is in
         the current buffer window, and have estimates for the scales.*/
      for (i = 0; i < OD_FRAME_NSUBTYPES; i++) {
        nframes[i] = rc->nframes[i];
        nframes[i] = rc->nframes[i];
        scale_sum[i] = rc->scale_sum[i];
      }
      /*If we're not using the same frame type as in pass 1 (because someone
         changed the keyframe interval), remove that scale estimate.
        We'll add in a replacement for the correct frame type below.*/
      qti = rc->cur_metrics.frame_type;
      if (qti != frame_type) {
        nframes[qti]--;
        scale_sum[qti] -= od_bexp64_q24(rc->cur_metrics.log_scale);
      }
      /*Compute log_scale estimates for each frame type from the pass-1 scales
         we measured in the current window.*/
      for (qti = 0; qti < OD_FRAME_NSUBTYPES; qti++) {
        rc->log_scale[qti] = nframes[qti] > 0
                                 ? od_blog64(scale_sum[qti]) -
                                       od_blog64(nframes[qti]) - OD_Q57(24)
                                 : -rc->log_npixels;
      }
      /*If we're not using the same frame type as in pass 1, add a scale
         estimate for the corresponding frame using the current low-pass
         filter value.
        This is mostly to ensure we have a valid estimate even when pass 1 had
         no frames of this type in the buffer window.
        TODO: We could also plan ahead and figure out how many keyframes we'll
         be forced to add in the current buffer window.*/
      qti = rc->cur_metrics.frame_type;
      if (qti != frame_type) {
        int64_t scale;
        scale = rc->log_scale[frame_type] < OD_Q57(23)
                    ? od_bexp64(rc->log_scale[frame_type] + OD_Q57(24))
                    : 0x7FFFFFFFFFFFLL;
        scale *= nframes[frame_type];
        nframes[frame_type]++;
        scale += od_bexp64_q24(log_cur_scale >> 33);
        rc->log_scale[frame_type] =
            od_blog64(scale) - od_blog64(nframes[qti]) - OD_Q57(24);
      } else {
        log_cur_scale = (int64_t)rc->cur_metrics.log_scale << 33;
      }
    } break;
  }

  /*Quantizer selection sticks to the codable, lossy portion of the quantizer
    range.*/
  lossy_quantizer_min = convert_to_ac_quant(rc->minq, rc->bit_depth);
  lossy_quantizer_max = convert_to_ac_quant(rc->maxq, rc->bit_depth);
  frame_subtype = frame_type;
  /*Stash quantizer modulation by frame type.*/
  mqp_Q12[OD_I_FRAME] = OD_F_Q12(mqp_i);
  mqp_Q12[OD_P_FRAME] = OD_F_Q12(mqp_p);
  mqp_Q12[OD_GOLDEN_P_FRAME] = OD_F_Q12(mqp_gp);
  mqp_Q12[OD_ALTREF_P_FRAME] = OD_F_Q12(mqp_ap);
  dqp_Q45[OD_I_FRAME] = OD_F_Q45(OD_DQP_I);
  dqp_Q45[OD_P_FRAME] = OD_F_Q45(OD_DQP_P);
  dqp_Q45[OD_GOLDEN_P_FRAME] = OD_F_Q45(OD_DQP_GP);
  dqp_Q45[OD_ALTREF_P_FRAME] = OD_F_Q45(OD_DQP_AP);
  /*Is rate control active?*/
  if (rc->target_bitrate <= 0) {
    /*Rate control is not active; derive quantizer directly from
      quality parameter and frame type. */
    /*Can't use the OD_LOSSLESS macro, as it uses state.quantizer to intuit,
      and we've not set it yet.*/
    if (rc->quality == 0) {
      /*Lossless coding requested.*/
      rc->base_quantizer = 0;
      rc->target_quantizer = 0;
    } else {
      int64_t log_quantizer;

      /* Adjust the modulation constants using the last frame's quantizer. */
      double mqp_delta = (255 - rc->target_quantizer) / 2000.0f;
      mqp_i -= mqp_delta;
      mqp_p += mqp_delta;
      mqp_gp -= mqp_delta;
      mqp_Q12[OD_I_FRAME] = OD_F_Q12(mqp_i);
      mqp_Q12[OD_P_FRAME] = OD_F_Q12(mqp_p);
      mqp_Q12[OD_GOLDEN_P_FRAME] = OD_F_Q12(mqp_gp);
      mqp_Q12[OD_ALTREF_P_FRAME] = OD_F_Q12(mqp_ap);

      if (rc->quality == -1) {
        /*A quality of -1 means quality was unset; use a default.*/
        rc->base_quantizer = convert_to_ac_quant(10, rc->bit_depth);
      } else {
        rc->base_quantizer = convert_to_ac_quant(rc->quality, rc->bit_depth);
      }

      if (rc->periodic_boosts && !is_golden_frame) {
        int pattern_rate = (rc->goldenframe_rate >> 1);
        int dist_to_golden = rc->cur_frame % pattern_rate;
        int dist_away_golden = pattern_rate - dist_to_golden;
        int boost = dist_to_golden;
        if (dist_away_golden > dist_to_golden) boost = dist_away_golden;
        boost -= pattern_rate;
        boost *= (rc->base_quantizer) / OD_PERIODIC_BOOST_DIV;
        rc->base_quantizer = rc->base_quantizer + boost;
      }

      /*As originally written, qp modulation is applied to the coded quantizer.
        Because we now have and use a more precise target quantizer for various
        calculation, that needs to be modulated as well.
        Calculate what is, effectively, a fractional coded quantizer. */
      /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/
      log_quantizer = od_blog64(rc->base_quantizer) - OD_Q57(OD_COEFF_SHIFT);
      /*log_quantizer to Q21.*/
      log_quantizer >>= 36;
      /*scale log quantizer, result is Q33.*/
      log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12;
      /*Add Q33 offset to Q33 log_quantizer.*/
      log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12;
      /*Modulate quantizer according to frame type; result is Q45.*/
      log_quantizer *= mqp_Q12[frame_subtype];
      /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/
      log_quantizer += dqp_Q45[frame_subtype];
      /*Back to log2 quantizer in Q57.*/
      log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) *
                          OD_LOG_QUANTIZER_EXP_Q12 +
                      OD_Q57(OD_COEFF_SHIFT);
      /*Convert Q57 log2 quantizer to unclamped linear target quantizer value.*/
      rc->target_quantizer = od_bexp64(log_quantizer);
    }
  } else {
    int clamp;
    int64_t rate_bias;
    int64_t rate_total;
    int base_quantizer;
    int64_t log_quantizer;
    int qlo;
    int qhi;
    int i;
    /*We clamp the allowed amount of qi change (after initialization).*/
    clamp = rc->cur_frame > 0;
    /*Figure out how to re-distribute bits so that we hit our fullness target
       before the last keyframe in our current buffer window (after the current
       frame), or the end of the buffer window, whichever comes first.*/
    /*Single pass only right now.*/
    /*If we've been missing our target, add a penalty term.*/
    rate_bias = (rc->rate_bias / (rc->cur_frame + 1000)) * reservoir_frames;
    /*rate_total is the total bits available over the next
       reservoir_frames frames.*/
    rate_total = rc->reservoir_fullness - rc->reservoir_target + rate_bias +
                 reservoir_frames * rc->bits_per_frame;
    /*Find a target quantizer that meets our rate target for the specific mix
       of frame types we'll have over the next frame_delay frames.
      We model the rate<->quantizer relationship as:
       rate = scale*(quantizer**-exp)
      In this case, we have our desired rate, an exponent selected in setup,
       and a scale that's been measured over our frame history, so we're
       solving for the quantizer.
      Exponentiation with arbitrary exponents is expensive, so we work in
       the binary log domain (binary exp and log aren't too bad):
       rate = e2(log2_scale - log2_quantizer * exp)
      There's no easy closed form solution, so we bisection search for it.*/
    /*We do not currently allow rate control to select lossless encoding.*/
    qlo = 1;
    /*If there's a quality specified, it's used to select the
       coarsest base quantizer we can select.
      Otherwise we can use up to and including the coarsest codable
       quantizer.*/
    if (rc->quality > 0)
      qhi = convert_to_ac_quant(rc->quality, rc->bit_depth);
    else
      qhi = lossy_quantizer_max;
    base_quantizer = (qlo + qhi) >> 1;
    while (qlo < qhi) {
      volatile int64_t log_base_quantizer;
      int64_t diff;
      int64_t bits;
      /*Count bits contributed by each frame type using the model.*/
      bits = 0;
      log_base_quantizer = od_blog64(base_quantizer);
      for (i = 0; i < OD_FRAME_NSUBTYPES; i++) {
        /*Modulate base quantizer by frame type.*/
        /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/
        log_quantizer = log_base_quantizer - OD_Q57(OD_COEFF_SHIFT);
        /*log_quantizer to Q21.*/
        log_quantizer >>= 36;
        /*scale log quantizer, result is Q33.*/
        log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12;
        /*Add Q33 offset to Q33 log_quantizer.*/
        log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12;
        /*Modulate quantizer according to frame type; result is Q45.*/
        log_quantizer *= mqp_Q12[i];
        /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/
        log_quantizer += dqp_Q45[i];
        /*Back to log2 quantizer in Q57.*/
        log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) *
                            OD_LOG_QUANTIZER_EXP_Q12 +
                        OD_Q57(OD_COEFF_SHIFT);
        /*Clamp modulated quantizer values.*/
        log_quantizer = OD_CLAMPI(od_blog64(lossy_quantizer_min), log_quantizer,
                                  od_blog64(lossy_quantizer_max));
        /* All the fields here are Q57 except for the exponent which is Q6.*/
        bits += nframes[i] * od_bexp64(rc->log_scale[i] + rc->log_npixels -
                                       (log_quantizer >> 6) * rc->exp[i]);
      }
      diff = bits - rate_total;
      if (diff > 0) {
        qlo = base_quantizer + 1;
      } else if (diff < 0) {
        qhi = base_quantizer - 1;
      } else {
        break;
      }
      base_quantizer = (qlo + qhi) >> 1;
    }
    /*If this was not one of the initial frames, limit the change in base
       quantizer to within [0.8*Q,1.2*Q], where Q is the previous frame's
       base quantizer.*/
    if (clamp) {
      base_quantizer = OD_CLAMPI((rc->base_quantizer * 0x0CCCD + 0x8000) >> 16,
                                 base_quantizer,
                                 (rc->base_quantizer * 0x13333 + 0x8000) >> 16);
    }
    /*Modulate chosen base quantizer to produce target quantizer.*/
    log_quantizer = od_blog64(base_quantizer);
    /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/
    log_quantizer -= OD_Q57(OD_COEFF_SHIFT);
    /*log_quantizer to Q21.*/
    log_quantizer >>= 36;
    /*scale log quantizer, result is Q33.*/
    log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12;
    /*Add Q33 offset to Q33 log_quantizer.*/
    log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12;
    /*Modulate quantizer according to frame type; result is Q45.*/
    log_quantizer *= mqp_Q12[frame_subtype];
    /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/
    log_quantizer += dqp_Q45[frame_subtype];
    /*Back to log2 quantizer in Q57.*/
    log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) *
                        OD_LOG_QUANTIZER_EXP_Q12 +
                    OD_Q57(OD_COEFF_SHIFT);
    /*Clamp modulated quantizer values.*/
    log_quantizer = OD_CLAMPI(od_blog64(lossy_quantizer_min), log_quantizer,
                              od_blog64(lossy_quantizer_max));
    /*The above allocation looks only at the total rate we'll accumulate in
       the next reservoir_frame_delay frames.
      However we could overflow the bit reservoir on the very next frame, so
       check for that here if we're not using a soft target.*/
    if (rc->cap_overflow) {
      int64_t margin;
      int64_t soft_limit;
      int64_t log_soft_limit;
      int64_t log_scale_pixels;
      int64_t exp;
      int64_t log_qexp;
      /*Allow 3% of the buffer for prediction error.
        This should be plenty, and we don't mind if we go a bit over; we only
         want to keep these bits from being completely wasted.*/
      margin = (rc->reservoir_max + 31) >> 5;
      /*We want to use at least this many bits next frame.*/
      soft_limit = rc->reservoir_fullness + rc->bits_per_frame -
                   (rc->reservoir_max - margin);
      log_soft_limit = od_blog64(soft_limit);
      /*If we're predicting we won't use that many bits...*/
      log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels;
      exp = rc->exp[frame_subtype];
      log_qexp = (log_quantizer >> 6) * exp;
      if (log_scale_pixels - log_qexp < log_soft_limit) {
        /*Scale the adjustment based on how far into the margin we are.*/
        log_qexp += ((log_scale_pixels - log_soft_limit - log_qexp) >> 32) *
                    (OD_MINI(margin, soft_limit) << 32) / margin;
        log_quantizer = (((log_qexp + (exp >> 1)) / exp) << 6);
      }
    }
    /*We just checked we don't overflow the reservoir next frame, now check
       we don't underflow and bust the budget (when not using a soft target).
      Disabled when a quality bound is set; if we saturate quantizer to the
       maximum possible size when we have a limiting max quality, the
       resulting lambda can cause strange behavior.*/
    if (rc->quality == -1) {
      int64_t exp;
      int64_t log_qexp;
      int64_t log_scale_pixels;
      int64_t log_hard_limit;
      /*Compute the maximum number of bits we can use in the next frame.
        Allow 50% of the rate for a single frame for prediction error.
        This may not be enough for keyframes or sudden changes in
         complexity.*/
      log_hard_limit =
          od_blog64(rc->reservoir_fullness + (rc->bits_per_frame >> 1));
      /*If we're predicting we'll use more than this...*/
      log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels;
      exp = rc->exp[frame_subtype];
      log_qexp = (log_quantizer >> 6) * exp;
      if (log_scale_pixels - log_qexp > log_hard_limit) {
        /*Force the target to hit our limit exactly.*/
        log_qexp = log_scale_pixels - log_hard_limit;
        log_quantizer = (log_qexp + (exp >> 1)) / exp << 6;
        /*If that target is unreasonable, oh well; we'll have to drop.*/
        log_quantizer = OD_MAXI(log_quantizer, od_blog64(lossy_quantizer_max));
      }
    }
    /*Compute a final estimate of the number of bits we plan to use, update
       the running rate bias measurement.*/
    {
      int64_t log_qexp;
      int64_t log_scale_pixels;
      log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels;
      log_qexp = (log_quantizer >> 6) * rc->exp[frame_subtype];
      rc->rate_bias += od_bexp64(log_scale_pixels - log_qexp);
    }
    rc->target_quantizer = od_bexp64(log_quantizer);
    /*The various cappings and adjustments may have altered the log_quantizer
       target significantly.
      We can either update the base quantizer to be consistent with the
       target or let it track separately.
      Theora behavior effectively keeps them consistent, as it regenerates
       the effective base quantizer from the target each frame rather than
       saving both.
      For Daala, it's easier to allow them to track separately.
      For now, allow them to track separately and see how it behaves.*/
    rc->base_quantizer = base_quantizer;
  }
  *bottom_idx = lossy_quantizer_min;
  *top_idx = lossy_quantizer_max;
  rc->target_quantizer = av1_qindex_from_ac(
      OD_CLAMPI(lossy_quantizer_min, rc->target_quantizer, lossy_quantizer_max),
      rc->bit_depth);
  return rc->target_quantizer;
}

int od_enc_rc_update_state(od_rc_state *rc, int64_t bits, int is_golden_frame,
                           int is_altref_frame, int frame_type, int droppable) {
  int dropped;
  dropped = 0;
  /*Update rate control only if rate control is active.*/
  if (rc->target_bitrate > 0) {
    int64_t log_scale;
    int frame_subtype;
    frame_subtype = frame_type;
    /*Track non-golden and golden P frame drops separately.*/
    if (is_golden_frame && frame_type == OD_P_FRAME)
      frame_subtype = OD_GOLDEN_P_FRAME;
    else if (is_altref_frame && frame_type == OD_P_FRAME)
      frame_subtype = OD_ALTREF_P_FRAME;
    if (bits <= 0) {
      /*We didn't code any blocks in this frame.*/
      log_scale = OD_Q57(-64);
      bits = 0;
      ++rc->prev_drop_count[frame_subtype];
    } else {
      int64_t log_bits;
      int64_t log_qexp;
      /*Compute the estimated scale factor for this frame type.*/
      log_bits = od_blog64(bits);
      log_qexp = od_blog64(rc->target_quantizer);
      log_qexp = (log_qexp >> 6) * (rc->exp[frame_type]);
      log_scale = OD_MINI(log_bits - rc->log_npixels + log_qexp, OD_Q57(16));
    }

    switch (rc->twopass_state) {
      case 1: {
        int golden, altref;
        int64_t ipc;
        rc->cur_metrics.frame_type =
            od_frame_type(rc, rc->cur_frame, &golden, &altref, &ipc);
        /*Pass 1 mode: save the metrics for this frame.*/
        rc->cur_metrics.log_scale = od_q57_to_q24(log_scale);
      } break;
      case 2: {
        /*Pass 2 mode:*/
        int m_frame_type = rc->cur_metrics.frame_type;
        rc->nframes[m_frame_type]--;
        rc->scale_sum[m_frame_type] -= od_bexp64_q24(rc->cur_metrics.log_scale);
      } break;
    }

    if (bits > 0) {
      od_iir_bessel2 *f;
      /*If this is the first example of the given frame type we've
         seen, we immediately replace the default scale factor guess
         with the estimate we just computed using the first frame.*/
      if (rc->frame_count[frame_type] == 0) {
        f = rc->scalefilter + frame_type;
        f->y[1] = f->y[0] = f->x[1] = f->x[0] = od_q57_to_q24(log_scale);
        rc->log_scale[frame_type] = log_scale;
      } else {
        /*Lengthen the time constant for the inter filters as we collect more
           frame statistics, until we reach our target.*/
        if (frame_type != OD_I_FRAME &&
            rc->inter_p_delay < rc->inter_delay_target &&
            rc->frame_count[frame_type] >= rc->inter_p_delay) {
          od_iir_bessel2_reinit(&rc->scalefilter[frame_type],
                                ++rc->inter_p_delay);
        }
        /*Update the low-pass scale filter for this frame type
           regardless of whether or not we drop this frame.*/
        rc->log_scale[frame_type] =
            od_iir_bessel2_update(rc->scalefilter + frame_type,
                                  od_q57_to_q24(log_scale))
            << 33;
      }
      /*If this frame busts our budget, it must be dropped.*/
      if (droppable && rc->reservoir_fullness + rc->bits_per_frame < bits) {
        ++rc->prev_drop_count[frame_subtype];
        bits = 0;
        dropped = 1;
      } else {
        uint32_t drop_count;
        /*Update a low-pass filter to estimate the "real" frame rate taking
           drops into account.
          This is only done if the frame is coded, as it needs the final
           count of dropped frames.*/
        drop_count = rc->prev_drop_count[frame_subtype] + 1;
        if (drop_count > 0x7F) {
          drop_count = 0x7FFFFFFF;
        } else {
          drop_count <<= 24;
        }
        rc->log_drop_scale[frame_subtype] =
            od_blog64(od_iir_bessel2_update(rc->vfrfilter + frame_subtype,
                                            drop_count)) -
            OD_Q57(24);
        /*Zero the drop count for this frame.
          It will be increased if we drop frames.*/
        rc->prev_drop_count[frame_subtype] = 0;
      }
      /*Increment the frame count for filter adaptation purposes.*/
      if (!rc->twopass_state) rc->frame_count[frame_type]++;
    }
    rc->reservoir_fullness += rc->bits_per_frame - bits;
    /*If we're too quick filling the buffer and overflow is capped,
      that rate is lost forever.*/
    if (rc->cap_overflow && rc->reservoir_fullness > rc->reservoir_max) {
      rc->reservoir_fullness = rc->reservoir_max;
    }
    /*If we're too quick draining the buffer and underflow is capped,
      don't try to make up that rate later.*/
    if (rc->cap_underflow && rc->reservoir_fullness < 0) {
      rc->reservoir_fullness = 0;
    }
    /*Adjust the bias for the real bits we've used.*/
    rc->rate_bias -= bits;
  }
  return dropped;
}

static INLINE void od_rc_buffer_val(od_rc_state *rc, int64_t val, int bytes) {
  while (bytes-- > 0) {
    rc->twopass_buffer[rc->twopass_buffer_bytes++] = (uint8_t)(val & 0xFF);
    val >>= 8;
  }
}

static INLINE int64_t od_rc_unbuffer_val(od_rc_state *rc, int bytes) {
  int64_t ret = 0;
  int shift = 0;
  while (bytes-- > 0) {
    ret |= ((int64_t)rc->twopass_buffer[rc->twopass_buffer_bytes++]) << shift;
    shift += 8;
  }
  return ret;
}

int od_enc_rc_2pass_out(od_rc_state *rc, struct aom_codec_pkt_list *pkt_list,
                        int summary) {
  int i;
  struct aom_codec_cx_pkt pkt;
  rc->twopass_buffer = rc->firstpass_buffer;
  rc->twopass_buffer_bytes = 0;
  if (!rc->twopass_state) {
    rc->twopass_state = 1;
    for (i = 0; i < OD_FRAME_NSUBTYPES; i++) {
      rc->frame_count[i] = 0;
      rc->exp[i] = 0;
      rc->scale_sum[i] = 0;
    }
  }
  if (summary) {
    od_rc_buffer_val(rc, OD_RC_2PASS_MAGIC, 4);
    od_rc_buffer_val(rc, OD_RC_2PASS_VERSION, 1);
    for (i = 0; i < OD_FRAME_NSUBTYPES; i++) {
      od_rc_buffer_val(rc, rc->frame_count[i], 4);
      od_rc_buffer_val(rc, rc->exp[i], 4);
      od_rc_buffer_val(rc, rc->scale_sum[i], 8);
    }
  } else {
    int frame_type = rc->cur_metrics.frame_type;
    rc->scale_sum[frame_type] += od_bexp64_q24(rc->cur_metrics.log_scale);
    rc->frame_count[frame_type]++;
    od_rc_buffer_val(rc, rc->cur_metrics.frame_type, 1);
    od_rc_buffer_val(rc, rc->cur_metrics.log_scale, 4);
  }
  pkt.data.twopass_stats.buf = rc->firstpass_buffer;
  pkt.data.twopass_stats.sz = rc->twopass_buffer_bytes;
  pkt.kind = AOM_CODEC_STATS_PKT;
  aom_codec_pkt_list_add(pkt_list, &pkt);
  return 0;
}

int od_enc_rc_2pass_in(od_rc_state *rc) {
  /* Enable pass 2 mode if this is the first call. */
  if (rc->twopass_state == 0) {
    uint32_t i, total_frames = 0;

    if (!rc->twopass_allframes_buf ||
        rc->twopass_allframes_buf_size < OD_RC_2PASS_MIN)
      return -1;

    /* Find summary packet at the end */
    rc->twopass_buffer = rc->twopass_allframes_buf;
    rc->twopass_buffer +=
        rc->twopass_allframes_buf_size - OD_RC_2PASS_SUMMARY_SZ;
    rc->twopass_buffer_bytes = 0;

    if (od_rc_unbuffer_val(rc, 4) != OD_RC_2PASS_MAGIC) return -1;
    if (od_rc_unbuffer_val(rc, 1) != OD_RC_2PASS_VERSION) return -1;

    for (i = 0; i < OD_FRAME_NSUBTYPES; i++) {
      rc->frame_count[i] = od_rc_unbuffer_val(rc, 4);
      rc->exp[i] = od_rc_unbuffer_val(rc, 4);
      rc->scale_sum[i] = od_rc_unbuffer_val(rc, 8);
      rc->nframes[i] = rc->frame_count[i];
      total_frames += rc->frame_count[i];
    }

    if (total_frames < 1) return -1;

    if (total_frames * OD_RC_2PASS_PACKET_SZ > rc->twopass_allframes_buf_size)
      return -1;

    od_enc_rc_reset(rc);

    /* Everything looks ok */
    rc->twopass_buffer = rc->twopass_allframes_buf;
    rc->twopass_state = 2;
    rc->twopass_buffer_bytes = 0;
  }

  rc->cur_metrics.frame_type = od_rc_unbuffer_val(rc, 1);
  rc->cur_metrics.log_scale = od_rc_unbuffer_val(rc, 4);

  return 0;
}