1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
|
/*
* Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
/* clang-format off */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "aom_dsp/entcode.h"
#include "aom_dsp/entenc.h"
#include "av1/common/blockd.h"
#include "av1/common/odintrin.h"
#include "av1/common/partition.h"
#include "av1/common/pvq_state.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/pvq_encoder.h"
#include "aom_ports/system_state.h"
/*Shift to ensure that the upper bound (i.e. for the max blocksize) of the
dot-product of the 1st band of chroma with the luma ref doesn't overflow.*/
#define OD_CFL_FLIP_SHIFT (OD_LIMIT_BSIZE_MAX + 0)
void aom_write_symbol_pvq(aom_writer *w, int symb, aom_cdf_prob *cdf,
int nsymbs) {
if (cdf[0] == 0)
aom_cdf_init_q15_1D(cdf, nsymbs, CDF_SIZE(nsymbs));
aom_write_symbol(w, symb, cdf, nsymbs);
}
static void aom_encode_pvq_codeword(aom_writer *w, od_pvq_codeword_ctx *adapt,
const od_coeff *in, int n, int k) {
int i;
aom_encode_band_pvq_splits(w, adapt, in, n, k, 0);
for (i = 0; i < n; i++) if (in[i]) aom_write_bit(w, in[i] < 0);
}
/* Computes 1/sqrt(i) using a table for small values. */
static double od_rsqrt_table(int i) {
static double table[16] = {
1.000000, 0.707107, 0.577350, 0.500000,
0.447214, 0.408248, 0.377964, 0.353553,
0.333333, 0.316228, 0.301511, 0.288675,
0.277350, 0.267261, 0.258199, 0.250000};
if (i <= 16) return table[i-1];
else return 1./sqrt(i);
}
/*Computes 1/sqrt(start+2*i+1) using a lookup table containing the results
where 0 <= i < table_size.*/
static double od_custom_rsqrt_dynamic_table(const double* table,
const int table_size, const double start, const int i) {
if (i < table_size) return table[i];
else return od_rsqrt_table((int)(start + 2*i + 1));
}
/*Fills tables used in od_custom_rsqrt_dynamic_table for a given start.*/
static void od_fill_dynamic_rsqrt_table(double *table, const int table_size,
const double start) {
int i;
for (i = 0; i < table_size; i++)
table[i] = od_rsqrt_table((int)(start + 2*i + 1));
}
/** Find the codepoint on the given PSphere closest to the desired
* vector. Double-precision PVQ search just to make sure our tests
* aren't limited by numerical accuracy.
*
* @param [in] xcoeff input vector to quantize (x in the math doc)
* @param [in] n number of dimensions
* @param [in] k number of pulses
* @param [out] ypulse optimal codevector found (y in the math doc)
* @param [out] g2 multiplier for the distortion (typically squared
* gain units)
* @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
* @param [in] prev_k number of pulses already in ypulse that we should
* reuse for the search (or 0 for a new search)
* @return cosine distance between x and y (between 0 and 1)
*/
double pvq_search_rdo_double_c(const od_val16 *xcoeff, int n, int k,
od_coeff *ypulse, double g2, double pvq_norm_lambda, int prev_k) {
int i, j;
double xy;
double yy;
/* TODO - This blows our 8kB stack space budget and should be fixed when
converting PVQ to fixed point. */
double x[MAXN];
double xx;
double lambda;
double norm_1;
int rdo_pulses;
double delta_rate;
xx = xy = yy = 0;
for (j = 0; j < n; j++) {
x[j] = fabs((float)xcoeff[j]);
xx += x[j]*x[j];
}
norm_1 = 1./sqrt(1e-30 + xx);
lambda = pvq_norm_lambda/(1e-30 + g2);
i = 0;
if (prev_k > 0 && prev_k <= k) {
/* We reuse pulses from a previous search so we don't have to search them
again. */
for (j = 0; j < n; j++) {
ypulse[j] = abs(ypulse[j]);
xy += x[j]*ypulse[j];
yy += ypulse[j]*ypulse[j];
i += ypulse[j];
}
}
else if (k > 2) {
double l1_norm;
double l1_inv;
l1_norm = 0;
for (j = 0; j < n; j++) l1_norm += x[j];
l1_inv = 1./OD_MAXF(l1_norm, 1e-100);
for (j = 0; j < n; j++) {
double tmp;
tmp = k*x[j]*l1_inv;
ypulse[j] = OD_MAXI(0, (int)floor(tmp));
xy += x[j]*ypulse[j];
yy += ypulse[j]*ypulse[j];
i += ypulse[j];
}
}
else OD_CLEAR(ypulse, n);
/* Only use RDO on the last few pulses. This not only saves CPU, but using
RDO on all pulses actually makes the results worse for reasons I don't
fully understand. */
rdo_pulses = 1 + k/4;
/* Rough assumption for now, the last position costs about 3 bits more than
the first. */
delta_rate = 3./n;
/* Search one pulse at a time */
for (; i < k - rdo_pulses; i++) {
int pos;
double best_xy;
double best_yy;
pos = 0;
best_xy = -10;
best_yy = 1;
for (j = 0; j < n; j++) {
double tmp_xy;
double tmp_yy;
tmp_xy = xy + x[j];
tmp_yy = yy + 2*ypulse[j] + 1;
tmp_xy *= tmp_xy;
if (j == 0 || tmp_xy*best_yy > best_xy*tmp_yy) {
best_xy = tmp_xy;
best_yy = tmp_yy;
pos = j;
}
}
xy = xy + x[pos];
yy = yy + 2*ypulse[pos] + 1;
ypulse[pos]++;
}
/* Search last pulses with RDO. Distortion is D = (x-y)^2 = x^2 - 2*x*y + y^2
and since x^2 and y^2 are constant, we just maximize x*y, plus a
lambda*rate term. Note that since x and y aren't normalized here,
we need to divide by sqrt(x^2)*sqrt(y^2). */
for (; i < k; i++) {
double rsqrt_table[4];
int rsqrt_table_size = 4;
int pos;
double best_cost;
pos = 0;
best_cost = -1e5;
/*Fill the small rsqrt lookup table with inputs relative to yy.
Specifically, the table of n values is filled with
rsqrt(yy + 1), rsqrt(yy + 2 + 1) .. rsqrt(yy + 2*(n-1) + 1).*/
od_fill_dynamic_rsqrt_table(rsqrt_table, rsqrt_table_size, yy);
for (j = 0; j < n; j++) {
double tmp_xy;
double tmp_yy;
tmp_xy = xy + x[j];
/*Calculate rsqrt(yy + 2*ypulse[j] + 1) using an optimized method.*/
tmp_yy = od_custom_rsqrt_dynamic_table(rsqrt_table, rsqrt_table_size,
yy, ypulse[j]);
tmp_xy = 2*tmp_xy*norm_1*tmp_yy - lambda*j*delta_rate;
if (j == 0 || tmp_xy > best_cost) {
best_cost = tmp_xy;
pos = j;
}
}
xy = xy + x[pos];
yy = yy + 2*ypulse[pos] + 1;
ypulse[pos]++;
}
for (i = 0; i < n; i++) {
if (xcoeff[i] < 0) ypulse[i] = -ypulse[i];
}
return xy/(1e-100 + sqrt(xx*yy));
}
/** Encodes the gain so that the return value increases with the
* distance |x-ref|, so that we can encode a zero when x=ref. The
* value x=0 is not covered because it is only allowed in the noref
* case.
*
* @param [in] x quantized gain to encode
* @param [in] ref quantized gain of the reference
* @return interleave-encoded quantized gain value
*/
static int neg_interleave(int x, int ref) {
if (x < ref) return -2*(x - ref) - 1;
else if (x < 2*ref) return 2*(x - ref);
else return x-1;
}
int od_vector_is_null(const od_coeff *x, int len) {
int i;
for (i = 0; i < len; i++) if (x[i]) return 0;
return 1;
}
static double od_pvq_rate(int qg, int icgr, int theta, int ts,
const od_adapt_ctx *adapt, const od_coeff *y0, int k, int n, int speed) {
double rate;
if (k == 0) rate = 0;
else if (speed > 0) {
int i;
int sum;
double f;
/* Compute "center of mass" of the pulse vector. */
sum = 0;
for (i = 0; i < n - (theta != -1); i++) sum += i*abs(y0[i]);
f = sum/(double)(k*n);
/* Estimates the number of bits it will cost to encode K pulses in
N dimensions based on hand-tuned fit for bitrate vs K, N and
"center of mass". */
rate = (1 + .4*f)*n*OD_LOG2(1 + OD_MAXF(0, log(n*2*(1*f + .025))*k/n)) + 3;
}
else {
aom_writer w;
od_pvq_codeword_ctx cd;
int tell;
#if !CONFIG_ANS
od_ec_enc_init(&w.ec, 1000);
#else
# error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
OD_COPY(&cd, &adapt->pvq.pvq_codeword_ctx, 1);
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&w.ec);
#else
# error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
aom_encode_pvq_codeword(&w, &cd, y0, n - (theta != -1), k);
#if !CONFIG_ANS
rate = (od_ec_enc_tell_frac(&w.ec)-tell)/8.;
od_ec_enc_clear(&w.ec);
#else
# error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
}
if (qg > 0 && theta >= 0) {
/* Approximate cost of entropy-coding theta */
rate += .9*OD_LOG2(ts);
if (qg == icgr) rate -= .5;
}
return rate;
}
#define MAX_PVQ_ITEMS (20)
/* This stores the information about a PVQ search candidate, so we can sort
based on K. */
typedef struct {
int gain;
int k;
od_val32 qtheta;
int theta;
int ts;
od_val32 qcg;
} pvq_search_item;
int items_compare(pvq_search_item *a, pvq_search_item *b) {
/* Break ties in K with gain to ensure a stable sort.
Otherwise, the order depends on qsort implementation. */
return a->k == b->k ? a->gain - b->gain : a->k - b->k;
}
/** Perform PVQ quantization with prediction, trying several
* possible gains and angles. See draft-valin-videocodec-pvq and
* http://jmvalin.ca/slides/pvq.pdf for more details.
*
* @param [out] out coefficients after quantization
* @param [in] x0 coefficients before quantization
* @param [in] r0 reference, aka predicted coefficients
* @param [in] n number of dimensions
* @param [in] q0 quantization step size
* @param [out] y pulse vector (i.e. selected PVQ codevector)
* @param [out] itheta angle between input and reference (-1 if noref)
* @param [out] vk total number of pulses
* @param [in] beta per-band activity masking beta param
* @param [out] skip_diff distortion cost of skipping this block
* (accumulated)
* @param [in] is_keyframe whether we're encoding a keyframe
* @param [in] pli plane index
* @param [in] adapt probability adaptation context
* @param [in] qm QM with magnitude compensation
* @param [in] qm_inv Inverse of QM with magnitude compensation
* @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
* @param [in] speed Make search faster by making approximations
* @return gain index of the quatized gain
*/
static int pvq_theta(od_coeff *out, const od_coeff *x0, const od_coeff *r0,
int n, int q0, od_coeff *y, int *itheta, int *vk,
od_val16 beta, double *skip_diff, int is_keyframe, int pli,
const od_adapt_ctx *adapt, const int16_t *qm, const int16_t *qm_inv,
double pvq_norm_lambda, int speed) {
od_val32 g;
od_val32 gr;
od_coeff y_tmp[MAXN + 3];
int i;
/* Number of pulses. */
int k;
/* Companded gain of x and reference, normalized to q. */
od_val32 cg;
od_val32 cgr;
int icgr;
int qg;
/* Best RDO cost (D + lamdba*R) so far. */
double best_cost;
double dist0;
/* Distortion (D) that corresponds to the best RDO cost. */
double best_dist;
double dist;
/* Sign of Householder reflection. */
int s;
/* Dimension on which Householder reflects. */
int m;
od_val32 theta;
double corr;
int best_k;
od_val32 best_qtheta;
od_val32 gain_offset;
int noref;
double skip_dist;
int cfl_enabled;
int skip;
double gain_weight;
od_val16 x16[MAXN];
od_val16 r16[MAXN];
int xshift;
int rshift;
/* Give more weight to gain error when calculating the total distortion. */
gain_weight = 1.0;
OD_ASSERT(n > 1);
corr = 0;
#if !defined(OD_FLOAT_PVQ)
/* Shift needed to make x fit in 16 bits even after rotation.
This shift value is not normative (it can be changed without breaking
the bitstream) */
xshift = OD_MAXI(0, od_vector_log_mag(x0, n) - 15);
/* Shift needed to make the reference fit in 15 bits, so that the Householder
vector can fit in 16 bits.
This shift value *is* normative, and has to match the decoder. */
rshift = OD_MAXI(0, od_vector_log_mag(r0, n) - 14);
#else
xshift = 0;
rshift = 0;
#endif
for (i = 0; i < n; i++) {
#if defined(OD_FLOAT_PVQ)
/*This is slightly different from the original float PVQ code,
where the qm was applied in the accumulation in od_pvq_compute_gain and
the vectors were od_coeffs, not od_val16 (i.e. double).*/
x16[i] = x0[i]*(double)qm[i]*OD_QM_SCALE_1;
r16[i] = r0[i]*(double)qm[i]*OD_QM_SCALE_1;
#else
x16[i] = OD_SHR_ROUND(x0[i]*qm[i], OD_QM_SHIFT + xshift);
r16[i] = OD_SHR_ROUND(r0[i]*qm[i], OD_QM_SHIFT + rshift);
#endif
corr += OD_MULT16_16(x16[i], r16[i]);
}
cfl_enabled = is_keyframe && pli != 0 && !OD_DISABLE_CFL;
cg = od_pvq_compute_gain(x16, n, q0, &g, beta, xshift);
cgr = od_pvq_compute_gain(r16, n, q0, &gr, beta, rshift);
if (cfl_enabled) cgr = OD_CGAIN_SCALE;
/* gain_offset is meant to make sure one of the quantized gains has
exactly the same gain as the reference. */
#if defined(OD_FLOAT_PVQ)
icgr = (int)floor(.5 + cgr);
#else
icgr = OD_SHR_ROUND(cgr, OD_CGAIN_SHIFT);
#endif
gain_offset = cgr - OD_SHL(icgr, OD_CGAIN_SHIFT);
/* Start search with null case: gain=0, no pulse. */
qg = 0;
dist = gain_weight*cg*cg*OD_CGAIN_SCALE_2;
best_dist = dist;
best_cost = dist + pvq_norm_lambda*od_pvq_rate(0, 0, -1, 0, adapt, NULL, 0,
n, speed);
noref = 1;
best_k = 0;
*itheta = -1;
OD_CLEAR(y, n);
best_qtheta = 0;
m = 0;
s = 1;
corr = corr/(1e-100 + g*(double)gr/OD_SHL(1, xshift + rshift));
corr = OD_MAXF(OD_MINF(corr, 1.), -1.);
if (is_keyframe) skip_dist = gain_weight*cg*cg*OD_CGAIN_SCALE_2;
else {
skip_dist = gain_weight*(cg - cgr)*(cg - cgr)
+ cgr*(double)cg*(2 - 2*corr);
skip_dist *= OD_CGAIN_SCALE_2;
}
if (!is_keyframe) {
/* noref, gain=0 isn't allowed, but skip is allowed. */
od_val32 scgr;
scgr = OD_MAXF(0,gain_offset);
if (icgr == 0) {
best_dist = gain_weight*(cg - scgr)*(cg - scgr)
+ scgr*(double)cg*(2 - 2*corr);
best_dist *= OD_CGAIN_SCALE_2;
}
best_cost = best_dist + pvq_norm_lambda*od_pvq_rate(0, icgr, 0, 0, adapt,
NULL, 0, n, speed);
best_qtheta = 0;
*itheta = 0;
noref = 0;
}
dist0 = best_dist;
if (n <= OD_MAX_PVQ_SIZE && !od_vector_is_null(r0, n) && corr > 0) {
od_val16 xr[MAXN];
int gain_bound;
int prev_k;
pvq_search_item items[MAX_PVQ_ITEMS];
int idx;
int nitems;
double cos_dist;
idx = 0;
gain_bound = OD_SHR(cg - gain_offset, OD_CGAIN_SHIFT);
/* Perform theta search only if prediction is useful. */
theta = OD_ROUND32(OD_THETA_SCALE*acos(corr));
m = od_compute_householder(r16, n, gr, &s, rshift);
od_apply_householder(xr, x16, r16, n);
prev_k = 0;
for (i = m; i < n - 1; i++) xr[i] = xr[i + 1];
/* Compute all candidate PVQ searches within a reasonable range of gain
and theta. */
for (i = OD_MAXI(1, gain_bound - 1); i <= gain_bound + 1; i++) {
int j;
od_val32 qcg;
int ts;
int theta_lower;
int theta_upper;
/* Quantized companded gain */
qcg = OD_SHL(i, OD_CGAIN_SHIFT) + gain_offset;
/* Set angular resolution (in ra) to match the encoded gain */
ts = od_pvq_compute_max_theta(qcg, beta);
theta_lower = OD_MAXI(0, (int)floor(.5 +
theta*OD_THETA_SCALE_1*2/M_PI*ts) - 2);
theta_upper = OD_MINI(ts - 1, (int)ceil(theta*OD_THETA_SCALE_1*2/M_PI*ts));
/* Include the angles within a reasonable range. */
for (j = theta_lower; j <= theta_upper; j++) {
od_val32 qtheta;
qtheta = od_pvq_compute_theta(j, ts);
k = od_pvq_compute_k(qcg, j, 0, n, beta);
items[idx].gain = i;
items[idx].theta = j;
items[idx].k = k;
items[idx].qcg = qcg;
items[idx].qtheta = qtheta;
items[idx].ts = ts;
idx++;
OD_ASSERT(idx < MAX_PVQ_ITEMS);
}
}
nitems = idx;
cos_dist = 0;
/* Sort PVQ search candidates in ascending order of pulses K so that
we can reuse all the previously searched pulses across searches. */
qsort(items, nitems, sizeof(items[0]),
(int (*)(const void *, const void *))items_compare);
/* Search for the best gain/theta in order. */
for (idx = 0; idx < nitems; idx++) {
int j;
od_val32 qcg;
int ts;
double cost;
double dist_theta;
double sin_prod;
od_val32 qtheta;
/* Quantized companded gain */
qcg = items[idx].qcg;
i = items[idx].gain;
j = items[idx].theta;
/* Set angular resolution (in ra) to match the encoded gain */
ts = items[idx].ts;
/* Search for the best angle within a reasonable range. */
qtheta = items[idx].qtheta;
k = items[idx].k;
/* Compute the minimal possible distortion by not taking the PVQ
cos_dist into account. */
dist_theta = 2 - 2.*od_pvq_cos(theta - qtheta)*OD_TRIG_SCALE_1;
dist = gain_weight*(qcg - cg)*(qcg - cg) + qcg*(double)cg*dist_theta;
dist *= OD_CGAIN_SCALE_2;
/* If we have no hope of beating skip (including a 1-bit worst-case
penalty), stop now. */
if (dist > dist0 + 1.0*pvq_norm_lambda && k != 0) continue;
sin_prod = od_pvq_sin(theta)*OD_TRIG_SCALE_1*od_pvq_sin(qtheta)*
OD_TRIG_SCALE_1;
/* PVQ search, using a gain of qcg*cg*sin(theta)*sin(qtheta) since
that's the factor by which cos_dist is multiplied to get the
distortion metric. */
if (k == 0) {
cos_dist = 0;
OD_CLEAR(y_tmp, n-1);
}
else if (k != prev_k) {
cos_dist = pvq_search_rdo_double(xr, n - 1, k, y_tmp,
qcg*(double)cg*sin_prod*OD_CGAIN_SCALE_2, pvq_norm_lambda, prev_k);
}
prev_k = k;
/* See Jmspeex' Journal of Dubious Theoretical Results. */
dist_theta = 2 - 2.*od_pvq_cos(theta - qtheta)*OD_TRIG_SCALE_1
+ sin_prod*(2 - 2*cos_dist);
dist = gain_weight*(qcg - cg)*(qcg - cg) + qcg*(double)cg*dist_theta;
dist *= OD_CGAIN_SCALE_2;
/* Do approximate RDO. */
cost = dist + pvq_norm_lambda*od_pvq_rate(i, icgr, j, ts, adapt, y_tmp,
k, n, speed);
if (cost < best_cost) {
best_cost = cost;
best_dist = dist;
qg = i;
best_k = k;
best_qtheta = qtheta;
*itheta = j;
noref = 0;
OD_COPY(y, y_tmp, n - 1);
}
}
}
/* Don't bother with no-reference version if there's a reasonable
correlation. */
if (n <= OD_MAX_PVQ_SIZE && (corr < .5
|| cg < (od_val32)(OD_SHL(2, OD_CGAIN_SHIFT)))) {
int gain_bound;
int prev_k;
gain_bound = OD_SHR(cg, OD_CGAIN_SHIFT);
prev_k = 0;
/* Search for the best gain (haven't determined reasonable range yet). */
for (i = OD_MAXI(1, gain_bound); i <= gain_bound + 1; i++) {
double cos_dist;
double cost;
od_val32 qcg;
qcg = OD_SHL(i, OD_CGAIN_SHIFT);
k = od_pvq_compute_k(qcg, -1, 1, n, beta);
/* Compute the minimal possible distortion by not taking the PVQ
cos_dist into account. */
dist = gain_weight*(qcg - cg)*(qcg - cg);
dist *= OD_CGAIN_SCALE_2;
if (dist > dist0 && k != 0) continue;
cos_dist = pvq_search_rdo_double(x16, n, k, y_tmp,
qcg*(double)cg*OD_CGAIN_SCALE_2, pvq_norm_lambda, prev_k);
prev_k = k;
/* See Jmspeex' Journal of Dubious Theoretical Results. */
dist = gain_weight*(qcg - cg)*(qcg - cg)
+ qcg*(double)cg*(2 - 2*cos_dist);
dist *= OD_CGAIN_SCALE_2;
/* Do approximate RDO. */
cost = dist + pvq_norm_lambda*od_pvq_rate(i, 0, -1, 0, adapt, y_tmp, k,
n, speed);
if (cost <= best_cost) {
best_cost = cost;
best_dist = dist;
qg = i;
noref = 1;
best_k = k;
*itheta = -1;
OD_COPY(y, y_tmp, n);
}
}
}
k = best_k;
theta = best_qtheta;
skip = 0;
if (noref) {
if (qg == 0) skip = OD_PVQ_SKIP_ZERO;
}
else {
if (!is_keyframe && qg == 0) {
skip = (icgr ? OD_PVQ_SKIP_ZERO : OD_PVQ_SKIP_COPY);
}
if (qg == icgr && *itheta == 0 && !cfl_enabled) skip = OD_PVQ_SKIP_COPY;
}
/* Synthesize like the decoder would. */
if (skip) {
if (skip == OD_PVQ_SKIP_COPY) OD_COPY(out, r0, n);
else OD_CLEAR(out, n);
}
else {
if (noref) gain_offset = 0;
g = od_gain_expand(OD_SHL(qg, OD_CGAIN_SHIFT) + gain_offset, q0, beta);
od_pvq_synthesis_partial(out, y, r16, n, noref, g, theta, m, s,
qm_inv);
}
*vk = k;
*skip_diff += skip_dist - best_dist;
/* Encode gain differently depending on whether we use prediction or not.
Special encoding on inter frames where qg=0 is allowed for noref=0
but not noref=1.*/
if (is_keyframe) return noref ? qg : neg_interleave(qg, icgr);
else return noref ? qg - 1 : neg_interleave(qg + 1, icgr + 1);
}
/** Encodes a single vector of integers (eg, a partition within a
* coefficient block) using PVQ
*
* @param [in,out] w multi-symbol entropy encoder
* @param [in] qg quantized gain
* @param [in] theta quantized post-prediction theta
* @param [in] in coefficient vector to code
* @param [in] n number of coefficients in partition
* @param [in] k number of pulses in partition
* @param [in,out] model entropy encoder state
* @param [in,out] adapt adaptation context
* @param [in,out] exg ExQ16 expectation of gain value
* @param [in,out] ext ExQ16 expectation of theta value
* @param [in] cdf_ctx selects which cdf context to use
* @param [in] is_keyframe whether we're encoding a keyframe
* @param [in] code_skip whether the "skip rest" flag is allowed
* @param [in] skip_rest when set, we skip all higher bands
* @param [in] encode_flip whether we need to encode the CfL flip flag now
* @param [in] flip value of the CfL flip flag
*/
void pvq_encode_partition(aom_writer *w,
int qg,
int theta,
const od_coeff *in,
int n,
int k,
generic_encoder model[3],
od_adapt_ctx *adapt,
int *exg,
int *ext,
int cdf_ctx,
int is_keyframe,
int code_skip,
int skip_rest,
int encode_flip,
int flip) {
int noref;
int id;
noref = (theta == -1);
id = (qg > 0) + 2*OD_MINI(theta + 1,3) + 8*code_skip*skip_rest;
if (is_keyframe) {
OD_ASSERT(id != 8);
if (id >= 8) id--;
}
else {
OD_ASSERT(id != 10);
if (id >= 10) id--;
}
/* Jointly code gain, theta and noref for small values. Then we handle
larger gain and theta values. For noref, theta = -1. */
aom_write_symbol_pvq(w, id, &adapt->pvq.pvq_gaintheta_cdf[cdf_ctx][0],
8 + 7*code_skip);
if (encode_flip) {
/* We could eventually do some smarter entropy coding here, but it would
have to be good enough to overcome the overhead of the entropy coder.
An early attempt using a "toogle" flag with simple adaptation wasn't
worth the trouble. */
aom_write_bit(w, flip);
}
if (qg > 0) {
int tmp;
tmp = *exg;
generic_encode(w, &model[!noref], qg - 1, &tmp, 2);
OD_IIR_DIADIC(*exg, qg << 16, 2);
}
if (theta > 1) {
int tmp;
tmp = *ext;
generic_encode(w, &model[2], theta - 2, &tmp, 2);
OD_IIR_DIADIC(*ext, theta << 16, 2);
}
aom_encode_pvq_codeword(w, &adapt->pvq.pvq_codeword_ctx, in,
n - (theta != -1), k);
}
/** Quantizes a scalar with rate-distortion optimization (RDO)
* @param [in] x unquantized value
* @param [in] q quantization step size
* @param [in] delta0 rate increase for encoding a 1 instead of a 0
* @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
* @retval quantized value
*/
int od_rdo_quant(od_coeff x, int q, double delta0, double pvq_norm_lambda) {
int n;
/* Optimal quantization threshold is 1/2 + lambda*delta_rate/2. See
Jmspeex' Journal of Dubious Theoretical Results for details. */
n = OD_DIV_R0(abs(x), q);
if ((double)abs(x)/q < (double)n/2 + pvq_norm_lambda*delta0/(2*n)) {
return 0;
}
else {
return OD_DIV_R0(x, q);
}
}
/** Encode a coefficient block (excepting DC) using PVQ
*
* @param [in,out] enc daala encoder context
* @param [in] ref 'reference' (prediction) vector
* @param [in] in coefficient block to quantize and encode
* @param [out] out quantized coefficient block
* @param [in] q0 scale/quantizer
* @param [in] pli plane index
* @param [in] bs log of the block size minus two
* @param [in] beta per-band activity masking beta param
* @param [in] is_keyframe whether we're encoding a keyframe
* @param [in] qm QM with magnitude compensation
* @param [in] qm_inv Inverse of QM with magnitude compensation
* @param [in] speed Make search faster by making approximations
* @param [in] pvq_info If null, conisdered as RDO search mode
* @return Returns block skip info indicating whether DC/AC are coded.
* bit0: DC is coded, bit1: AC is coded (1 means coded)
*
*/
PVQ_SKIP_TYPE od_pvq_encode(daala_enc_ctx *enc,
od_coeff *ref,
const od_coeff *in,
od_coeff *out,
int q_dc,
int q_ac,
int pli,
int bs,
const od_val16 *beta,
int is_keyframe,
const int16_t *qm,
const int16_t *qm_inv,
int speed,
PVQ_INFO *pvq_info){
int theta[PVQ_MAX_PARTITIONS];
int qg[PVQ_MAX_PARTITIONS];
int k[PVQ_MAX_PARTITIONS];
od_coeff y[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
int *exg;
int *ext;
int nb_bands;
int i;
const int *off;
int size[PVQ_MAX_PARTITIONS];
generic_encoder *model;
double skip_diff;
int tell;
uint16_t *skip_cdf;
od_rollback_buffer buf;
int dc_quant;
int flip;
int cfl_encoded;
int skip_rest;
int skip_dir;
int skip_theta_value;
const unsigned char *pvq_qm;
double dc_rate;
int use_masking;
PVQ_SKIP_TYPE ac_dc_coded;
aom_clear_system_state();
use_masking = enc->use_activity_masking;
if (use_masking)
pvq_qm = &enc->state.pvq_qm_q4[pli][0];
else
pvq_qm = 0;
exg = &enc->state.adapt->pvq.pvq_exg[pli][bs][0];
ext = enc->state.adapt->pvq.pvq_ext + bs*PVQ_MAX_PARTITIONS;
skip_cdf = enc->state.adapt->skip_cdf[2*bs + (pli != 0)];
model = enc->state.adapt->pvq.pvq_param_model;
nb_bands = OD_BAND_OFFSETS[bs][0];
off = &OD_BAND_OFFSETS[bs][1];
if (use_masking)
dc_quant = OD_MAXI(1, q_dc * pvq_qm[od_qm_get_index(bs, 0)] >> 4);
else
dc_quant = OD_MAXI(1, q_dc);
tell = 0;
for (i = 0; i < nb_bands; i++) size[i] = off[i+1] - off[i];
skip_diff = 0;
flip = 0;
/*If we are coding a chroma block of a keyframe, we are doing CfL.*/
if (pli != 0 && is_keyframe) {
od_val32 xy;
xy = 0;
/*Compute the dot-product of the first band of chroma with the luma ref.*/
for (i = off[0]; i < off[1]; i++) {
#if defined(OD_FLOAT_PVQ)
xy += ref[i]*(double)qm[i]*OD_QM_SCALE_1*
(double)in[i]*(double)qm[i]*OD_QM_SCALE_1;
#else
od_val32 rq;
od_val32 inq;
rq = ref[i]*qm[i];
inq = in[i]*qm[i];
xy += OD_SHR(rq*(int64_t)inq, OD_SHL(OD_QM_SHIFT + OD_CFL_FLIP_SHIFT,
1));
#endif
}
/*If cos(theta) < 0, then |theta| > pi/2 and we should negate the ref.*/
if (xy < 0) {
flip = 1;
for(i = off[0]; i < off[nb_bands]; i++) ref[i] = -ref[i];
}
}
for (i = 0; i < nb_bands; i++) {
int q;
if (use_masking)
q = OD_MAXI(1, q_ac * pvq_qm[od_qm_get_index(bs, i + 1)] >> 4);
else
q = OD_MAXI(1, q_ac);
qg[i] = pvq_theta(out + off[i], in + off[i], ref + off[i], size[i],
q, y + off[i], &theta[i], &k[i], beta[i], &skip_diff, is_keyframe,
pli, enc->state.adapt, qm + off[i], qm_inv + off[i],
enc->pvq_norm_lambda, speed);
}
od_encode_checkpoint(enc, &buf);
if (is_keyframe) out[0] = 0;
else {
int n;
n = OD_DIV_R0(abs(in[0] - ref[0]), dc_quant);
if (n == 0) {
out[0] = 0;
} else {
int tell2;
od_rollback_buffer dc_buf;
dc_rate = -OD_LOG2((double)(OD_ICDF(skip_cdf[3]) - OD_ICDF(skip_cdf[2]))/
(double)(OD_ICDF(skip_cdf[2]) - OD_ICDF(skip_cdf[1])));
dc_rate += 1;
#if !CONFIG_ANS
tell2 = od_ec_enc_tell_frac(&enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
od_encode_checkpoint(enc, &dc_buf);
generic_encode(&enc->w, &enc->state.adapt->model_dc[pli],
n - 1, &enc->state.adapt->ex_dc[pli][bs][0], 2);
#if !CONFIG_ANS
tell2 = od_ec_enc_tell_frac(&enc->w.ec) - tell2;
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
dc_rate += tell2/8.0;
od_encode_rollback(enc, &dc_buf);
out[0] = od_rdo_quant(in[0] - ref[0], dc_quant, dc_rate,
enc->pvq_norm_lambda);
}
}
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
/* Code as if we're not skipping. */
aom_write_symbol(&enc->w, 2 + (out[0] != 0), skip_cdf, 4);
ac_dc_coded = AC_CODED + (out[0] != 0);
cfl_encoded = 0;
skip_rest = 1;
skip_theta_value = is_keyframe ? -1 : 0;
for (i = 1; i < nb_bands; i++) {
if (theta[i] != skip_theta_value || qg[i]) skip_rest = 0;
}
skip_dir = 0;
if (nb_bands > 1) {
for (i = 0; i < 3; i++) {
int j;
int tmp;
tmp = 1;
// ToDo(yaowu): figure out better stop condition without gcc warning.
for (j = i + 1; j < nb_bands && j < PVQ_MAX_PARTITIONS; j += 3) {
if (theta[j] != skip_theta_value || qg[j]) tmp = 0;
}
skip_dir |= tmp << i;
}
}
if (theta[0] == skip_theta_value && qg[0] == 0 && skip_rest) nb_bands = 0;
/* NOTE: There was no other better place to put this function. */
if (pvq_info)
av1_store_pvq_enc_info(pvq_info, qg, theta, k, y, nb_bands, off, size,
skip_rest, skip_dir, bs);
for (i = 0; i < nb_bands; i++) {
int encode_flip;
/* Encode CFL flip bit just after the first time it's used. */
encode_flip = pli != 0 && is_keyframe && theta[i] != -1 && !cfl_encoded;
if (i == 0 || (!skip_rest && !(skip_dir & (1 << ((i - 1)%3))))) {
pvq_encode_partition(&enc->w, qg[i], theta[i], y + off[i],
size[i], k[i], model, enc->state.adapt, exg + i, ext + i,
(pli != 0)*OD_TXSIZES*PVQ_MAX_PARTITIONS + bs*PVQ_MAX_PARTITIONS + i,
is_keyframe, i == 0 && (i < nb_bands - 1), skip_rest, encode_flip, flip);
}
if (i == 0 && !skip_rest && bs > 0) {
aom_write_symbol(&enc->w, skip_dir,
&enc->state.adapt->pvq.pvq_skip_dir_cdf[(pli != 0) + 2*(bs - 1)][0], 7);
}
if (encode_flip) cfl_encoded = 1;
}
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&enc->w.ec) - tell;
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
/* Account for the rate of skipping the AC, based on the same DC decision
we made when trying to not skip AC. */
{
double skip_rate;
if (out[0] != 0) {
skip_rate = -OD_LOG2((OD_ICDF(skip_cdf[1]) - OD_ICDF(skip_cdf[0]))/
(double)OD_ICDF(skip_cdf[3]));
}
else {
skip_rate = -OD_LOG2(OD_ICDF(skip_cdf[0])/
(double)OD_ICDF(skip_cdf[3]));
}
tell -= (int)floor(.5+8*skip_rate);
}
if (nb_bands == 0 || skip_diff <= enc->pvq_norm_lambda/8*tell) {
if (is_keyframe) out[0] = 0;
else {
int n;
n = OD_DIV_R0(abs(in[0] - ref[0]), dc_quant);
if (n == 0) {
out[0] = 0;
} else {
int tell2;
od_rollback_buffer dc_buf;
dc_rate = -OD_LOG2((double)(OD_ICDF(skip_cdf[1]) - OD_ICDF(skip_cdf[0]))/
(double)OD_ICDF(skip_cdf[0]));
dc_rate += 1;
#if !CONFIG_ANS
tell2 = od_ec_enc_tell_frac(&enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
od_encode_checkpoint(enc, &dc_buf);
generic_encode(&enc->w, &enc->state.adapt->model_dc[pli],
n - 1, &enc->state.adapt->ex_dc[pli][bs][0], 2);
#if !CONFIG_ANS
tell2 = od_ec_enc_tell_frac(&enc->w.ec) - tell2;
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
dc_rate += tell2/8.0;
od_encode_rollback(enc, &dc_buf);
out[0] = od_rdo_quant(in[0] - ref[0], dc_quant, dc_rate,
enc->pvq_norm_lambda);
}
}
/* We decide to skip, roll back everything as it was before. */
od_encode_rollback(enc, &buf);
aom_write_symbol(&enc->w, out[0] != 0, skip_cdf, 4);
ac_dc_coded = (out[0] != 0);
if (is_keyframe) for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = 0;
else for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = ref[i];
}
if (pvq_info)
pvq_info->ac_dc_coded = ac_dc_coded;
return ac_dc_coded;
}
|